A Vanadium(V) Alkylidene Complex Exhibiting Remarkable Catalytic Activity for Ring-Opening Metathesis Polymerization (ROMP)

Junji Yamada, Michiya Fujiki, and Kotohiro Nomura*

Graduate School of Materials Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama, Ikoma, Nara 630-0101, Japan

Received March 13, 2005

Summary: The vanadium(V) alkylidene complex (ArN)V-(=CHSiMe₃)(N=C^tBu₂)(PMe₃) (**6**; Ar = 2,6-Me₂C₆H₃) has been isolated from (ArN)V(CH₂SiMe₃)₂(N=C^tBu₂) (**5**) by α -hydrogen elimination in benzene-d₆ at 80 °C. The complex **6** initiated ring-opening metathesis polymerization (ROMP) of norbornene, yielding a high-molecularweight polymer with unimodal molecular weight distribution (M_w = 1.15 × 10⁶, M_w/M_n = 1.6) in high yield (98%), and the activity increased at higher temperatures (80 °C).

High-oxidation-state transition-metal alkylidene complexes have attracted considerable attention¹ because of their promise as catalysts (initiators) for olefin metathesis such as ring-opening metathesis polymerization (ROMP), ring-closing metathesis (RCM), and cross-metathesis (CM), etc.,¹⁻³ and successful examples have been demonstrated by molybdenum^{1b-d,2} and ruthenium.^{2,3} However, examples of olefin metathesis with vanadium alkylidene complexes⁴⁻⁷ have been

* To whom correspondence should be addressed. Tel: +81-743-72-6041. Fax: +81-743-72-6049. E-mail: nomurak@ms.naist.jp.

(1) For recent examples, see: (a) Schrock, R. R. Chem. Rev. 2002, 102, 145–179. (b) Schrock, R. R. In Handbook of Metathesis; Grubbs, R. H., Ed.; Wiley-VCH: Weinheim, Germany, 2003; Vol. 1, pp 8–32. (c) Schrock, R. R. In Alkene Metathesis in Organic Synthesis; Fürstner, A., Ed.; Springer: Berlin, 1998; pp 1–36.

(2) For recent examples (books and review), see: (a) Buchmeiser, M. R. Chem. Rev. 2000, 100, 1565-1604. (b) Grubbs, R. H., Ed. Handbook of Metathesis; Wiley-VCH: Weinheim, Germany, 2003; Vol. 1-3. (c) Khosravi, E., Szymanska-Buzar, T., Eds. Ring-Opening Metathesis Polymerisation and Related Chemistry; Kluwer: Dordrecht, The Netherlands, 2002. (d) Imamoglu, Y., Bencze, L., Eds. Novel Metathesis Chemistry: Well-Defined Initiator Systems for Specialty Chemical Synthesis, Tailored Polymer and Advanced Material Applications; Kluwer: Dordrecht, The Netherlands, 2003.

(3) For example, see: (a) Trnka, T. M.; Grubbs, R. H. Acc. Chem. Res. 2001, 34, 18–29. (b) Nguyen, S. T.; Trnka, T. M. In Handbook of Metathesis; Grubbs, R. H., Ed.; Wiley-VCH: Weinheim, Germany, 2003; Vol 3, pp 61–85.

(4) Examples of isolated vanadium(III) and -(IV) alkylidene complexes: (a) Hessen, B.; Meetsma, A.; Teuben, J. H. J. Am. Chem. Soc. 1989, 111, 5977-5978. (b) Hessen, B.; Buijink, J.-K. F.; Meetsma, A.; Teuben, J. H.; Helgesson, G.; Hakansson, M.; Jagner, S. Spek, A. L. Organometallics 1993, 12, 2268-2276. (c) Basuli, F.; Kilgore, U. J.; Hu, X.; Meyer, K.; Pink, M.; Huffman, J. C.; Mindiola, D. J. Angew. Chem., Int. Ed. 2004, 43, 3156-3159. (d) Basuli, F.; Bailey, B. C.; Brown, D.; Tomaszewski, J.; Huffman, J. C.; Baik, M.-H.; Mindiola, D. J. J. Am. Chem. Soc. 2004, 126, 10506-10507.

