Deprotonation of μ -Vinyliminium Ligands in Diiron **Complexes:** A Route for the Synthesis of Mono- and **Polynuclear Species Containing Novel Multidentate** Ligands

Luigi Busetto, Fabio Marchetti, Stefano Zacchini, and Valerio Zanotti*

Dipartimento di Chimica Fisica e Inorganica, Università di Bologna, Viale Risorgimento 4, 40136 Bologna, Italy

Received February 10, 2005

The C_{β} -H hydrogen in the diiron vinyliminium complexes $[Fe_2\{\mu-\eta^1:\eta^3-C_{\nu}(R')=C_{\beta}HC_{\alpha}=$ N(Me)(R) {(μ -CO)(CO)(Cp)₂][SO₃CF₃] (R = Me, 1; R = Bz, 2 (Bz = CH₂Ph); R = Xyl, 3 (Xyl) $=2,6-Me_2C_6H_3$) is easily removed by sodium hydride; different products are consequently formed, depending on the nature of the substituents R and R'. Thus, deprotonation of $[Fe_2]$ $\eta^{1:}\eta^{3-}C(R') = CHC = N(Me)(R) \{ (\mu - CO)(CO)(Cp)_2 \} [SO_3CF_3] (R = Me, R' = COOMe, 1a; R = Me, R' = COOMe, New York (R = Me, R' = Me, New York (R = Me, New York (R = Me, R' = Me, New York (R = Me, New Yor$ R' = Me, 1b; R = Bz, R' = COOMe, 2a) yields the tetranuclear complexes $[Fe_2\{\mu - \eta^1: \eta^2 - C(R') - \eta^2]$ $CCN(Me)(R){(\mu-CO)(CO)(Cp)_2}_2$ (R = Me, R' = COOMe, 4a; R = Me, R' = Me, 4b; R = Bz, R' = COOMe, 4c). Conversely, treatment with NaH of the vinyliminium complexes [Fe₂{ μ - $\eta^{1}:\eta^{3}-C(R')=CHC=N(Me)(R)\{(\mu-CO)(CO)(Cp)_{2}][SO_{3}CF_{3}]$ (R = Me, R' = SiMe₃, 1d; R = Me, $SiMe_3$, 3a; R = Xyl, R' = Tol, 3b; R = Xyl, R' = Ph, 3c) leads to the selective formation of the corresponding μ -aminocarbyne alkynyl complexes [Fe₂{ μ -CN(Me)(R)}(μ -CO)(CO)(C=CR')- $(Cp)_2$] (R = Me, R' = SiMe₃, 5a; R = Me, R' = Tol, 5b; R = Bz, R' = SiMe₃, 5c; R = Bz, R' = Tol, 5d; R = Xyl, $R' = SiMe_3$, 5e; R = Xyl, R' = Tol, 5f; R = Xyl, R' = Ph, 5g). Compounds **5c,d** react with methyl iodide to give the vinyliminium cations $[Fe_2\{\mu-\eta^1:\eta^3-C(\mathbf{R}')=C(Me)C=$ N(Me)(Bz){ $(\mu$ -CO)(CO)(Cp)₂]⁺ (R' = SiMe₃, 6a; R' = Tol, 6b). Finally, the reactions of [Fe₂{ μ - $\eta^{1}:\eta^{3}-C(R')=CHC=N(Me)(R)\{(\mu-CO)(CO)(Cp)_{2}\}[SO_{3}CF_{3}]$ (R = Me, R' = Buⁿ, 1c; R = Xyl, R' = Me, 3d; R = Xyl, R' = COOMe, 3e; R = Xyl, R' = CMe₂OH, 3f) with NaH afford the

1-metalla-2-aminocyclopenta-1,3-dien-5-one species [Fe(Cp)(CO){CN(Me)(R)CHC(R')C(O)}] $(R = Me, R' = Bu^n, 7a; R = Xyl, R' = Me, 7b; R = Xyl, R' = COOMe, 7c; R = Xyl, R' = COOMe, 7c$ CMe₂OH, 7d). The molecular structures of 4a·CH₂Cl₂, 4b, 5e, and 7b have been determined by X-ray diffraction studies.

