Nucleophilic Degradation of White Phosphorus with *t***Bu3SiK: Synthesis and X-ray Crystal Structure Analysis** of the Potassium Triphosphide $(tBu_3Si)_2P_3K$

Hans-Wolfram Lerner,*,† Michael Bolte,† Konstantin Karaghiosoff,‡ and Matthias Wagner†

Institut fu¨ *r Anorganische Chemie, Johann Wolfgang Goethe-Universita*¨*t Frankfurt am Main, Marie-Curie-Strasse 11, 60439 Frankfurt am Main, Germany, and Department für Chemie der Universita*¨*t Mu*¨*nchen, Butenandtstrasse 5-13, 81377 Mu*¨*nchen, Germany*

Received August 20, 2004

Summary: The potassium phosphides (tBu3Si)2P4K2 and $(tBu_3Si)_4P_8K_4$ *can be synthesized from the reaction of* P_4 *with 2 equiv of the potassium silanide tBu3SiK in tetrahydrofuran at* -*⁷⁸* °*C. The potassium silanide tBu3SiK slowly transforms the tetraphospide (tBu3- Si)2P4K2 and the octaphosphide (tBu3Si)4P8K4 into (tBu3- Si)2P3K and (tBu3Si)3P5K2. X-ray quality crystals of the triphosphide, tBu₃SiKP-P=PSitBu₃, have been obtained from a tetrahydrofuran solution at* -*²⁵* °*C.*

Introduction

Recently we have reported on the reaction of P_4 with the silanides $tBu_3Sim (M = Li, Na)$ and $tBu_2Ph SiNa$ in a 1:3 stoichiometry, which cleanly led to the tetraphosphides $(tBu_3Si)_3P_4M_3$ (M = Li, Na) and $(tBu_2PhSi)_3P_4$ -Na3. However, the solid state structure of tetraphosphide (*t*Bu3Si)3P4Li3 features a dimer. This tetraphosphide can be transformed into the unsaturated triphosphide (*t*Bu₃Si)₂P₃Li and the monophosphide *t*Bu₃SiPLi₂.¹

Otherwise, the reaction of P_4 with tBu_3SiM (M = Li, Na) and *t*Bu2PhSiNa in a molar ratio of 1:2 leads to the sodium tetraphosphides 2 , $(tBu_3Si)_2P_4M_2$ (M = Li, Na), and (*t*Bu2PhSi)2P4Na2, which dimerize in weakly polar solvents to the octaphosphides $(tBu_3Si)_4P_8M_4$ (M = Li, Na) and $(tBu_2PhSi)_4P_8Na_4.^2$

P-SiR-

m
PSiR₃

 R_3 SiF

 $-PSiR_3$

M
'PSiR₃

 $\overline{2}$

-M

`M-----
'--P
| SiR₃

PSitBu

SiR₂

`M

 R_3 Si

 R_3 SiP

In this paper, we describe the reaction of P_4 with the silanide t Bu₃SiK³ in a 1:3 and 1:2 stoichiometry, respectively. When *t*Bu₃SiK is employed as a reaction partner of P4, some novel insight into the nucleophilic degradation of white phosphorus can be expected. In contrast to the well-established Zintl-type alkali phosphides P_nM_x , only a limited number of molecular alkali phosphides $R_mP_nM_x$ have been structurally characterized by X-ray crystallography.

Results and Discussion

We expected that the analogous potassium tetraphosphide $(tBu_3Si)_3P_4K_3$ will be produced when P_4 is reacted with 3 equiv of tBu_3SiK . By contrast, when P_4 was treated with 3 equiv of *t*Bu₃SiK in tetrahydrofuran, first the tetraphosphide $(tBu_3Si)_2P_4K_2$ and the octaphosphide $(tBu_3Si)_4P_8K_4$ were formed as main products, rather than the tetraphosphide $(tBu_3Si)_3P_4K_3$.

