New Route from Si–O to Si–C Bonds: Alkylalkoxysilanes from Alkoxysilanes and Metal Hydrides

Florian J. Schattenmann,* Woodfin V. Ligon, Paul Donahue, Hans Grade, and Kara Abatto

GE Global Research Center, Niskayuna, New York 12309

Received August 20, 2004

The typical pathway from silicon-oxygen to silicon-carbon bonds involves nucleophilic attack of an organometallic reagent on the silicon center. A new transformation from silicon-oxygen to silicon-carbon bonds is reported that proceeds without nucleophilic attack of a carbanion. The reaction of $Si(OMe)_4$ with NaH yields $MeSi(OMe)_3$ at temperatures above 300 °C. Mechanistic studies indicate that an intact methyl group is transferred from a methoxy group to the silicon center in the Si-C bond-forming step.

Introduction

Silicone polymers of the general structure $(RR'SiO)_n$ are widely used in numerous applications.¹ The ultimate source of silicon atoms for silicone materials is silicon dioxide. Considering that about 60% of Earth's crust is composed of silica and silicates, the relatively high cost of silicones is not a function of raw material cost, but the result of enormous energy consumption during the manufacturing process. The major contributor to the high cost of silicones is an energy-intensive, carbothermal reduction step from SiO₂ to elemental silicon. An alternative route to silicones is depicted in eq 1, where the reduction and reoxidation of silicon is avoided.

$$SiO_2 \rightarrow Si(OR)_4 \rightarrow R_2Si(OR)_2 \rightarrow (R_2SiO)_n$$
 (1)

Significant advances have been made in the activation and depolymerization of SiO_2 to produce monomeric Si compounds.² The direct conversion of silicon–oxygen to silicon–carbon bonds is currently based on stoichiometric nucleophilic substitution reactions³ at the silicon center (eq 2) involving costly organometallic reagents, almost exclusively of the alkyllithium and Grignard type.^{2b,c,f,4} In this context we decided to explore new routes from Si–O to Si–C bonds.

Rich, J.; Cella, J.; Lewis, L.; Stein, J.; Singh, N.; Rubinsztajn,
 S.; Wengrovius, J. Silicon Compounds; Wiley: New York, 1997; Vol. 22, p 82.

Figure 1. GC traces of the reactor downstream for the reaction of $Si(OMe)_4$ with NaH at 275 °C (A) and at 350 °C (B). MeSi(OMe)_3 is the dominant product at 350 °C (C).

Tetramethoxysilane was chosen as starting material since substitution of two methoxy groups by methyl groups results in $Me_2Si(OMe)_2$, a direct precursor to silicones. Additionally, $Si(OMe)_4$ is a low-boiling fluid that can easily be used in various reactor types. In an attempt to react $Si(OMe)_4$ under strongly reducing conditions, we studied the reaction of $Si(OMe)_4$ with NaH in a fixed-bed reactor.

Results and Discussion

When Si(OMe)₄ was passed through a bed of NaH at temperatures above 200 °C, a new peak besides unreacted Si(OMe)₄ was observed in the GC trace (retention time: 2.6 min; Figure 1A). The peak represented HSi(OMe)₃ as confirmed by GC/MS and ²⁹Si NMR.⁵ At temperatures above 275 °C, an additional peak (retention time: 3.7 min) was found in the GC trace. The peak increased in intensity as the reactor temperature was raised and represented the only significant product at