Introduction

Insertions of alkynes into the metal-carbon bond of bridging alkylidene¹ and alkylidyne² dinuclear complexes provide a synthetic pathway to the C-C bond formation in dinuclear transition-metal complexes. The alkyne (R'CCR") insertion reaction, extended to the diiron μ -aminocarbynes [Fe₂{ μ -CN(Me)(R)}(μ -CO)(CO)- $(NCMe)(Cp)_{2}[SO_{3}CF_{3}]$ (R = Me, CH₂Ph (Bz), 2,6-Me₂C₆H₃ (Xyl)), provided access to the novel bridging

vinyliminium complexes $[Fe_2\{\mu-\eta^1:\eta^3-C(R')=C(R'')C=$ N(Me)(R){(μ -CO)(CO)(Cp)₂][SO₃CF₃] (R = Me (1), Bz (2), Xyl (3)).³ Since the reactivity of vinyliminium ligands has been largely unexplored,⁴ we have started to investigate the reactions of 1-3 with nucleophiles. In particular, we have found that NaBH₄ adds H⁻ at the μ -vinyliminium ligand to form neutral derivatives, whose nature depends on the steric hindrance of the iminium nitrogen substituents.⁵ Indeed, the sterically demanding Xyl group inhibits hydride attack at the iminium carbon and directs the addition to the C_{β} position, affording the bis-alkylidene complexes $[Fe_2]$ $\eta^1:\eta^2-C(R')CH_2CN(Me)(Xyl)\}(\mu-CO)(CO)(Cp)_2]$. In contrast, with the less hindered Me or CH₂Ph substituent,

^{*} To whom correspondence should be addressed. E-mail: valerio.zanotti@unibo.it. Tel: +39/0512093700. Fax: +39/0512093690. (1) (a) Dyke, A. F.; Knox, S. A. R.; Naish, P. J.; Taylor, G. E. J.

Chem. Soc., Chem. Commun. 1980, 803. (b) Sumner Jr., C. E.; Collier, Chem. Soc., Chem. Commun. 1980, 803. (b) Sumner Jr., C. E.; Collier, J. A.; Pettit, R. Organometallics 1982, 1, 1350. (c) Colborn, R. E.; Dyke, A. F.; Knox, S. A. R.; Macpherson, K.; Orpen, A. G. J. Organomet. Chem. 1982, 239, C15. (d) Adams, P. Q.; Davies, D. L.; Dyke, A. F.; Knox, S. A. R.; Mead, K. A.; Woodward. P. J. Chem. Soc., Chem. Commun. 1983, 222. (e) Colborn, R. E.; Davies, D. L.; Dyke, A. F.; Knox, S. A. R.; Mead, K. A.; Orpen, A. G.; Guerchais, J. E.; Roué, J. J. Chem. Soc., Dalton Trans. 1989, 1799. (f) Akita, M.; Hua, R.; Nakanishi, S. Tanaka, M.; Morooka, Y. Organometallics 1997. 16 5572 (c) Bowsell Tanaka, M.; Moro-oka, Y. Organometallics 1997, 16, 5572. (g) Rowsell, B. D.; McDonald, R.; Ferguson, M. J.; Cowie, M. Organometallics 2003, D. D., McDonad, R., P. (1993), M. S., Cowle, M. Organometatics 2009, 22, 2944. (h) Kaneko, Y.; Suzuki, T.; Isobe, K.; Maitlis, P. M. J. Organomet. Chem. 1998, 554, 155.
 (2) Casey, C. P.; Woo, L. K.; Fagan, P. J.; Palermo, R. E.; Adams, B. R. Organometallics 1987, 6, 447.

⁽³⁾ Albano, V. G.; Busetto, L.; Marchetti, F.; Monari, M.; Zacchini, S.; Zanotti, V. Organometallics **2003**, *22*, 1326. (b) Albano, V. G.; Busetto, L.; Marchetti, F.; Monari, M.; Zacchini, S.; Zanotti, V. J. Organomet. Chem. 2004, 689, 528.

<sup>Organomet. Chem. 2004, 689, 528.
(4) (a) Bernard, D. J.; Esteruelas, M. A.; Lopez, A. M.; Modrego, J.;
Puerta, M. C.; Valerga, P. Organometallics 1999, 18, 4995. (b) Gamble,
A. S.; White, P. S.; Templeton, J. L. Organometallics 1991, 10, 693.
(5) (a) Albano, V. G.; Busetto, L.; Marchetti, F.; Monari, M.; Zacchini,
S.; Zanotti, V. Organometallics 2004, 23, 3348. (b) Albano, V. G.,
Busetto, L.; Marchetti, F.; Monari, M.; Zacchini, S.; Zanotti, V. J.
Organomet. Chem. 2005, 690, 837.</sup>

Chart 1. Vinyliminium Complexes Investigated in This Paper

the reaction with NaBH₄ occurs selectively at the iminium carbon, yielding the vinylalkylidene complexes $[Fe_2\{\mu-\eta^1:\eta^3-C(R')=CHC(H)N(Me)_2\}(\mu-CO)(CO)(Cp)_2]$ - $[SO_3CF_3]$ (Scheme 1).