Surprisingly, after the reaction mixture had been stored at ambient temperature for three weeks, the resonances of $(tBu_3Si)_2P_4K_2$ and $(tBu_3Si)_4P_8K_4$ were no longer observable in the ³¹P NMR spectrum and signals had grown, which can be assigned to the pentaphosphide $(tBu_3Si)_3P_5K_3$ (34% of P atoms), the triphosphide $(tBu_3Si)_2P_3K$ (42% of P atoms), and the monophosphide tBu_3SiPK_2 (24% of P atoms). Apparently, the unreacted potassium silanide *t*Bu₃SiK has slowly transformed the tetraphosphide $(tBu_3Si)_2P_4K_2$ and the octaphosphide $(tBu_3Si)_4P_8K_4$ into the triphosphide $(tBu_3Si)_2P_3K$ and the $pentaphosphate(tBu₃Si)₃P₅K₂$.

As shown in Scheme 1, the silanide *t*Bu₃SiK causes the decomposition of the tetraphosphide $(tBu_3Si)_2P_4K_2$ and the octaphosphide $(tBu_3Si)_4P_8K_4$; tBu_3SiPK_2 is formed.4 Contrary to the lithium tetraphosphide (*t*Bu3- $\text{Si}_{3}P_{4}\text{Li}_{3}$, the related potassium tetraphosphide (*t*Bu₃- Si ₃P₄K₃ is as yet unknown. The triphosphide (t Bu₃- $Si)_2P_3K$ may be produced via an intermediary tetraphosphide $(tBu_3Si)_3P_4K_3$.

On the other hand, the tetraphosphide $(tBu_3Si)_2P_4K_2$ and the octaphosphide $(tBu_3Si)_4P_8K_4$ were formed in high yield by the addition of 2 equiv of $t\text{Bu}_3\text{SiK}$ to 1 equiv of P_4 in tetrahydrofuran. Orange crystals of the

^{29260.} E-mail: lerner@chemie.uni-frankfurt.de. [†] Universität Frankfurt.

[‡] Universität München.

⁽¹⁾ Lerner, H.-W.; Wagner, M.; Bolte, M. *J. Chem. Soc., Chem. Commun.* **2003**, 990.

^{(2) (}a) Lerner, H.-W.; Kretz, T.; Kaufmann, L.; Karaghiosoff, K.; Bolte, M.; Wagner, M. Unpublished results. (b) Wiberg, N.; Wörner, A.; Karaghiosoff, K.; Fenske, D. *Chem. Ber.* **1997**, *130*, 135.

⁽³⁾ Wiberg, N.; Amelunxen, K.; Lerner, H.-W.; Schuster, H.; Nöth, H.; Krossing, I.; Schmidt-Amelunxen, M.; Seifert, T. *J. Organomet. Chem.* **1997**, *542*, 1.

⁽⁴⁾ Wiberg, N.; Wörner, A.; Fenske, D.; Nöth, H.; Knizek, J.; Polborn, K.; *Angew. Chem., Int. Ed.* **2000**, *39*, 1838.

Figure 1. Observed ³¹P{¹H} NMR spectrum of **1a(K)** in d_8 -THF at 109.37 MHz (25 °C; external H₃PO₄): δ 730.0 (t, ${}^{1}J_{\text{P1P2}} = 552.34 \text{ Hz}$; P₂); 232.1 (d, ${}^{1}J_{\text{P1P2}} = 552.34 \text{ Hz}$; P₁).

octaphosphide $(tBu_3Si)_4P_8K_4$ were grown from the reaction solution at ambient temperature.⁸ Unfortunately, the tetraphosphide $(tBu_3Si)_2P_4K_2$ has yet to be isolated. However, its structure can be proven unambiguously from its 31P NMR spectrum.