^{(2) (}a) Rosenheim, A.; Raibmann, B.; Schendel, G. Z. Anorg. Allg.
(2) (a) Rosenheim, A.; Raibmann, B.; Schendel, G. Z. Anorg. Allg.
Chem. 1931, 196, 160. (b) Boudin, A.; Cerveau, G.; Chuit, C.; Corriu,
R. J. P.; Reye, C. Angew. Chem., Int. Ed. Engl. 1986, 25, 474. (c)
Boudin, A.; Cerveau, G.; Chuit, C.; Corriu, R. J. P.; Reye, C. Organometallics 1988, 7, 1165. (d) Laine, R. M.; Blohowiak, K. Y.; Robinson,
T. R.; Hoppe, M. L.; Nardi, P.; Kampf, J.; Uhm, J. Nature 1991, 353,
642. (e) Ono, Y.; Akiyama, M.; Suzuki, E. Chem. Mater. 1993, 5, 442.
(f) Goodwin, G. B.; Kenney, M. E. Adv. Chem. Ser. 1990, 224, 251. (g)
Lewis, L. N.; Schattenmann, F. J.; Lormon, J. P.; Anostario, J. M.;
Othon, M. A. Inorg. Chem. 2002, 41, 2608.

⁽³⁾ Brook, M. A. Silicon in Organic, Organometallic, and Polymer Chemistry; Wiley: New York, 2000.
(4) Boudin, A.; Cerveau, G.; Chuit, C.; Corriu, R. J. P.; Reye, C. J.

⁽⁴⁾ Boudin, A.; Cerveau, G.; Chuit, C.; Corriu, R. J. P.; Reye, C. J. Organomet. Chem. 1989, 362, 265.
(5) Williams, E. A. In The Chemistry of Organic Silicon Compounds;

⁽⁵⁾ Williams, E. A. In *The Chemistry of Organic Silicon Compounds*; Patai, S., Rappoport, Z., Eds.; Wiley: Chichester, U.K., 1989; Vol. 1, p 548.

325 °C and above (Figure 1B). Surprisingly, this compound was identified by GC/MS and ²⁹Si NMR to be MeSi(OMe)₃. By comparison, Kuznetsov reported that no reaction occurred between Si(OEt)₄ and NaH in solution at temperatures up to 168 °C.⁶ Other hydrides such as LiH and NaBH₄ similarly reacted with Si(OMe)₄ to form MeSi(OMe)₃, but were found to be less reactive and required higher reaction temperatures. The formation of MeSi(OMe)₃ from Si(OMe)₄ and NaH (Figure 1C) represents a new and unexpected transformation from Si–O to Si–C bonds.

The low byproduct production combined with the high symmetry of the starting material, Si(OMe)₄, allowed us to study the mechanism of this unusual reaction in more detail. The question, if $HSi(OMe)_3$ and MeSi-(OMe)₃ were formed independently from each other or if HSi(OMe)₃ was an intermediate in the formation of $MeSi(OMe)_3$, was addressed by reacting $HSi(OMe)_3$ with NaH. MeSi(OMe)₃ was observed as a product at temperatures as low as 200 °C, when HSi(OMe)₃ was passed through a bed of NaH. The relative amount of MeSi- $(OMe)_3$ formed increased as the reactor temperature was raised. At 325 °C, 37% of the reactor downstream mixture was composed of MeSi(OMe)₃. Additionally, the formation of Me₂Si(OMe)₂ was observed. In the absence of NaH, HSi(OMe)₃ was found to be thermally stable beyond 350 °C. This result suggests that MeSi(OMe)₃ is formed from intermediately formed HSi(OMe)₃. Significant redistribution of HSi(OMe)₃ into SiH₄ and Si- $(OMe)_4$ was observed, a reaction with precedence in the literature.⁷

Deprotonation of HSi(OMe)₃ by NaH to form a sodium silyl species is a conceivable first step in the formation of MeSi(OMe)₃ from intermediately formed HSi(OMe)₃. The related formation of KSiEt₃ from KH and HSiEt₃ was reported by Corriu et al.⁸ If in fact NaH reacted as a base with HSi(OMe)₃ to form MeSi(OMe)₃, then the reaction of $HSi(OMe)_3$ with a different, sufficiently strong base should also lead to formation of MeSi-(OMe)₃. Indeed, MeSi(OMe)₃ was generated in the reaction of HSi(OMe)₃ with potassium tert-butoxide (K-O-t-Bu) at 175 °C. Again, redistribution of HSi(OMe)₃ into Si(OMe)₄ and SiH₄ was observed. Neat Si(OMe)₄ did not react with K-O-t-Bu, confirming that only HSi-(OMe)₃, but not the concurrently formed Si(OMe)₄, reacted with base. These results are further evidence that HSi(OMe)₃ was an intermediate in the formation of MeSi(OMe)₃.

