Iridium(I) and Rhodium(I) Cationic Complexes with Triphosphinocalix[6]arene Ligands: Dynamic Motion with Size-Selective Molecular Encapsulation

Yasushi Obora, Yun Kui Liu, Li Hong Jiang, Kazuhiro Takenaka, Makoto Tokunaga, and Yasushi Tsuji*

Catalysis Research Center and Division of Chemistry, Graduate School of Science, Hokkaido University, and CREST, Japan Science and Technology Corporation (JST), Sapporo 001-0021, Japan

Received October 6, 2004

Summary: A novel capsule-shaped Ir(I) and Rh(I) cationic complexes with a triphosphinocalix[6]arene as a ligand were synthesized. These complexes showed dynamic behavior with size-selective molecular encapsulation, which was confirmed by variable-temperature 31P{*1H*} *NMR measurement in the presence of various molecules.*

 $Calixarenes¹$ are widely used template modules with well-defined cavities. Depending on the number of phenol rings involved, small (in calix[4]arene) to large cavities (such as in calix[8]arene) are provided. On the other hand, considerable attention has been paid to calixarenes possessing a phosphine functionality (socalled phosphinocalixarenes),² because they are unique phosphine ligands in transition-metal-catalyzed reactions.3 In these reactions, most examples were limited to more accessible phosphinocalix $[4]$ arenes,⁴ although their cavities are too small to be utilized. In the present study, we prepared novel capsule-shaped⁵ iridium(I) and rhodium(I) cationic complexes (**2**) with triphosphinocalix- [6]arenes as multidentate ligands. Here we reveal that a combination of variable-temperature $^{31}P{^1H}$ NMR and molecular modeling is a good probe to evaluate the size of an encapsulated molecule in the cavity during dynamic motion.

As a novel ligand, *p*-*tert*-butylcalix[6]arenes having three (diphenylphosphino)methyl (**1a**) or (diphenylphosphino)ethyl (**1b**) moieties were synthesized. ${}^{1}H$, ${}^{13}C\{{}^{1}H\}$,

and 2D-ROESY NMR spectra6 at 25 °C showed that conformational interconversion of **1a** and **1b** was slow relative to the NMR time scale and these ligands have the cone structure in solution at 25 °C. X-ray crystallographic analysis6 showed **1a** has a pinched-cone structure in the solid state.

Then, we reacted **1a** and **1b** with Ir(I) and Rh(I) cationic complexes. When **1a** was treated with [Ir- $\rm (COD)_2]{^+BF_4^-}$ in a 2:3 molar ratio at room temperature in CH_2Cl_2 (7 mM) for 3 h, the novel iridium(I) cationic complex **2a** was obtained as a red solid in 92% yield (eq 1). Its ESI-MS spectrum and elemental analysis data

indicated that **2a** has three iridium metals and two calix[6]arene moieties. Under the present reaction conditions, no oligomers formed. Furthermore, even if **1a** and $[Ir(COD)_2]^+BF_4^-$ were allowed to react in a 1:1 molar ratio, **2a** was obtained in 85% yield (based on Ir)

(6) See Supporting Information for details.

^{*} To whom correspondence should be addressed: Phone: +81-11-

706-9155. Fax: +81-11-706-9156. E-mail: tsuji@cat.hokudai.ac.jp. selectively without formation of oligomers or other 706-9155. Fax: +81-11-706-9156. E-mail: tsuji@cat.hokudai.ac.jp. (1) (a) Gutsche, C. D. *Calixarenes Revisited: Monographs in Su-*

pramolecular Chemistry; Stoddart, J. F., Ed.; The Royal Society of Chemistry: Cambridge, U.K., 1998. (b) *Calixarenes in Action*; Man-dolini, L., Ungaro, R., Ed.; Imperial College Press: London, 2000. (c) *Calixarenes 2001*; Asfari, Z., Böhmer, V., Harrowfield, J., Vicens, J.,
Eds.; Kluwer Academic: Dordrecht, The Netherlands, 2001. (d) Rebek, J., Jr. *Chem. Commun.* **2000**, 637.

^{(2) (}a) Wieser, C.; Dielman, C. B.; Matt. D. *Coord. Chem. Rev.* **1997**, *165*, 93. (b) Wieser-Jeunesse, C.; Matt, D.; Yaftian, M. R.; Burgard, M.; Harrowfield, J. M. *C. R. Acad. Sci. Paris, t1, Ser. IIc* **1998**, 479. (c) Neda, I.; Kaukorat, T.; Schmutzler, R. *Main Group Chem. News* **1998**, *6*, 4 and references therein.