In addition to nucleophilic additions, the reactivity of the bridging vinyliminium ligand in **1–3** could be further extended by the removal of the C_β-H proton. This possibility is suggested by the deprotonation of the vinyliminium ligand, described for the mononuclear complex [Ru(Cp){C(=NEt₂)CH=CPh₂}(CO)(PPrⁱ₃)][BF₄], to form the aminoallenyl derivative [Ru(Cp){C(NEt₂)= C=CPh₂)}(CO)(PPrⁱ₃)].^{4a} Moreover, the Fe-C_a interaction in the μ -vinyliminium species **1–3** displays some Fisher-type aminocarbene character,³ and adjacent C-H hydrogens, in Fisher carbenes, are known to be acidic.⁶

These considerations led us to determine to what extent C_{β} -H is susceptible to deprotonation, with the aim of exploring the opportunities that this would eventually offer. Here, we present the results of these investigations, which have been performed on a variety of vinyliminium complexes (Chart 1), to elucidate possible steric and electronic effects due to the nature of the substituents R and R'.

Results

Synthesis of Tetrairon Complexes. Compounds $[Fe_2\{\mu-\eta^1:\eta^3-C(R')=CHC=N(Me)(R)\}(\mu-CO)(CO)(Cp)_2]$ -

(6) (a) Fischer, H.; Kreissel, F. R.; Schubert, U.; Hoffman, P.; Dotz, K. H.; Weiss, K. In Transition Metal Carbene Complexes; VCH: Weinheim, Germany, 1983. (b) Kreiter, C. G. Angew. Chem., Int. Ed. Engl. 1968, 7, 390. (c) Casey, C. P.; Anderson, R. L. J. Am. Chem. Soc. 1974, 96, 1230. (d) Casey, C. P.; Brunsvold, W. R. J. Organomet. Chem. 1976, 118, 309. (e) Bernasconi, C. F. Chem. Soc. Rev. 1997, 26, 299. (f) Plantevin, V.; Wojcicki, A. J. Organomet. Chem. 2004, 689, 2000.

[SO₃CF₃] (R = Me, R' = COOMe, **1a**; R = R' = Me, **1b**; R = Bz, R' = COOMe, **2a**) react with NaH in THF solution, affording the novel tetrairon complexes [Fe₂{ μ - $\eta^{1}:\eta^{2}$ -C(R')CCN(Me)(R)}(μ -CO)(CO)(Cp)₂]₂ (R = Me, R' = COOMe, **4a**; R = R' = Me, **4b**; R = Bz, R' = COOMe, **4c**) (Scheme 2).

Compounds 4a-c have been obtained in 60–70% yield, after purification by column chromatography on alumina, and characterized by IR and NMR spectra and ESI-MS analyses.

The structures of **4a**,**b** have been determined by X-ray diffraction: the ORTEP molecular diagrams are shown in Figures 1 and 2, whereas relevant bond lengths and angles are reported in Tables 1 and 2, respectively. Molecules **4a**,**b** each have two [Fe₂{ μ -C(R')CCN(Me)_2}-(μ -CO)(CO)(Cp)₂] (R' = CO₂Me, **4a**; R' = Me, **4b**) moieties, with the Fe(1)-Fe(2) and Fe(3)-Fe(4) axes nearly orthogonal (Fe(1)-Fe(2)-Fe(3)-Fe(4) dihedral angles -89.18(2) and -84.07(4)°, respectively). Each

Figure 1. ORTEP drawing of $[Fe_2\{\mu$ -C(COOMe)CCN-(Me)_2\}(\mu-CO)(CO)(Cp)_2]_2 (**4a**). All H atoms have been omitted for clarity. Thermal ellipsoids are at the 30% probability level.

Figure 2. ORTEP drawing of $[Fe_2\{\mu$ -C(Me)CCN(Me)_2](μ -CO)(CO)(Cp)_2]_2 (**4b**), All H atoms have been omitted for clarity. Thermal ellipsoids are at the 30% probability level. Only the main image of the disordered Cp ligand bonded to Fe(1) is reported.