GC/MS analysis of the carrier gas exiting the reactor during the reaction of Si(OMe)₄ and NaH at 325 °C revealed the formation of H₂ and methane. When Si-(OMe)₄ was reacted with LiD at 375 °C, HD and CH₃D were observed as the dominant products. The observed methane formation suggested nucleophilic attack of the hydride or deuteride at a CH₃ group of Si(OMe)₄. The generation of H₂ is further indication for the deprotonation of HSi(OMe)₃ by NaH.

An important question was whether an intact methyl group was transferred in the Si-C bond-forming step. Reaction of Si(OMe)₄ with LiD at 400 °C yielded a

Figure 2. GC trace (A) and NMR data of the reactor downstream for the reaction of $Si(OMe)_4$ with LiD at 400 °C. The ¹³C NMR (B) and ¹H NMR (C) spectra each show the region typical for methyl groups directly bound to silicon.

Figure 3. Proposed mechanism of the direct formation of $MeSi(OMe)_3$ from $Si(OMe)_4$ and NaH: (A) Nucleophilic attack of H⁻ at $Si(OMe)_4$; (B) H-abstraction to form a sodium silyl derivative; (C) Si-C bond formation by nucleophilic attack of the silyl group. Methane formation (D) and redistribution of $HSi(OMe)_3$ (E) are undesired side reactions.

mixture that contained 22% MeSi(OMe)3 as determined by GC (Figure 2A). The ¹³C NMR spectrum (¹H decoupled) of the reaction mixture revealed one dominant peak (>90%) in the region expected for CH_3 -Si (Figure 2B). A singlet at -8.9 ppm suggested that no scrambling of deuterium into CH_3 -Si had occurred. Similarly, the ¹H NMR spectrum exhibited a singlet at 0.11 ppm as the dominant peak in the Si-Me region (Figure 2C). In the ²H NMR, a small signal was detected at -0.05 ppm, only a trace amount based on intensity estimates using the ¹³C satellites of the solvent signal. Consistent with the ¹H and ¹³C NMR data, the ²⁹Si NMR spectrum exhibited a singlet at -39.3 ppm as expected for CH_3 -Si(OMe)₃. Also, MS (chemical ionization) did not show significant enrichment of deuterium in MeSi(OMe)₃. The NMR and MS studies indicated that more than 90% of the formed MeSi(OMe)₃ did not contain deuterium and suggested transfer of an intact methyl group to the silicon center in the Si-C bond-forming step.

On the basis of the presented data we propose a mechanism for the formation of $MeSi(OMe)_3$ from $Si(OMe)_4$ and NaH (Figure 3). Initially $HSi(OMe)_3$ is generated from $Si(OMe)_4$ by nucleophilic attack of H⁻ at the silicon center (Figure 3A). In the second step (Figure 3B), the NaH acts as a base and reacts with $HSi(OMe)_3$ to form a sodium silyl species, presumably $NaSi(OMe)_3$. The sodium silyl derivative presumably reacts by nucleophilic attack on a methoxy group of,

⁽⁶⁾ Kuznetsov, A. I. Zh. Prikl. Khim. 1978, 51, 1833.

⁽⁷⁾ Suzuki, E.; Okamoto, M.; Ono, Y. Chem. Lett. 1989, 1487.