⁽³⁾ Collman, J. P.; Hegedus, L. S.; Norton, J. R.; Finke, R. G. *Principles and Applications of Organotransition Metal Chemistry*; University Science Books: Mill Valley, CA, 1987.

^{(4) (}a) Takenaka, K.; Obora, Y.; Jiang, L.-H.; Tsuji, Y. *Organometallics* **2002**, 21, 1158. (b) Takenaka, K.; Obora, Y.; Jiang, L.-H.; Tsuji, Y. *Bull. Chem. Soc. Jpn.* **2001**, 74, 1709. (c) Plourde, F.; Gilbert, K.; Gagnon, J.; Harvey, P. D. *Organometallics* **2003**, *22*, 2862. (d) Lejeune, M.; Jeunesse, C.; Matt, D.; Kyritsakas, N.; Welter, R.; Kintzinger, J.- P. *Dalton* **2002**, 1642. (e) Jeunesse, C.; Dieleman, C.; Steyer, S.; Matt, D. *Dalton* **2001**, 881 and references therein.

⁽⁵⁾ For examples of molecular capsules, see: (a) Jacapozzi, P.; Dalcanale, E. *Angew. Chem., Int. Ed.* **1997**, *36*, 613. (b) Ikeda, A.; Yoshimura, M.; Tani, F.; Naruta, Y.; Shinkai, S. *Chem. Lett.* **1998**, 587. (c) Ikeda, A.; Udzu, H.; Zhong, Z.; Shinkai, S.; Sakamoto, S.; Yamaguchi, K. *J. Am. Chem. Soc.* **2001**, *123*, 3872. (d) Conn, M. M.; Rebek, J., Jr. *Chem. Rev.* **1997**, *97*, 1647. (e) Hof, F.; Craig, S. L.; Nuckolls, C.; Rebek, J., Jr. *Angew. Chem., Int. Ed.* **2002**, *41*, 1488. (f) Corbellini, F.; Fiammengo, R.; Timmerman, P.; Crego-Calama, M.; Versluis, K.; Heck, A. J. R.; Luyten, I.; Reinhoudt, D. N. *J. Am. Chem. Soc.* **2002**, *124*, 6569. (g) Corbellini, F.; Di Costanzo, L.; Crego-Calama, M.; Geremia, S.; Reinhoudt, D. N. *J. Am. Chem. Soc.* **2003**, *125*, 9946. (h) Takeda, N.; Umemoto, K.; Yamaguchi, K.; Fujita, M. *Nature* **1999**, 398, 794. (i) Olenyuk, B.; Whiteford, J. A.; Fechtenkötter, A.; Stang,
P. J. *Nature* 1**999**, 398, 796. (j) Fochi, F.; Jacopozzi, P.; Wegelius, E.;
Rissanen, K.; Cozzini, P.; Marastoni, E.; Fisicaro, E.; Manini, P.; Fokkens, R.; Dacanale, E. J. Am. Chem. Soc. 2001, 123, 7539. (k) Kang, J.; Rebek, J., Jr. *Nature* 1997, 385, 50. (l) Pinalli, R.; Cristini, V.; Sottili, V.; Sottili, V.; Sottili, V.; Sottili, V.; Sottili, V.; Sottili, V.; *J.* **1998**, *4*, 1016.

ppm

Figure 1. X-ray structure of the cationic part of **2a**. Hydrogen atoms are deleted for ease of viewing. The encapsulated CH_2Cl_2 molecule is denoted as a space-filling model.

complexes of different calixarene/Ir compositions. Simi- $\text{larly, [Ir(COD)_2]} + \text{BPh}_4^-$ and **1a** afforded **2b** in 68% yield. The $\mathrm{Rh(I)}$ complex $[\mathrm{Rh(COD)_2}]^{+}\mathrm{BF_4}^{-}$ also reacted with **1a** and afforded **2c** in 84% yield. In contrast, **1b**, having a (diphenylphosphino)ethyl moiety, did not react cleanly with $[Ir(COD)_2]^+BF_4^-$ and $[Rh(COD)_2]^+BF_4^$ under the same conditions and only gave intractable mixtures of unidentified metal-phosphine complexes.