Table 1. Selected Bond Lengths (Å) and Angles(deg) for 4a

	(8/		
Fe(1)-Fe(2)	2.5251(8)	Fe(3)-Fe(4)	2.5299(9)
Fe(1)-C(21)	1.753(4)	Fe(4)-C(23)	1.746(4)
Fe(1)-C(22)	1.976(4)	Fe(4)-C(24)	1.975(4)
Fe(2)-C(22)	1.846(4)	Fe(3)-C(24)	1.859(4)
Fe(1)-C(25)	2.014(3)	Fe(4)-C(32)	1.990(3)
Fe(2) - C(25)	2.031(3)	Fe(3)-C(32)	1.999(3)
Fe(2)-C(26)	2.477(3)	Fe(3)-C(33)	2.506(3)
Fe(2)-C(27)	1.901(4)	Fe(3)-C(34)	1.889(3)
C(21)-O(21)	1.150(5)	C(23)-O(23)	1.155(5)
C(22)-O(22)	1.191(5)	C(24) - O(24)	1.184(4)
C(25) - C(26)	1.471(5)	C(32)-C(33)	1.493(5)
C(26)-C(27)	1.446(5)	C(33) - C(34)	1.448(5)
N(1)-C(27)	1.305(5)	N(2)-C(34)	1.325(5)
N(1)-C(30)	1.460(5)	N(2) - C(37)	1.454(5)
N(1)-C(31)	1.477(5)	N(2)-C(38)	1.467(5)
C(25) - C(28)	1.497(5)	C(32) - C(35)	1.499(5)
C(28)-O(1)	1.205(4)	C(35)-O(3)	1.211(4)
C(28) - O(2)	1.351(4)	C(35) - O(4)	1.353(4)
C(29)-O(2)	1.446(4)	C(36)-O(4)	1.440(4)
C(26) - C(33)	1.408(5)	O(1)C(35)	2.750(45)
Fe(1) - C(25) - Fe(2)	77.25(12)	Fe(4) - C(32) - Fe(3)	78.74(12)
C(25)-C(26)-C(27)	100.2(3)	C(32)-C(33)-C(34)	99.5(3)
C(26) - C(27) - Fe(2)	94.5(2)	C(33)-C(34)-Fe(3)	96.5(2)
C(26) - C(27) - N(1)	127.0(3)	C(33)-C(34)-N(2)	128.6(3)
Fe(2) - C(27) - N(1)	137.9(3)	Fe(3)-C(34)-N(2)	134.6(3)
C(25) - C(26) - C(33)	130.3(3)	C(32)-C(33)-C(26)	129.1(3)
C(27) - C(26) - C(33)	128.1(3)	C(34) - C(33) - C(26)	130.8(3)
	=====(0)	2(22) 2(00) 0(20)	(0)

moiety contains an Fe₂(μ -CO)(CO)(Cp)₂ core and a bridging μ -C(R')CCN(Me)₂ ligand. The former adopts a cis arrangement of the Cp ligands as in the parent compounds **1a**,**b**. The bridging ligand resembles the bisalkylidene present in [Fe₂{ μ -C(CO₂Me)CH₂CN(Me)-(Xyl)}(μ -CO)(CO)(Cp)₂].^{5a} The iron atoms show a nearly pure σ interaction with the bridging carbon atoms in the two moieties (Fe(1)-C(25) = 2.014(3) and 1.981(5) Å, Fe(2)-C(25) = 2.031(3) and 2.001(5) Å, Fe(4)-C(32)