(5) Related isolated examples for vanadium carbene complexes: (a) Erker, G.; Lecht, R.; Schlund, R.; Angermund, K.; Krüger, C. Angew. Chem., Int. Ed. Engl. 1987, 26, 666-668. (b) Milczarek, R.; Rüsseler, W.; Binger, P.; Jonas, K.; Angermund, K.; Kruger, C.; Regitz, M. Angew. Chem., Int. Ed. Engl. 1987, 26, 908-909. (c) Hessen, B.; Meetsma, A.; van Bolhuis, F.; Teuben, J. H. Organometallics 1990, 9, 1925-1936.

limited,⁷ although classical Ziegler type vanadium catalysts displayed unique characteristics such as synthesis of high-molecular-weight polymer with rapid propagation in olefin coordination insertion polymerization⁸ and syntheses of some vanadium(III) and -(IV) alkylidenes^{4,5} as well as vanadium(V) alkylidene complexes⁶ are known. Since no examples for *catalytic* olefin metathesis by vanadium alkylidene complexes are known,⁷ we explored the possibility of isolating an *olefin metathesis active* vanadium(V) alkylidene complex. In this paper, we wish to present the first example of isolation and structural determination of a *thermally stable* alkylidene complex that exhibits remarkable catalytic activity for the ROMP of norbornene (NBE) at high temperature.⁹

Лe

We focused on (arylimido)vanadium(V) complexes containing anionic donor ligands, because (ArN)V-

^{(6) (}a) Buijink, J.-K. F.; Teuben, J. H.; Kooijman, H.; Spek, A. L. Organometallics **1994**, *13*, 2922–2924. No reaction between CpV–(CHPh)(NAr)(PMe₃) and NBE or acetone was observed. (b) Moore, M.; Gambarotta, S.; Yap, G.; Liable-Sands, L. M.; Rheingold, A. L. Chem. Commun. **1997**, 643–644.

⁽⁷⁾ Intramolecular metathesis^{4d} and reaction of CpV(CHCMe₃)-(dmpe) with NBE^{4b} were reported previously. However, the latter case showed extremely low catalytic activity (TON 0.92 after 96 h at 20 °C) and no NMR or GPC results for the resultant polymers were given in the text.

⁽⁸⁾ Examples: (a) Carrick, W. L. J. Am. Chem. Soc. 1958, 80, 6455–6456. (b) Carrick, W. L.; Kluiber, R. W.; Bonner, E. F.; Wartman, L. H.; Rugg, F. M.; Smith. J. J. J. Am. Chem. Soc. 1960, 82, 3883–3887.
(c) Carrick, W. L.; Reichle, W. T.; Pennella, F.; Smith. J. J. J. Am. Chem. Soc. 1960, 82, 3887–3892. (d) Lehr, M. H. Macromolecules 1968, 1, 178–184.

⁽⁹⁾ Part of these results were introduced at the XXIst International Conference on Organometallic Chemistry, P151, July 2004, Vancouver, Canada.

Figure 1. ORTEP drawings for 1a (left) and 3 (right). Thermal ellipsoids are drawn at the 50% probability level, and H atoms are omitted for clarity.¹¹

 $(CH_2Ph)_2(O-2,6^{-i}Pr_2C_6H_3)$ (Ar = 2,6-Me₂C₆H₃) initiated the ROMP of NBE without cocatalyst, affording highmolecular-weight ring-opened poly(NBE).¹⁰ The arylimido-ketimide complexes were thus chosen, because (ArN)V(CH₂SiMe₃)₂(N=C^tBu₂) (**5**) showed better thermal stability than (ArN)V(CH₂Ph)₂(O-2,6-ⁱPr₂C₆H₃).¹¹

Various vanadium(V) dichloride complexes (1 and 2) could be prepared in high yields by treating (ArN)VCl₃ with LiN=C^tBu₂ in Et₂O (Scheme 1; 84-85%)¹² and were identified by ¹H, ¹³C, and ⁵¹V NMR spectra as well as by elemental analyses.^{11,12} The crystal structure for 1a (Figure 1, left) showed that 1a has a distortedtetrahedral geometry around V, and the bond distances for V–N(Ar) and V–N(C^tBu₂) are 1.660 and 1.787 Å, respectively, suggesting that the complex **1a** is a 14electron species. Complex 1a reacted with 1 equiv of PMe₃ to afford $(ArN)VCl_2(L)(PMe_3)$ (3; $L = N = C^tBu_2)$, which was exclusively confirmed by ¹H, ¹³C, and ⁵¹V NMR spectra.¹³ The crystal structure for **3** (Figure 1, right) showed that 3 has a distorted-trigonal-bipyramidal structure around V; the P atom is positioned trans to the N atom in the ketimide ligand, and the V-N distance (1.839 Å) is thus influenced by electron donation from PMe₃. As suggested by both the rather long V-P distance (2.527 Å) and the fact that only broad resonances were seen in the ³¹P NMR spectrum, the PMe₃ was dissociated exclusively, affording analytically

(11) Detailed results (including the crystal structures) are given in the Supporting Information.

(12) Complex 1a: yield 84%; ¹H NMR (CDCl₃) δ 1.35 (s, 18H, (CH₃)₃C-), 2.69 (s, 6H, CH₃), 6.94 (m, 3H); ¹³C NMR (CDCl₃) δ 18.9, 30.2, 47.1, 127.4, 128.2, 138.4, 169.3, 210.1; ⁵¹V NMR (CDCl₃) δ 72.4 ($\Delta v_{1/2} = 237$ Hz). Anal. Calcd for $C_{17}H_{27}N_2Cl_2V$: C, 53.55; H, 7.14; N, 7.35. Found: C, 53.71; H, 7.14; N, 7.26.