Generally, the NMR spectra of potassium phosphides **1a(K)**-**5a(K)** resemble those of the lithium and sodium $\frac{\text{phosphides}\ \text{1a(Li,Na)} - \text{5(Li,Na)}}{1,K}$. $\frac{1,2,5,6}{1}\ \text{The}\ \frac{31\text{P}}{1}\ \text{H}\ \text{NMR}}$ spectrum of the triphosphide **1(K)** features two signals with the splitting pattern of an AX_2 spin system in the range for the unsaturated two-coordinate phosphorus atoms, as shown in Figure 1. The $^{31}P\{^{1}H\}$ NMR spectrum of the potassium tetraphoshide **2a(K)** shows multiplets with the splitting pattern of an AA′XX′ spin system (Figure 2) similar to the spectra of the tetraphosphides **2a(Na)** and **2b(Na)**. The 31P{1H} NMR spectra of the potassium octaphophide **5a(K)** and the sodium phosphides **5a(Na)** and **5b(Na)**² exhibit the same general features. As indicated in Figure 3, the ³¹P-{1H} NMR spectrum of the pentaphosphide **4a(K)** shows three multiplets with the splitting pattern of an AA′BB′MM′ spin system. The 31P NMR data of phosphorus compounds **¹**-**⁵** are listed in Table 1.

The crystal structure of triphosphide $[1a(K)(THF)_2]_2$ is shown in Figure 4; selected bond lengths and angles can be found in the corresponding caption. X-ray quality crystals of $[1a(K)(THF)_2]_2$ (monoclinic, $C2/c$) were

Figure 2. Observed and calculated ³¹P{¹H} NMR spectrum of $2a(K)$ in d_8 -THF at 109.37 MHz (25 °C; external H₃PO₄): δ 408.3 (m, ¹J_{P2P3} = -386.20 Hz, ¹J_{P1P2} = ¹J_{P3P4} = -448.83 Hz, ²J_{P1P3} = ²J_{P2P4} = 33.87 Hz; P₂, P₃); -5.1 (m, ${}^{3}J_{\text{P1P4}} = 121.15 \text{ Hz}, {}^{1}J_{\text{P1P2}} = {}^{1}J_{\text{P3P4}} = -448.83 \text{ Hz}, {}^{2}J_{\text{P1P3}} = {}^{2}J_{\text{P2P4}} = -33.87 \text{ Hz}; \text{ P}_1, \text{ P}_4$.

Figure 3. Observed and calculated ³¹P{¹H} NMR spectrum of $4a(K)$ in d_8 -THF at 109.37 MHz (25 °C; external H_3PQ_4): δ -85.6 (m, ${}^{1}J_{\text{PlP2}}$ = -168.80 Hz, ${}^{1}J_{\text{PlP3}}$ =
 ${}^{1}J_{\text{P2P4}}$ = -363.80 Hz, ${}^{2}J_{\text{PlP4}}$ = ${}^{2}J_{\text{P2P3}}$ = 7.59 Hz, ${}^{1}J_{\text{PlP5}}$ =
 ${}^{1}J_{\text{P2P5}}$ = -202.44 Hz; P₁, P₂), -189.9 48.72 Hz, $^{1}J_{\text{P1P5}} = {^{1}J_{\text{P2P5}}} = -202.44$ Hz; P_5), -233.6 (m, $^{1}J_{\text{P1P3}} = {^{1}J_{\text{P2P4}}} = -363.80$ Hz, $^{1}J_{\text{P1P5}} = {^{1}J_{\text{P2P5}}} = -202.44$ Hz, $^{3}J_{\text{D2P4}} = 187.37$ Hz, $^{2}J_{\text{D2P4}} = {^{2}J_{\text{D2P2}}}} =$ $\text{Hz, }^{3}J_{\text{P3P4}} = 187.37 \text{ Hz, }^{2}J_{\text{P1P4}} = {}^{2}J_{\text{P2P3}} = 7.59 \text{ Hz, }^{2}J_{\text{P3P5}} = {}^{2}J_{\text{P4P5}} = 48.72 \text{ Hz; P}_3, \text{ P}_4$.

