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Summary: Sulfur to platinum(II) transmethylation was
observed on reacting [PtMe2(µ-SMe2)]2 or [PtMe2(µ-
SEt2)]2 with 8-(methylthio)quinoline (mtq) for extended
periods of time or on heating of the isolable intermediate
PtMe2(mtq). The final product, syn-[fac-PtMe3(µ-qt)]2
(qt- ) 8-quinolinethiolato), exhibits two quinoline rings
in a nearly stacked arrangement. This internal redox
reaction involving organometallic platinum constitutes
a variant of the well-known platinum complex induced
S-demethylation and proceeds in a stereospecific man-
ner, as indicated by CD3 labeling experiments.

S-Demethylation is a biochemically important reac-
tion within methyl transfer metabolism.1 However,
there is also a well-established synthetic S-demethyla-
tion reactivity, found first with inorganic platinum(II)
in 18832 and later with related halide compounds of
palladium(II) and gold(III). Typically, these reactions
involve a transfer of the methyl group to an external
acceptor.3 In a wider context, metal-induced S-C bond
breaking is an essential step in the important technical
process of hydrodesulfurization.4

In this report we describe (i) the ability of the
organoplatinum(II) fragment PtMe2 to engage in S-
demethylation originating from the neutral chelate
ligand 8-methylthioquinoline (mtq),3-5 leading (ii) to an
internal reduction/oxidative addition reaction to fac-
trimethylplatinum(IV) moieties, which are (iii) bridged
by π/π stacked 8-quinolinethiolato (qt-) ligands as the
demethylation products. Also, (iv) both the final product,
[PtMe3(µ-qt)]2, and the intermediate, PtMe2(mtq), were

crystallographically characterized (Figures 1 and 2)6 and
(v) deuterium labeling of the S-methyl group allowed
us to determine the stereoselectivity of the reaction.

The precursor complexes7 [PtMe2(µ-SMe2)]2 and
[PtMe2(µ-SEt2)]2 react with mtq to give PtMe2(mtq),8 as
is evident from spectroscopy and crystal structure
analysis (Figure 1).6 The data show the typical9 differ-
ence from the previously5 characterized PtMe4(mtq):
viz., a slight shortening of Pt-N and Pt-S bonds.

Under prolonged heating the product from eq 1 is
converted via eq 210 to a new compound, which was
identified by 1H NMR and crystal structure analysis
(Figure 2)6 as a rearranged dimer (eq 3).

This product could also obtained in small amounts by
reacting mtq and [PtMe2(µ-SMe2)]2

7a at 293 K for several
months.
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THF

25 °C, 4 h

2PtMe2(N∧SMe) + 2SR2 (1)

N∧SMe ) mtq
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In the intramolecular redox reaction (2) the oxidation
PtII f PtIV is offset by a reduction of the transferred
methyl group from the +I state (bonded to S) to the -I
state (bonded to platinum).

The product structure shows two fac-PtMe3 fragments
bridged by two thiolate sulfur atoms from the newly
formed qt- ligand.11,12 The virtually planar Pt2S2 core
is slightly asymmetric with alternating short (2.41 Å)

and long (2.49 Å) Pt-S bonds and nonbonded distances
of 3.5684(7) Å (Pt1-Pt2) and 3.347(3) Å (S1-S2). The
angles S-Pt-S and Pt-S-Pt are about 86.3 and 93.7°,
respectively. In comparison to PtIVMe4(mtq),5 [fac-
PtIVMe3(µ-qt)]2 shows comparable Pt-N but longer
Pt-S distances, despite the negative charge on the
thiolate sulfur atoms; the necessity of forming the Pt2S2
ring is held responsible for this (asymmetric) weakening
of Pt-S bonds.