Table 2. Selected Bond Lengths (Å) and Angles (deg) for 4b

Fe(1)-Fe(2)	2.514(7)	Fe(3)-Fe(4)	2.5132(11)
Fe(1)-C(21)	1.716(7)	Fe(4)-C(23)	1.730(6)
Fe(1)-C(22)	1.964(6)	Fe(4)-C(24)	1.982(6)
Fe(2) - C(22)	1.847(6)	Fe(3)-C(24)	1.822(6)
Fe(1) - C(25)	1.981(5)	Fe(4)-C(32)	1.989(5)
Fe(2) - C(25)	2.001(5)	Fe(3) - C(32)	2.001(5)
Fe(2) - C(26)	2.456(5)	Fe(3) - C(33)	2.454(5)
Fe(2) - C(27)	1.886(5)	Fe(3) - C(34)	1.892(5)
C(21) - O(21)	1.164(7)	C(23) - O(23)	1.150(6)
C(22) - O(22)	1.188(7)	C(24) - O(24)	1.189(7)
C(25) - C(26)	1.473(7)	C(32) - C(33)	1.467(7)
C(26) - C(27)	1.451(7)	C(33) - C(34)	1.435(7)
N(1) - C(27)	1.313(7)	N(2) - C(34)	1.313(7)
N(1) - C(30)	1.466(7)	N(2) - C(37)	1.467(7)
N(1) = C(31)	1.462(7)	N(2) = C(38)	1.457(7)
C(25) = C(28)	1.525(7) 1.495(7)	C(32) = C(35)	1.528(7)
C(20) = C(33)	1.420(7)		
Fe(1) - C(25) - Fe(2)	78.32(19)	Fe(4)-C(32)-Fe(3) 78.08(19)
C(25) - C(26) - C(27)	101.7(4)	C(32)-C(33)-C(34	4) 101.8(4)
C(26) - C(27) - Fe(2)	93.9(3)	C(33)-C(34)-Fe(3	94.0(3)
C(26) - C(27) - N(1)	127.8(5)	C(33)-C(34)-N(2)	129.2(5)
Fe(2) - C(27) - N(1)	138.2(4)	Fe(3)-C(34)-N(2)	136.6(4)
C(25)-C(26)-C(33)	125.3(5)	C(32)-C(33)-C(20	3) 124.1(4)
C(27)-C(26)-C(33)	131.7(5)	C(34)-C(33)-C(26	3) 133.1(5)
1			
= 1.990(3) and 1	989(5) A,	Fe(3) - C(32) = 1	.999(3) and
2.001(5) A for	4a , b , resp	ectively), as ex	xpected for
a bridging alky	lidene. Co	nversely, the H	Fe(2) - C(27)
(1.901(4) and 1.8	86(5) Å) an	d Fe(3)–C(34) (1	.889(3) and
(1802(5) Å) intor	actions as y	$\frac{1}{2} O(0) = O(0) O(0) O(0) O(0) O(0) O(0) O(0) O(0)$	(1, 305(5))
1.052(0) A) IIIter	1 N(0)	V(1) = O(2)	(1.000(0))
and 1.313(7) A) a	and $N(2) = 0$	J(34) (1.325(5) a	na 1.313(7)
A) show some	double-bon	d character, ty	pical for a
terminal aminoc	arbene lig	and. The two [H	$\operatorname{Fe}_2\{\mu - C(\mathbf{R}') - \mathbf{R}'\}$
CCN(Me) ₂ }(µ-CC	$(CO)(Cn)_{2}$	units in 4a.b a	re joined by
the $C(26) - C(23)$	interaction	(1.408(5)) and	$1 \sqrt{25(7)}$
$\frac{110}{20} = 0(20) = 0(00)$		1(1.400(0)) and 1	1.420(1) A),
which shows som	e double-bo	nd character. In	e C(26) and
C(33) atoms ado	pt an almo	st perfect sp ² hy	bridization
(sum of angles 35	58.6(5) and 3	359.4(5)° for 4a a	and 358.7(8)
and 359.0(8)° fo	or 4b). and	the $C(25)-C(25)$	26) - C(27) -
C(32) - C(33) - C(33	34) unit is	nearly nlanar (r	nean devia-
tion from the $C($	(25) - C(26)	C(97) = C(99) = C	(22) - C(24)
	23) = C(20) = 0.1010	-0(27)-0(32)-0	(33) = 0(34)
least-squares pl	ane 0.1619) and 0.1878 A	, for 4a , b ,
respectively). Re	elative to t	his plane, the C	pFe(2) and
CpFe(3) fragmer	nts lay on o	opposite sides, t	o minimize
steric repulsions	s. The sp^2	hybridization of	f C(26) and
C(33) in the brid	loing his-al	kylidene ligand	s generates
o(00) in the bit	difference	hotwoon those	i generates
some important	differences	belween these	nganos ano
that present in	$[Fe_2\{\mu-C(C)\}]$	$O_2Me)CH_2CN(N)$	$Me)(Xyl)\}(\mu$ -
that present in CO)(CO)(Cp) ₂], v	where C_{β} h	$O_2Me)CH_2CN(Mas sp^3 hybridiza$	$Me)(Xyl)\}(\mu-tion. First,$
that present in $CO(CO)(Cp)_2$], we the $Fe(2)-C(26)$	$Fe_2\{\mu$ -C(C) where C_β h (2.477(3) a	$O_2Me)CH_2CN(Mas sp3 hybridizand 2.456(5) Å)$	Me)(Xyl) $(\mu$ - ation. First, and Fe(3)-
that present in $CO(CO)(CO)_2$, w the $Fe(2)-C(26)$ C(33) (2.506(3) a	[Fe ₂ { μ -C(C) where C _{β} h (2.477(3) a and 2.454(f	$O_2Me)CH_2CN(M)$ as sp ³ hybridiza and 2.456(5) Å) b) Å) distances	Me)(Xyl)}(μ - ation. First, and Fe(3)- in 4a.b are
that present in $CO)(CO)(Cp)_2$, we have $CO(CO)(Cp)_2$, we have $CO(Cp)_2$.	[Fe ₂ { μ -C(C) where C _{β} h (2.477(3) a and 2.454(5)	$O_2Me)CH_2CN(Mas sp3 hybridizaand 2.456(5) Å)(5) Å) distances$	Me)(Xyl)}(μ - ation. First, and Fe(3)- in 4a,b are