Table 1. 31P NMR Data for Alkali Metal Phosphides of the Type 1, 2, 3, 4, and 5

	$M = Na$	$M = K$	$M = Na$
1	$R_3Si = tBu_3Si$ $\delta(d_8$ -THF) 732.5, 212.5	$R_3Si = tBu_3Si$ $\delta(d_8\text{-}THF)$ 730.0, 232.1	$R_3Si = tBu_2PhSi$ α
$\bf{2}$	$\delta(d_8\text{-}THF)$ 403.0, -41.1	$\delta(d_8\text{-}THF)$ 408.3, -5.1	$\delta(d_8\text{-}THF)$ 396.1, -41.7
3	$\delta(C_6D_6)$ -11.0. -100.0	α	$\delta(C_6D_6)$ -31.5, -108.5
4	$\delta(C_6D_6) - 93.4$ $-179.6, -240.3$	$\delta(d_8$ -THF) -85.6, $-189.9, -233.6$	$\delta(d_8\text{-}THF)$ -90.0, $-181.5, -243.1$
5	$\delta(C_6D_6)$ 25.2, -176.8	$\delta(d_8$ -THF) 12.0, -180.0	$\delta(d_8$ -THF) 21.5, $^{-185.6}$

^a Unknown.

grown from tetrahydrofuran. It is interesting to note that $(tBu_3Si)_2P_3K$ represents the second structurally characterized triphosphaallyl alkali metal compound, but the quality of its crystal structure is much better than that of the sodium triphosphide $(tBu_3Si)_2P_3Na.5A$ similar structural motif has been observed for a few complexes of transition metals.7

The molecular structure of the triphosphide **[1a(K)-** $(THF)_2]_2$ shows two short PP bonds and an almost

⁽⁵⁾ Wiberg, N.; Wörner, A.; Lerner, H.-W.; Karaghiosoff, K.; Fenske, D.; Baum, G.; Dransfeld, A.; von Ragué Schleyer, P. *Eur. J. Inorg. Chem.* **1998**, 833.

⁽⁶⁾ Wiberg, N.; Wörner, A.; Lerner, H.-W.; Karaghiosoff, K.; Nöth, H. *Z. Naturforsch.* **1998**, *53b*, 1004. (7) (a) Scherer, O. J.; Hilt, T.; Wolmersha¨user, G. *Angew. Chem.,*

Int. Ed. **2000**, *39*, 1426. (b) Driess, M.; Aust, J.; Merz, K. *Eur. J. Inorg. Chem.* **2002**, 2961. (c) Balema, V.; Goesmann, H.; Fritz, G. *Z. Anorg. Allg. Chem.* **1996**, *622*, 35.
(8) **5a(K)**: cell dimensions $a = 13.5188 \text{ Å}, b = 13.4814 \text{ Å}, c = 25.4352$

⁽⁸⁾ **5a(K)**: cell dimensions $a = 13.5188 \text{ Å}$, $b = 13.4814 \text{ Å}$, $c = 25.4352 \text{ Å}$, $\alpha = 99.461^{\circ}$, $\beta = 100.264^{\circ}$, $\gamma = 100.264^{\circ}$, $V = 4207 \text{ Å}^3$, $T = 173(2)$ K. The structure determination failed.

Figure 4. Thermal ellipsoid plot of $[1a(K)(THF)_2]_2$ showing the atomic numbering scheme. The displacement ellipsoids are drawn at the 50% probability level. *t*Bu groups have been omitted for clarity. Selected bond lengths [Å] and angles [deg]: $P-Si\ 2.2700(12)$ [av], $Si-C\ 1.952(5)$ $[av]$, P-P-P 101.05(6) $[av]$, Si-P-P 117.29(6) $[av]$, C-Si-C 110.60(20) [av].