(13) Complex 3: ¹H NMR (CDCl₃) δ 1.27 (d, 9H, P(CH₃)₃), 1.39 (s, 18H, (CH₃)₃C-), 2.51 (s, 6H, (CH₃)₂), 6.81 (t, 1H), 6.89 (d, 2H); ¹³C NMR (CDCl₃) δ 13.9, 18.9, 30.9, 47.4, 126.6, 127.4, 138.6, 164.2, 190.0; ⁵¹V NMR (CDCl₃) δ -76.7 ($\Delta \nu_{1/2}$ = 900 Hz).

pure **1a** quantitatively if **3** was placed in vacuo. The reaction of **1a** with bis(dimethylphosphino)ethane (dmpe) afforded (ArN)VCl₂(L)(dmpe) **(4)**,¹¹ and the crystal structure showed that **4** has a distorted-octahedral geometry around V; V–N(Ar) and V–N(C^tBu₂) distances (1.677 and 1.843 Å) are longer than those in **1a**, due to the trans influence of dmpe.

The reaction of **1a** with LiCH₂SiMe₃ in *n*-hexane afforded (ArN)V(CH₂SiMe₃)₂(L) (**5**) in high yield (95%; Scheme 2), and the complex was identified by ¹H, ¹³C, and ⁵¹V NMR spectra and elemental analysis.¹¹ The coordination of PMe₃ to **5** was not observed, even by addition of an excess amount (7.0 equiv) at 25 °C, and this observation might be due to the steric hindrance of the rather bulky CH₂SiMe₃ group around the V metal center.

The complex 5 initiated the ROMP of NBE in toluene, and the activity increased especially by the addition of PMe₃ at higher temperature (Table 1; run 8 vs runs 1

⁽¹⁰⁾ Nomura, K.; Sagara, A.; Imanishi, Y. *Macromolecules* **2002**, *35*, 1583–1590. Examples of ROMP by vanadium catalysts were cited therein.

Table 1. Ring-Opening Metathesis Polymerization (ROMP) of Norbornene (NBE) with 5, 6, or Ru(CHPh)(Cl)₂(PCy₃)₂ (Ru, Cy = Cyclohexyl)^a

run	$\begin{array}{c} \text{complex} \\ (\text{amt/} \\ \mu \text{mol}) \end{array}$	solvent	${f NBE} \atop {concn^b}$	P/ V ^c	temp/ °C	time/ h	TON^d	${M_{ m w}}^e imes 10^{-4}$	${M_{ m w}}/{M_{ m n}^e}$
1	5 (10.0)	toluene	0.89	3	25	6	1.6		
2	6 (1.0)	benzene	0.22		25	3	267	46	2.3
3	Ru (1.0)	toluene	0.22		25	1	1306	54	1.7
4	6 (1.0)	benzene	0.22		50	3	1275	49	1.6
5	6 (1.0)	toluene	0.22		50	3	166		
6	5(20.0)	toluene	0.89		80	6	6.8		
7	5(10.0)	toluene	0.22	3	80	3	101	97	3.0
8	5 (10.0)	toluene	0.44	3	80	3	212	87	3.2
9	5 (10.0)	toluene	0.44	5	80	3	40	47	3.0
10	6 (1.0)	toluene	0.22		80	1	1244	32	2.8
11	6 (1.0)	benzene	0.22		80	0.5	967	140	1.3
12	6 (1.0)	benzene	0.22		80	1	1583	133	1.4
13	6 (1.0)	benzene	0.22		80	2	2071^{f}	115	1.6
14	Ru (1.0)	toluene	0.22		80	1	350		

^{*a*} Conditions: NBE, 2.12 mmol (run 6, 4.24 mmol; run 7, 1.06 mmol); benzene or toluene, 9.6 mL (run 1, 2.4 mL; runs 6–9, 4.8 mL). ^{*b*} Initial NBE concentration in mmol/mL. ^{*c*} Molar ratio of PMe₃/V. ^{*d*} TON = NBE consumed (mmol)/V (mmol). ^{*e*} GPC data vs polystyrene standard. ^{*f*} Yield 98%.

and 6). The activity depended upon the NBE concentration (runs 7 and 8), and the activity decreased on further addition of PMe₃ (run 9).¹¹ The resultant polymer possessed a ring-opened structure containing a mixture of *cis*- and *trans*-olefinic double bonds.¹¹ Note that a significant increase in the activity on PMe₃ addition at higher temperature was observed, suggesting the formation of the vanadium alkylidene.¹⁰