that present in $CO)(CO)(Cp)_2$, we the $Fe(2)-C(26)$ $C(33)$ (2.506(3) as significantly shows the formula of	Fe ₂ { μ -C(C) where C _{β} h (2.477(3) a and 2.454(5) orter than	$CO_2Me)CH_2CN(Mas sp^3 hybridizaand 2.456(5) Å)b) Å) distancesthe correspondin$	Me)(Xyl)}(μ - ation. First, and Fe(3)- in 4a,b are ng distance
that present in $CO)(CO)(Cp)_2]$, we the $Fe(2)-C(26)$ C(33) (2.506(3) as significantly sho in $[Fe_2\{\mu-C(CO_2)]$	$[Fe_2\{\mu$ -C(C) where C_β h (2.477(3) a and 2.454(a orter than Me)CH ₂ CN	$O_2Me)CH_2CN(Mas sp3 hybridization of the corresponding the corresponding (Me)(Xyl)}(\mu-CO)$	Me)(Xyl)}(μ - ation. First, and Fe(3)- in 4a,b are ng distance ν)(CO)(Cp) ₂]
that present in $CO)(CO)(Cp)_2]$, w the $Fe(2)-C(26)$ C(33) (2.506(3) a significantly sho in $[Fe_2\{\mu-C(CO_2I(2.589(2) \text{ Å}), suggests)]$	$Fe_2\{\mu$ -C(C) where C_β h (2.477(3) a and $2.454(5)$ orter than $Me)CH_2CN$ gesting som	$O_2Me)CH_2CN(Mas sp^3 hybridization of the corresponding to the corresponding (Me)(Xyl)}(\mu$ -CO in the interactions here interactions here the corresponding (Me)(Xyl)	Me)(Xyl)}(μ - ation. First, and Fe(3)- in 4a,b are ng distance $D(CO)(Cp)_2$] between the
that present in $CO)(CO)(Cp)_2]$, we the $Fe(2)-C(26)$ $C(33)$ (2.506(3) as a significantly shown in $[Fe_2\{\mu-C(CO_2\mathbb{I})(2.589(2) \text{ Å}), sugmetal)$ and C_{β} in the function of the second sec	$Fe_2\{\mu$ -C(C) where C_β h (2.477(3) ϵ and 2.454(ϵ orter than Me)CH ₂ CN gesting som	$O_2Me)CH_2CN(Mas sp3 hybridization of the corresponding to the corresponding (Me)(Xyl)}(\mu-CO in the corresponding (Me)(Xyl)}(\mu-CO in the corresponding to the corresponding (Me)(Xyl)}(\mu-CO in the correspondence of the correspondence $	Me)(Xyl)}(μ - ation. First, and Fe(3)- in 4a,b are ng distance 0)(CO)(Cp) ₂] between the gether with
that present in $CO)(CO)(Cp)_2]$, we the $Fe(2)-C(26)$ C(33) (2.506(3) a significantly sho in $[Fe_2\{\mu-C(CO_2I(2.589(2) \text{ Å}), suggest metal and C_\beta insteric repulsions$	$Fe_2\{\mu$ -C(C) where C_β h (2.477(3) ϵ and 2.454(ϵ orter than Me)CH ₂ CN gesting som the forme between th	$O_2Me)CH_2CN(Mas sp3 hybridization of the corresponding to the corresponding (Me)(Xyl)}(\mu-CO in the interactions here. This fact, togen two units, can$	Me)(Xyl)}(μ - ation. First, and Fe(3)- in 4a,b are ng distance 0)(CO)(Cp) ₂] between the gether with account for
that present in $CO)(CO)(Cp)_2]$, we the $Fe(2)-C(26)$ C(33) (2.506(3) a significantly sho in $[Fe_2\{\mu$ -C(CO_2] (2.589(2) Å), sugging metal and C_β in steric repulsions the longthoning	$Fe_2\{\mu$ -C(C) where C_β h (2.477(3) ϵ and 2.454(ϵ orter than Me)CH ₂ CN gesting som the forme between th of the C(ϵ	$O_2Me)CH_2CN(M)$ as sp ³ hybridiza and 2.456(5) Å) 5) Å) distances the correspondin (Me)(Xyl)}(μ -CO ne interactions k er. This fact, tog the two units, can 26)=C(33) inter	Me)(Xyl)}(μ - ation. First, and Fe(3)- in 4a,b are ng distance 0)(CO)(Cp) ₂] between the gether with account for
that present in $CO)(CO)(Cp)_2]$, we the $Fe(2)-C(26)$ C(33) (2.506(3) a significantly sho in $[Fe_2\{\mu$ -C(CO_2] (2.589(2) Å), sug metal and C_β in steric repulsions the lengthening	$Fe_2\{\mu$ -C(C) where C_β h (2.477(3) ϵ and 2.454(ϵ orter than Me)CH ₂ CN gesting som the forme between th of the C(2	$O_2Me)CH_2CN(Mas sp3 hybridization of the corresponding of the corresponding (Me)(Xyl)}(\mu-CO he interactions here. This fact, togoing the two units, can be the corresponding the the corresponding of the corresponding of the corresponding (Me)(Xyl) (\mu-CO he interactions here. This fact, togoing the two units, can be two units, can be the correspondent of th$	Me)(Xyl)}(μ - ation. First, and Fe(3)- in 4a,b are ng distance 0)(CO)(Cp) ₂] between the gether with account for action com-