X-ray crystal analysis showed that **2a** has a capsuleshaped structure (Figure 1),⁷ in which the calix[6] arene moiety adopted the same pinched-cone conformation as the free ligand **1a** (vide supra). The complex possesses an inner nanosized cavity with Ir- - -Ir distances of 14.6-14.9 Å. More importantly, Figure 1 clearly demonstrates that one CH_2Cl_2 molecule is encapsulated in the cavity. As for the phosphines, the two Ir atoms (Ir1 and Ir1* in Figure 1) possessed inequivalently ciscoordinated phosphines with different Ir-P distances $(2.33 \text{ Å}$ for Ir1-P1 and 2.38 Å for Ir1-P2). In contrast, the other Ir atom (Ir2 in Figure 1) was coordinated equivalently by cis phosphines with the same Ir-^P distance $(Ir2-P3 = 2.28 \text{ Å})$. Thus, **2a** has three inequivalent phosphorus atoms in a 1:1:1 ratio.

In solution, the 31P{1H} NMR spectrum of **2a** in CD2- $Cl₂$ (5 mM, 25 °C) showed one broad peak (a line width at half the maximum height of the resonance: $\Delta v = 100$ Hz) at 16.3 ppm (Figure 2A). On the other hand, the NMR spectrum in $Cl_2CDCDCl_2$ (5 mM, 25 °C) showed three ³¹P resonances at 15.3 (d, ² $J(P, P) = 18$ Hz), 15.9 $(d, {}^{2}J(P, P) = 18$ Hz), and 16.4 (s) ppm (Figure 2B). When the temperature was lowered to -60 °C, the spectrum shown in Figure 2A changed into one which showed three ³¹P resonances at 15.6 (d, ² $J(P, P) = 17$ Hz), 17.3 (s), and 18.5 ppm (d, $^{2}J(P,P) = 17$ Hz), similar to Figure 2B. These splitting patterns and the $\mathcal{Z}J(P,P)$ values indicated that there were three inequivalent P atoms in solution, and two of them were coupled to each other with inequivalently cis-coordinated geometry, as ob-

Figure 2. ${}^{31}P_1{}^{1}H_1$ NMR spectra (162 MHz, 5 mM, 25 °C) of $2a$ in (A) CD_2Cl_2 and (B) $Cl_2CDCDCl_2$.

served in the X-ray structures of **2a** (Figure 1). At 65 °C, the spectrum of Figure 2B converged into one broad signal at 16.6 ppm ($\Delta \nu = 298$ Hz). Activation enthalpies for these dynamic behaviors which equalized the three P atoms were determined by simulating these spectra at various temperatures: $\Delta H^{\ddagger} = 27(1) \text{ kJ} \text{ mol}^{-1} \text{ in } CD_2$ - Cl_2 and 64(3) kJ mol⁻¹ in Cl_2 CDCDCl₂.⁸ During the dynamic behavior, the phosphine ligands did not dissociate, since 31P chemical shifts fell into the same range for $[Ir(DPPB)(COD)]+BF_4^-$ (15.2 ppm)⁹ and no ³¹P resonances of free phosphine ligands appeared in the variable-temperature measurement. The rhodium analogue **2c** showed the same solvent-dependent spectra6 as in Figure 2 at 25 °C: 26.0 ppm (d, $^{1}J(P,Rh) = 136$) Hz) in CD_2Cl_2 and 24.8 (dd, ¹J(P,Rh) = 135 Hz, ²J(P,P) $= 32$ Hz), 25.0 (dd, ¹J(P,Rh) $= 135$ Hz, ²J(P,P) $= 32$ Hz), and 26.6 ppm (d, $^{1}J(P,Rh) = 135$ Hz) in Cl₂CDCDCl₂. In these cases, the ${}^{1}J(P,Rh)$ coupling was permanently maintained, indicating that no dissociation of the phosphine ligands occurred.

The aforementioned results indicated that the dynamic motion of **2a** and **2c** in solution was dependent on the solvent size. Therefore, this phenomenon may be caused by size sensitivity inherent in the cavity of **2a** and **2c**. Thus, the 31P{1H} NMR spectra of **2a** were measured in the presence of various organic molecules $(30\% \text{ v/v})$ in CDCl₃ (5 mM, 25 °C) to investigate the sensitivity of the cavity (Table 1). Since **2a** has sparing solubility in the hydrocarbon molecules listed in Table 1, all the NMR measurements were preformed with added CDCl3. As a result, these molecules in Table 1 can be classified into three groups:¹⁰ group A (entries $1-4$), group B (entries $5-11$), and group C (entries $12-$ 15). We estimated the size of the molecules by two values. One is the Connolly solvent-excluded volume^{11a} (*V*) of structures optimized by B3LYP/6-31G(d,p) DFT calculations. The other is the maximum projection area^{6,12} (A) of the solvent-accessible surface^{11b} on the same DFT-optimized structure. Molecules in group A showed one broad 31P resonance having a significant variation of [∆]*^ν* values (197-315 Hz). Group B contains seven molecules that showed three different 31P resonances, indicating that the dynamic behaviors were