⁽⁸⁾ Corriu, R. J. P.; Guerin, C. J. Chem. Soc., Chem. Commun. 1980, 168.

most likely, another Si(OMe)₄ to form MeSi(OMe)₃ (Figure 3C).⁹ The formation of methane by nucleophilic attack of H⁻ on a methyl group of Si(OMe)₄ (Figure 3D) and the redistribution of HSi(OMe)₃ into Si(OMe)₄ and SiH₄ (Figure 3E) represent unproductive side reactions negatively affecting the yield of MeSi(OMe)₃. Cumulative yields of 35–40% MeSi(OMe)₃ based on Si(OMe)₄ were found, when a slight excess of NaH was used assuming consumption of two Si(OMe)₄ per MeSi(OMe)₃ formed. Although pentacoordinate silicon species are likely intermediates during the various reaction steps, no signals were found in the region typical for higher coordinated silicon species in the solid state ²⁹Si NMR spectrum of the bed after partial reaction.

Analogous silicon-carbon bond formation was observed with higher substituted alkoxysilanes such as $Si(OEt)_4$ and $Si(O-n-Pr)_4$ in the reaction with NaH to form the corresponding alkyltrialkoxysilanes. Transfer of an intact alkyl group further supports the proposed mechanism.

Conclusions

We report a new reaction pathway from Si–O to Si–C bonds starting from tetraalkoxysilanes and metal hydrides. Mechanistic studies indicate that the formation of MeSi(OMe)₃ from Si(OMe)₄ proceeds via formation of HSi(OMe)₃. The Si–C bond-forming step involves methyl transfer from a methoxy group onto the silicon center. Surprisingly, an electrophilic alkyl fragment is transferred in the Si–C bond-forming step, in contrast to the typical nucleophilic substitution.

Experimental Section

General Considerations. All reactions were performed in a fixed-bed reactor setup installed inside of a fume hood. The reactor outlet stream was vented into the back of the hood to ensure effective ventilation of the outgasses, particularly the highly flammable SiH₄, a product of the significant HSi(OMe)₃ disproportion reaction. Sodium hydride (95% purity) was purchased from Aldrich and handled under an inert gas atmosphere. Si(OMe)₄ (99.5% purity) was purchased from Aldrich and used as is. The fractions collected at the reactor outlet were analyzed using a Hewlett-Packard 6890 gas chromatograph and frequently reanalyzed using GC/MS (JEOL model HX110 mass spectrometer) equipped with a J&W Scientific DB-5 MS column. All NMR data were obtained on GE NMR Instruments Omega nuclear magnetic resonance spectrometers operating at 500 MHz (11.75T) for ¹³C, ²⁹Si, and ²H and at 300 MHz (7.06T) for ¹H. A JEOL SX-102 mass spectrometer was used for MS gas phase analysis. Elemental analysis of the reactor bed samples was performed using a Varian Liberty II ICP-AES instrument. Digestion methods were used for sample preparation.

Typical Procedure for Reaction of Si(OMe)₄ with NaH as a Function of Temperature (Example 1). Sodium hydride (0.97 g; 40 mmol) was charged into a fixed-bed flow reactor with vertical furnace and flushed with argon carrier gas at a rate of 20 mL/min. The initial reactor temperature was 200 °C. The reaction was performed using argon as carrier gas (14 mL/min). Tetramethoxysilane [Si(OMe)₄] (2.13 mL/h; 14.4 mmol/h) was fed into the carrier gas stream using a motor-driven syringe. The reactor effluent downstream was collected in fractions using a water-chilled condenser and analyzed by gas chromatography. The reaction was carried out with a temperature ramp starting at 200 °C. After collecting a fraction, typically in a range between 0.5 and 2 g, the reactor temperature was increased by 25 or 50 °C for screening purposes. Methyltrimethoxysilane [MeSi(OMe)₃] and trimethoxysilane [HSi(OMe)₃] formation was confirmed by gas chromatography, GC/MS, and multinuclear NMR techniques. HSi-(OMe)₃ formation was first detected at 225 °C, and MeSi(OMe)₃ formation was first detected at 325 °C. Total amount of Si-(OMe)₄ reacted (= Si(OMe)₄ added - Si(OMe)₄ recovered): 2.81 g (18.5 mmol); total amount MeSi(OMe)₃ formed: 87 mg (0.6 mmol); total amount HSi(OMe)₃ formed: 115 mg (0.9 mmol); amount of Si detected in the reactor bed after reaction: 18.2% (344 mg; 12.3 mmol).