that present in $CO)(CO)(Cp)_2]$, we the $Fe(2)-C(26)$ $C(33)$ (2.506(3) a significantly showin $[Fe_2\{\mu-C(CO_2I(2.589(2) \text{ Å}), sugmetal and C_{\beta} in steric repulsions the lengthening pared to a pure do$	Fe_2 {μ-C(C) where C _β h (2.477(3) a and 2.454(f orter than Me)CH ₂ CN gesting som the forme between th of the C(2 louble bonk	$O_2Me)CH_2CN(Mass p^3 hybridization of the corresponding of the corresponding (Me)(Xyl)}(\mu$ -CO is interactions by the the corresponding (Me)(Xyl)}((\mu-CO is interactions by the two units, can be two units, ca	Me)(Xyl)}(μ - ation. First, and Fe(3)- in 4a,b are ng distance 0)(CO)(Cp) ₂] between the gether with account for action com- U(25)-C(26)
that present in $CO)(CO)(Cp)_2]$, we the $Fe(2)-C(26)$ $C(33)$ (2.506(3) a significantly showin $[Fe_2\{\mu$ -C(CO_2] (2.589(2) Å), sugremental and C_β in steric repulsions the lengthening pared to a pure of $(1.471(5)_{a})$ and 1.	[Fe ₂ {μ-C(C) where C _β h (2.477(3) a and 2.454(f orter than Me)CH ₂ CN gesting som the forme between th of the C(2 louble bond 473(7) Å),	$O_2Me)CH_2CN(M)$ as sp ³ hybridiza and 2.456(5) Å) 5) Å) distances the correspondin (Me)(Xyl)}(μ -CO ne interactions k er. This fact, tog the two units, can 26)-C(33) intera l. Second, both C C(32)-C(33) (1	Me)(Xyl)}(μ - ation. First, and Fe(3)- in 4a,b are ng distance 0)(CO)(Cp) ₂] between the gether with account for action com- 0(25)-C(26) .493(5) and
that present in $CO)(CO)(Cp)_2]$, we the $Fe(2)-C(26)$ C(33) (2.506(3) assignificantly shown in $[Fe_2\{\mu$ -C(CO_2] (2.589(2) Å), suggestimates and C_β in steric repulsions the lengthening pared to a pure of (1.471(5) and 1. 1.467(7) Å) and 0	[Fe ₂ {μ-C(C) where C _β h (2.477(3) a and 2.454(f orter than Me)CH ₂ CN gesting som the forme between th of the C(2 louble bond 473(7) Å), C(26)-C(27)	$(O_2Me)CH_2CN(Mas sp^3 hybridizaand 2.456(5) Å)b) Å) distances for the corresponding(Me)(Xyl){(\mu-COne interactions here. This fact, togone two units, can((Me)(23)) interaction ((Me)(23)) interaction((Me)(23)) interaction ((Me)(23)) interaction((Me)(23)) interaction ((Me)(23)) interaction ((Me)(23)) interaction((Me)(23)) interaction ((Me)(23)) interaction ((Me)(23$	Me)(Xyl)}(μ - ation. First, and Fe(3)- in 4a,b are ng distance 0)(CO)(Cp) ₂] between the gether with account for action com- C(25)-C(26) .493(5) and 1.451(7) Å),
that present in $CO)(CO)(Cp)_2]$, w the $Fe(2)-C(26)$ C(33) (2.506(3) a significantly sho in $[Fe_2\{\mu$ -C(CO_2] (2.589(2) Å), suggestimes metal and C_β in steric repulsions the lengthening pared to a pure of (1.471(5) and 1.1.1.467(7) Å) and (0.23)-C(34) (1.4.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	[Fe ₂ {μ-C(C) where C _β h (2.477(3) a and 2.454(f orter than Me)CH ₂ CN gesting som the forme between th of the C(2 louble bond 473(7) Å), C(26)-C(27)	$CO_2Me)CH_2CN(Mas sp^3 hybridizaand 2.456(5) Å)b) Å) distances for the corresponding(Me)(Xyl)}(\mu-COhe interactions here. This fact, togone two units, canbe two units, cancond, both CC(32)-C(33) (11C) (1.446(5) and1.435(7) Å) interactions of the constructionof the correspondence of the construction of the constructionof the correspondence of the construction of the constructionof the correspondence of the construction of the construction of the constructionof the correspondence of the construction of the construction of the constructionof the correspondence of the construction of the cons$	Me)(Xyl)}(μ - ation. First, and Fe(3)- in 4a,b are ng distance 0)(CO)(Cp) ₂] between the gether with account for action com- C(25)-C(26) .493(5) and 1.451(7) Å), ractions are