Of the two possible isomers with either syn- or anti-
positioned N atoms of the N∧S chelate ligand qt-

relative to the Pt2S2 plane, the syn alternative has been
found. This situation implies close contact between the
two quinoline rings in an almost stacking mode (Figure
2), with nonbonded atoms separated by only 3.134(12)
Å (N2- - -C6) or 3.146(12) Å (N1- - -C18). Such small
atom-atom distances between nonbonded aromatic
rings are indicative of substantial π/π interaction;13 they
are significantly smaller than the interplanar distance
of 3.35 Å in graphite. The dihedral angle between the
two quinoline rings is 16.4°; the inter-ring distances
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Figure 1. Molecular structure of PtMe2(mtq) in the crystal
state (thermal ellipsoid plot at the 30% level; H atoms are
not shown for clarity). Selected bond distances (Å) and
angles (deg): Pt-C10 ) 2.055(9), Pt-C11 ) 2.059(8), Pt-N
) 2.126(7), Pt-S ) 2.305(2); C10-Pt-C11 ) 88.1(4), C10-
Pt-N ) 176.2(3), C11-Pt-N ) 95.3(3), C10-Pt-S )
92.8(3), C11-Pt-S ) 176.2(3), N-Pt-S ) 83.92(19).

Figure 2. Molecular structure of syn-[fac-PtMe3(µ-qt)]2 in
the crystal state (thermal ellipsoid plot at the 30% level,
H atoms are not shown for clarity). Selected bond distances
(Å) and angles (deg): Pt1-C10 ) 2.056(10), Pt1-C11 )
2.138(10), Pt1-C12 ) 2.109(10), Pt1-N1 ) 2.149(8), Pt1-
S1 ) 2.410(3), Pt1-S2 ) 2.490(2), Pt2-C22 ) 2.057(11),
Pt2-C23 ) 2.104(10), Pt2-C24 ) 2.091(11), Pt2-N2 )
2.180(8), Pt2-S2 ) 2.401(3), Pt2-S1 ) 2.483(3); C10-Pt1-
C12 ) 87.7(5), C10-Pt1-C11 ) 87.4(4), C10-Pt1-N1 )
175.9(4), C10-Pt1-S1 ) 94.9(4), C10-Pt1-S2 ) 88.3(3),
C11-Pt1-C12 ) 89.6(4), C11-Pt1-N1 ) 95.3(3), C11-
Pt1-S1 ) 176.7(2), C11-Pt1-S2 ) 91.5(3), C12-Pt1-N1
) 89.3(4), C12-Pt1-S1 ) 92.9(3), C12-Pt1-S2 ) 175.8(3),
N1-Pt1-S1 ) 82.6(2), N1-Pt1-S2 ) 94.7(2), S1-Pt1-
S2 ) 86.14(8), C22-Pt2-C23 ) 87.2(6), C22-Pt2-C24 )
87.7(5), C22-Pt2-N2 ) 176.1(5), C22-Pt2-S2 ) 94.2(4),
C22-Pt2-S1 ) 87.8(4), C23-Pt2-C24 ) 86.7(5), C23-
Pt2-N2 ) 96.0(4), C23-Pt2-S2 ) 178.5(4), C23-Pt2-S1
) 93.6(4), C24-Pt2-N2 ) 90.3(4), C24-Pt2-S2 ) 93.4(4),
C24-Pt2-S1 ) 175.4(3), N2-Pt2-S2 ) 82.6(2), N2-Pt2-
S1 ) 94.2(2), S2-Pt2-S1 ) 86.49(8), Pt1-S1-Pt2 )
93.66(8), Pt1-S2-Pt2 ) 93.67(8).
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become greater on moving away from the Pt2S2 scaffold.
It can be speculated that the π/π attraction favors the
formation of the syn isomer during reaction 2, whereas
the fac configuration is the preferred arrangement for
PtIVMe3L3 species.14

The strictly stereospecific nature of reactions 2 and
3 is evident from a deuteration experiment using SCD3
instead of SCH3 in mtq* (made from qt- and CD3I) and
PtMe2(N∧SMe)* under otherwise analogous conditions
(eq 2).10 The 1H NMR signal at 0.11 ppm for [fac-PtMe3-
(µ-N∧S)]2 is completely absent in the deuterated species
(Figure S1; Supporting Information), in agreement with
the selective migration of the sulfur-bonded methyl
group (C12 in Figure 1) to the axial positions of
the product, as C12 trans to S2 or as C24 trans to S1
(Figure 2).15
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