⁽⁸⁾ In CDCl3 and ClCD2CD2Cl (5 mM), 31P{1H} NMR of **2a** also showed one broad peak at 25 °C: 17.2 ppm ($\Delta v = 188$ Hz) in CDCl₃ and 17.4 ppm ($\Delta v = 230$ Hz) in ClCD₂CD₂Cl. Variable-temperature ³¹P{¹H} NMR showed similar dynamic behavior in these solvents: ∆*H*⁺ $= 41(2)$ kJ mol⁻¹ in CDCl₃ and 49(2) kJ mol⁻¹ in ClCD₂CD₂Cl.

⁽⁹⁾ Chaloner, P. A. *J. Organomet. Chem.* **1984**, *266*, 191.

⁽¹⁰⁾ The 31P{1H} NMR spectra were insensitive to concentrations of molecules in the range of $30-70\%$ v/v in CDCl₃.
(11)(a) Connolly, M, L, *J, Am, Chem, Soc*, 19 (11) (a) Connolly, M. L. *J. Am. Chem. Soc*. **1985**, *107*, 1118. (b)

⁽⁷⁾ Crystal data: monoclinic, crystal dimensions $0.20 \times 0.20 \times 0.08$ mm, space group $C2$ (No. 5), $a = 33.75(1)$ Å, $b = 20.155(6)$ Å, $c = 20.504$

(7) Å, $\beta = 117.045(3)$ °, $V = 12422$ (7) Å³, $Z = 2$, $D_{\text{cald}} = 1.239$ g cm⁻³,
 $T = -160$ °C, $\mu = 17.73$ cm⁻¹, $R = 0.062$, $R_w = 0.076$, G

Connolly, M. L. *Science* **1983**, *221*, 709. (12) The area calculation was performed on a 0.07 Å gridded map.

^a **2a** (5 mM) in the presence of the molecule (30% v/v) in CDCl3 at 25 °C. *^b* Connolly solvent-excluded volume. *^c* Maximum projection area of the solvent-accessible surface.

sufficiently slow on the NMR time scale at 25 °C. The molecules in group C showed one broad 31P resonance, but with comparable [∆]*^ν* values (212-218 Hz). Roughly, these groups could be categorized by V (group A, V < 81 Å³; group B, $V = 81-105$ Å³; group C, $V > 105$ Å³), but there are two exceptions in group B: $Br_2CHCHBr_2$ and benzene (entries 7 and 8). More appropriately, *A* is a good measure to characterize the molecules (group A, $A < 45 \text{ Å}^2$; group B, $A = 45-68 \text{ Å}^2$; group C, $A > 68 \text{ Å}^2$), which is quite reasonable, assuming that the molecules were captured along the plane determined by the three metals inside the cavity, as shown in the X-ray structures of **2a** (Figure 1) and **2c**. ¹³ The rhodium analogue **2c** also showed molecule-sensitive dynamic behavior6 similar to that in Table 1. The molecules in group A may be too small to fit the cavity of **2** and cannot restrict the dynamic behavior at 25 °C. The molecules in group B just fit in the cavity and slow the dynamic behavior. The molecules in group C are too large to enter the cavity.14 Therefore, the cavity of **2a** was accommodated with CDCl₃ in the measurement and resulted in a similar dynamic motion to have comparable ∆*ν* values.

Acknowledgment. Y.O. and Y.K.L. contributed equally to this work.

Supporting Information Available: Text, figures, and tables giving experimental procedures and spectroscopic data for **1** and **2** and measurements of *V* and *A* and CIF files giving crystallographic data for **1a** and **2a**. This material is available free of charge via the Internet at http://pubs.acs.org.

⁽¹³⁾ The X-ray analysis was done for $2c$ ⁶ The atom connecting $OM049227J$ scheme and inclusion of one $\text{Cl}_2\text{CHCHCl}_2$ molecule into the cavity of **2c** have been confirmed. However, the *R* value did not converge to an acceptable level, due to considerable disorder of solvents outside the cavity. The molecular structure is shown in the Supporting Information (Figure S2).

⁽¹⁴⁾ NMR spectra of **2a** and **2c** in deuterated group C molecules might be very interesting. Unfortunately, however, the solubility of the complexes in these hydrocarbon molecules is very poor.