Table 2. Crystal Data and Structure Refinement for $[1a(K)(THF)_2]_2$

empirical formula	$C_{64}H_{140}K_{2}P_{6}O_{4}Si_{4}$
color	purple
shape	plate
fw	1350.14
cryst syst	monoclinic
space group	C2/c
a, A	15.6637(12)
b, A	22.0460(16)
c, A	25.0214(18) A
α , deg	90
β , deg	106.071(6)
γ , deg	90
volume, Å ³	8302.8(11)
Z	4
density(calcd), Mg/m^3	1.080
abs coeff μ (Mo K α), mm ⁻¹	0.325
F(000)	2960
cryst size, mm ³	$0.36 \times 0.32 \times 0.23$
diffractometer	Stoe-IPDS-II
θ -range, deg	2.51 to $25.43\,$
index ranges	$-18 \le h \le 18$,
	$-26 \le k \le 26$,
	$-29 \le l \le 29$
no. of reflns collected	29 752
no. of indep reflns	7339
R(int)	0.0555
absorp corr	empirical, MULABS
T_{\min}, T_{\max}	0.8919, 0.9289
no. of data/restraints/params	7339/5/362
goodness of fit on F^2	0.918
final R indices $[I \geq 2\sigma(I)], R1, wR2$	0.0694, 0.1861
peak/hole, $e\mathring{A}^{-3}$	0.856 and -0.327

planar W-shaped SiPPPSi skeleton with a P-P distance of 2.0721(16) Å. This distance is in the range of PP double bonds and shorter than the sum of the atomic radii (sum of the atomic radii: 2.20 Å). As depicted in Figure 5, the two silyl-substituted triphosphaallylic anions are bridged by two K cations to form a dimer in the solid state. The triphosphide $[1a(K)(THF)_2]_2$ features four P-K contacts (P-K distance: $3.4757(16)$ Å, average) for every K atom. Apart from these P atoms, the K atoms are coordinated by two tetrahydrofuran molecules.

Figure 5. Molecular structure of $[1a(K)(THF)_2]_2$.

Experimental Section

General Procedures. All experiments were carried out under dry argon with strict exclusion of air and moisture using standard Schlenk techniques. tBu_3SiK^3 was prepared according to literature procedures. The solvents (benzene, toluene, tetrahydrofuran) were distilled from sodium/benzophenone prior to use.

The NMR spectra were recorded on a JEOL GSX 270, a JEOL EX, a Bruker AM 250, a Bruker DPX 250, and a Bruker Avance 400 spectrometer. The 29Si NMR spectra were recorded using the INEPT pulse sequence with empirically optimized parameters for polarization transfer from the *t*Bu substituents. Abbrevations: $s = singlet$; $d = doublet$; $t = triplet$; $q = quartet$; mult = multiplet; br = broad; m = meta; o = ortho; p = para.

Reaction of P4 with 3 equiv of *t***Bu3SiK.** *t*Bu3SiK (0.806 g, 3.39 mmol) in tetrahydrofuran (20 mL) was added to freshly sublimed P_4 (0.141 g, 1.14 mmol) at ambient temperature and stirred for 2 h. According to the 31P NMR spectrum, the tetraphosphide $(tBu_3Si)_2P_4K_2$ and the octaphosphide $(tBu_3$ - $Si)_4P_8K_4$ were formed as the main products. After the reaction mixture had been stored at ambient temperature for three weeks, the resonances of $(tBu_3Si)_2P_4K_2$ (47% of P atoms) and $(tBu₃Si)₄P₈K₄$ (52% of P atoms) were no longer observable in the 31P NMR spectrum and signals had grown, which can be assigned to the compounds (*t*Bu3Si)3P5K3 (34% of P atoms), $(tBu_3Si)_2P_3K$ (42% of P atoms), and $tBu_3SiPK_2^4$ (24% of P atoms). X-ray quality crystals of $1a(K)(THF)_2$ were obtained after the reaction mixture had been concentrated in vacuo to a volume of 5 mL and kept at -25 °C for 1 month. Yield: 0.209 g (17%). Selected data for (*t*Bu3Si)2P3K, **1(K)**: 1H NMR (*d*8- THF, internal TMS): δ 1.08 (br, 54H; *t*Bu). ¹³C{¹H} NMR (*d*₈-THF, internal TMS): *δ* 24.0 (br; *C*Me3), 31.8 (br; C*Me3*). $31P{^1H}$ NMR (see Figure 1 and Table 1). $^{29}Si{^1H}$ NMR (d_8 -THF, external TMS): δ 17.1 (m; SitBu₃). Selected data for $(tBu_3Si)_3P_5K_2$, $4a(K):$ ¹H NMR (C_6D_6 , internal TMS): δ 1.30 (br, 54H *t*Bu), 1.22 (br, 27H; *t*Bu). ¹³C{¹H} NMR (C₆D₆, internal TMS): *δ* 25.4 (s; *C*Me3), 25.5 (s; *C*Me3), 32.4 (s; C*Me3*), 32.8 (s; CMe_3). ³¹P{¹H} NMR (see Figure 3 and Table 1). ²⁹Si{¹H} NMR (*d*8-THF, external TMS): *δ* 30.6 (dt; 2 Si*t*Bu3), 17.4 (m; Si*t*Bu3). Selected data for *t*Bu₃SiPK₂: ¹H NMR (*d*₈-THF, internal TMS): *δ* 1.06 (br, 27H; *t*Bu). ³¹P{¹H} NMR (d_8 -THF, external H_3PO_4): δ -320.4 (br).