Reaction of Si(OMe)₄ with NaH at Fixed Temperature. The procedure of example 1 was followed with the following modifications: sodium hydride (1.00 g; 41.7 mmol). Reaction was carried out at a fixed temperature of 325 °C. Total amount of Si(OMe)₄ reacted (= Si(OMe)_{4 added} - Si(OMe)_{4 recovered}): 2.28 g (15.0 mmol); total amount MeSi(OMe)₃ formed: 253 mg (1.9 mmol); total amount HSi(OMe)₃ formed: 102 mg (0.7 mmol).

Reaction of HSi(OMe)₄ with NaH. The procedure of example 1 was followed with the following modifications: sodium hydride (1.01 g; 42.1 mmol); HSi(OMe)₃ (2.13 mL; 16.7 mmol/h) was added instead of Si(OMe)₄. MeSi(OMe)₃ formation was already detected at the initial temperature of 200 °C (0.5% of the reactor downstream). The concentration of MeSi(OMe)₃ in the reactor downstream steadily increased with increasing temperature, and at 325 °C, 37.3% of the reactor downstream was found to be MeSi(OMe)₃.

Reaction of Si(OMe)₄ with LiD. The procedure of example 1 was followed with the following modification: lithium deuteride (1.82 g; 228 mmol) was used instead of sodium hydride. A larger excess of LiD was used to ensure comparable reactor bed height. MeSi(OMe)₃ formation was first detected at 350 °C (0.7% of the reactor downstream) and increased with increasing temperature (3.6% MeSi(OMe)₃ at 375 °C and 21.5% MeSi(OMe)₃ at 400 °C).

Reaction of Si(OMe)₄ with NaBH₄. The procedure of example 1 was followed with the following modification: sodium borohydride (1.04 g; 27.5 mmol) was used instead of sodium hydride. MeSi(OMe)₃ formation was first detected at 375 °C (0.5% of the reactor downstream) and increased with increasing temperature (2.9% MeSi(OMe)₃ at 400 °C and 6.3% MeSi(OMe)₃ at 425 °C).

Reaction of HSi(OMe)₃ with K-O-*t*-Bu. The procedure in example 1 was used with the following modifications: potassium-*tert*-butoxide (0.98 g; 8.7 mmol) was used instead of sodium hydride; trimethoxysilane (2.13 mL/h; 16.7 mmol/ h) was used instead of tetramethoxysilane. MeSi(OMe)₃ formation was first detected at 175 °C (1.8% of the reactor downstream; 3.5% at 200 °C).

Reaction of Si(OEt)₄ with NaH. The procedure in example 1 was used with the following modifications: sodium hydride (95% purity, 1.00 g; 39.6 mmol); tetraethoxysilane (0.5 mL/h; 2.2 mmol/h); nitrogen (1 mL/min) was used as carrier gas. EtSi(OEt)₃ formation was first detected at 250 °C (2.1% of the reactor downstream).

Reaction of Si(O-*n*-**P**r)₄ with **NaH.** The procedure in example 1 was used with the following modifications: sodium hydride (95% purity, 1.00 g; 39.6 mmol); tetra-*n*-propoxysilane (1.5 mL/h; 5.2 mmol/h); argon (5 mL/min) was used as carrier gas. *n*-PrSi(O-*n*-Pr)₃ formation was detected at 250 °C (0.2% of the reactor downstream) and at 300 °C (1.1%).

Acknowledgment. We thank the Department of Energy, Office of Industrial Technologies, for generous support (contract DE-FC02-98CH10931).

Supporting Information Available: Detailed description of analytical methods and a diagram of the reactor setup. This material is available free of charge via the Internet at http://pubs.acs.org.

OM0493457

⁽⁹⁾ Intramolecular rearrangement followed by redistribution is also a viable alternative for the Si-C bond-forming step as one reviewer noted.