Encouraged by the above findings, reaction of 5 with PMe_3 (7.0 equiv) was thus monitored by ¹H NMR in benzene- d_6 (at 80 °C),¹⁴ because α -hydrogen elimination should be initiated by coordination of PMe₃ to the V. Although no reaction occurred at 25 °C, the reaction did take place at 80 °C;¹⁴ the alkylidene complex (ArN)V-(=CHSiMe₃)(L)(PMe₃) (6) could be thus isolated from the chilled n-hexane solution¹⁵ and was identified by ¹H, ¹³C, and ³¹P NMR spectra and elemental analysis. The crystal structure (Figure 2) indicates that 6 has a distorted-tetrahedral geometry around the vanadium metal center, and the V-CHSiMe₃ bond distance (1.860 Å) is close to that in the bicyclic carbene–amide complex $(1.876 \text{ Å})^{6b}$ and is shorter than that in the benzylidene complex (1.922 Å);^{6a} the distance is longer than those in neutral V^{III}–CH^tBu (1.809 Å)^{4a,b} and cationic V^{IV}-CH^tBu complexes (1.787–1.795 Å). 4c,d The V-C-Si bond angle is 121.4°, and the V-P bond distance (2.433 Å) is shorter than those in 3 and 4 (2.515-2.646 Å). The ¹H and ¹³C NMR spectra showed resonances corresponding to V=CHSiMe₃ at 14.52 and 302.0 ppm, respectively. These results clearly indicate that **6** is a 16-electron vanadium(V) alkylidene complex.

It should be noted that **6** initiated the ROMP of NBE with remarkable catalytic activity, affording high-molecular-weight ring-opened polymer with unimodal molecular weight distributions (run 13, 98% yield, $M_{\rm n} =$ 1.15×10^6 , $M_{\rm w}/M_{\rm n} = 1.6$).¹⁶ Note that the activity markedly increased in benzene at higher temperature (80 °C), and the observed activity was higher than that

Figure 2. ORTEP drawing for 6. Thermal ellipsoids are drawn at the 50% probability level, and H atoms are omitted for clarity.¹¹

by the known $\operatorname{Ru}(\operatorname{CHPh})(\operatorname{Cl})_2(\operatorname{PCy})_2$ under the same conditions due to the improved thermal stability at 80 °C (runs 10 and 12 vs run 14). This is the first example that a vanadium alkylidene species catalytically initiates ROMP, and this is also a rare example of a "thermally stable" *olefin metathesis active* transitionmetal alkylidene. Various applications such as ROMP, acyclic diene metathesis (ADMET) polymerization, CM, and RCM with **6** can be thus expected, and we are now exploring these possibilities in more detail.

Acknowledgment. J.Y. expresses his thanks to the JSPS for a predoctoral fellowship (No. 5042). J.Y. and K.N. thank Mr. Shohei Katao (NAIST) for help in crystallographic analysis. K.N. thanks Prof. Masafumi Hirano (Tokyo Univ. A&T) for helpful discussions regarding crystallographic analysis.

Supporting Information Available: Text and tables giving experimental details, additional polymerization results, and details of the crystal structure determinations for **1a**, **3**, **4**, and **6**; crystallographic data are also given as CIF files. This material is available free of charge via the Internet at http://pubs.acs.org.

OM0501834

 $[\]begin{array}{c} (15) \ Compound \ \textbf{6}: \ yield \ 34\%; \ ^1H \ NMR \ (C_6D_6) \ \delta \ 0.38 \ (s, 9H, \ CHSi) \\ (CH_3)_3), 0.93 \ (d, 9H, \ PMe_3), 1.25 \ (s, 18H, \ (CH_3)_3C^-), 2.78 \ (s, 6H, \ (CH_3)_2), \\ 6.82 \ (t, 1H), 7.09 \ (d, 2H), 14.52 \ (br, 1H, \ CHSi(CH_3)_3); \ ^{13}C \ NMR \ (CDCl_3) \\ \delta \ 2.8, 17.4, \ 17.7, 20.2, 31.0, 42.4, 121.9, 127.6, 134.5, 161.7, 193.8, 302.0. \\ Anal. \ Calcd \ for \ C_2H_{46}N_2PSiV: \ C, 60.99 \ (58.68 + VC); H, 9.81; N, 5.93. \\ Found: \ C, \ 58.68; \ H, \ 9.72; \ N, \ 5.73. \end{array}$

⁽¹⁶⁾ Since the molecular weights for resultant poly(NBE)s were higher than those estimated on the basis of NBE/V molar ratios, the catalyst (initiation) efficiency of **6** was not perfect. This is probably because the dissociation of PMe₃ is necessary for the formation of catalytically active species, because the observed catalytic activity decreased at higher PMe₃/V molar ratio in the ROMP by **5**. A study concerning the actual catalytically active species for the ROMP is now being carried out.