Reaction of P4 with 2 equiv of *t***Bu3SiK.** *t*Bu3SiK (0.629 g, 2.64 mmol) in tetrahydrofuran (20 mL) was added to a solution of freshly sublimed P_4 (0.146 g, 1.18 mmol) in 10 mL of tetrahydrofuran at -78 °C and stirred for 2 h. According to the ³¹P NMR spectrum, the tetraphosphide $(tBu_3Si)_2P_4K_2$ (40%) of P atoms) and the octaphosphide $(tBu_3Si)_4P_8K_4$ (50% of P atoms) were formed as the main products. Orange crystals⁸ of $(tBu₃Si)₄P₈K₄$, **5a(K)**, were obtained after the reaction mixture had been stored at ambient temperature for 1 week (yield: 0.175 g 21%).

Selected data for $(tBu_3Si)_2P_4K_2$, **2a(K)**: ¹H NMR (d_8 -THF, internal TMS): δ 1.07 (br, 54H; *t*Bu). ¹³C{¹H} NMR (*d*₈-THF, internal TMS): δ 25.3 (s; *CMe₃*), 32.8 (s; *CMe₃*). ²⁹Si{¹H} NMR (*d*8-THF, external TMS): *δ* 21.4 (m; Si*t*Bu3). 31P{1H} NMR (see Figure 2 and Table 1). Selected data for $(tBu_3Si)_4P_8K_4$, $5a(K)$: ¹H NMR (d_8 -THF, internal TMS): δ 1.09 (br, 108H; *t*Bu). ¹³C- 1H NMR (d_8 -THF, internal TMS): δ 26.3 (s; *CMe₃*), 32.4 (s; CMe₃). ²⁹Si{¹H} NMR (d_8 -THF, external TMS): δ 19.8 (m; Si t Bu₃). ³¹P{¹H} NMR (see Table 1).

X-ray Structure Determination. Data collection: Stoe-IPDS-II diffractometer, graphite-monochromated Mo K α radiation; $T = 173$ K, empirical absorption correction using MULABS,9 structure solution by direct methods,10 structure refinement: full-matrix least-squares on *F*² with SHELXL- 97.11 Hydrogen atoms were placed on ideal positions and refined with fixed isotropic displacement parameters using a riding model. CCDC reference number: 211011.

Acknowledgment. We are grateful to the University of Frankfurt for financial funding and the Chemetall GmbH for a gift of *tert-*butyllithium.

Supporting Information Available: The table of X-ray parameters, atomic coordinates and thermal parameters, and bond distances and angles. This material is available free of charge via the Internet at http://pubs.acs.org.

OM049348J

of Crystal Structures; University of Göttingen: Germany, 1997.

⁽⁹⁾ Blessing, R. H. *Acta Crystallogr. A* **1995**, *51,* 33.

⁽¹⁰⁾ Sheldrick, G. M. *Acta Crystallogr. A* **1990**, *46,* 467. (11) Sheldrick, G. M. *SHELXL-97*, A Program for the Refinement