that present in $CO)(CO)(Cp)_2]$, we the $Fe(2)-C(26)$ C(33) (2.506(3) as significantly shown in $[Fe_2\{\mu$ -C(CO_2]] (2.589(2) Å), suggemental and C_β in steric repulsions the lengthening pared to a pure of (1.471(5) and 1.1.1.467(7) Å) and (0.2(33)-C(34) (1.4.4)) Shorter than the start of	[Fe ₂ { μ -C(C) where C _{β} h (2.477(3) a and 2.454(5) orter than $\frac{1}{2}$ Me)CH ₂ CN gesting som the forme between th of the C(2 louble bond 473(7) Å), C(26)-C(27) (48(5) and	$CO_2Me)CH_2CN(Mas sp^3 hybridizaand 2.456(5) Å)b) Å) distances inthe correspondin(Me)(Xyl)}(\mu-COne interactions hr. This fact, togthe two units, canC(32)-C(33)$ intera l. Second, both C C(32)-C(33) (1 M(1.446(5)) and M(1.435(7) Å) inter- ding interaction	Me)(Xyl)}(μ - ation. First, and Fe(3)- in 4a,b are ng distance 0)(CO)(Cp) ₂] between the gether with account for action com- C(25)-C(26) .493(5) and 1.451(7) Å), cactions are s in [Fe ₃ { μ -
that present in $CO)(CO)(Cp)_2]$, we the $Fe(2)-C(26)$ C(33) (2.506(3) as significantly shown in $[Fe_2\{\mu$ -C(CO_2] (2.589(2) Å), suggestimes and C_β in steric repulsions the lengthening pared to a pure of (1.471(5) and 1 1.467(7) Å) and (0 C(33)-C(34) (1.4 shorter than the $C(CO_2M_2)CH CN$	[Fe ₂ {μ-C(C) where C _β h (2.477(3) a and 2.454(f orter than $\frac{1}{2}$ Me)CH ₂ CN gesting som the forme between th of the C(2 louble bond 473(7) Å), C(26)-C(27) 448(5) and e correspond	$CO_2Me)CH_2CN(Mas sp3 hybridizaand 2.456(5) Å)b) Å) distances inthe corresponding(Me)(Xyl)}(\mu-COne interactions hfor. This fact, togthe two units, canC(32)-C(33)$ interaction C(32)-C(33) (1 C(32)-C(33) (1 C(32)-C(33) (1 C(32)-C(33) (1 C(32)-C(33) (1 C(32)-C(33) (1 C(32)-C(33) (1 C(32)-C(33) (1 C(32)-C(33) (1 C(32)-C(33) (1) C(32)-C(33) (1) C(33)-C(33) (1) C(33)-C(33	Me)(Xyl)}(μ - ation. First, and Fe(3)- in 4a,b are ng distance 0)(CO)(Cp) ₂] between the gether with account for action com- C(25)-C(26) .493(5) and 1.451(7) Å), cactions are s in [Fe ₂ { μ - b) (1.555(2)
that present in $CO)(CO)(Cp)_2]$, we the $Fe(2)-C(26)$ C(33) (2.506(3) as significantly shown in $[Fe_2\{\mu$ - $C(CO_2I)$ (2.589(2) Å), suggestimates and C_β in steric repulsions the lengthening pared to a pure of (1.471(5) and 1. 1.467(7) Å) and (1. C(33)-C(34) (1.4 shorter than the $C(CO_2Me)CH_2CI$	[Fe ₂ { μ -C(C) where C _{β} h (2.477(3) a and 2.454(f orter than Me)CH ₂ CN gesting som the forme between th of the C(2 louble bond 473(7) Å), C(26)-C(27) 448(5) and correspond N(Me)(Xyl)	$CO_2Me)CH_2CN(M)$ as sp ³ hybridiza and 2.456(5) Å) b) Å) distances the correspondin (Me)(Xyl)}(μ -CO ne interactions h br. This fact, tog the two units, can C(32)-C(33) intera l. Second, both C C(32)-C(33) (1 T) (1.446(5) and 1.435(7) Å) inter ding interaction μ (μ -CO)(CO)(Cp)	Me)(Xyl)}(μ - ation. First, and Fe(3)- in 4a,b are ng distance 0)(CO)(Cp) ₂] between the gether with account for action com- 0(25)-C(26) .493(5) and 1.451(7) Å), ractions are s in [Fe ₂ { μ - 0 ₂] (1.535(3)
that present in $CO)(CO)(Cp)_2]$, we the $Fe(2)-C(26)$ C(33) (2.506(3) as significantly shown in $[Fe_2\{\mu$ -C(CO_2] (2.589(2) Å), suggest metal and C_β in steric repulsions the lengthening pared to a pure of (1.471(5) and 1. 1.467(7) Å) and 0 C(33)-C(34) (1.4 shorter than the $C(CO_2Me)CH_2CH$ and 1.489(3) Å,	[Fe ₂ {μ-C(C) where C_{β} h (2.477(3) a and 2.454(f orter than Me)CH ₂ CN gesting som the forme between th of the C(2 louble bond 473(7) Å), C(26)-C(27) 448(5) and correspond N(Me)(Xyl) , respective	$CO_2Me)CH_2CN(M)$ as sp ³ hybridiza and 2.456(5) Å) b) Å) distances the correspondin (Me)(Xyl)}(μ -CO ne interactions h br. This fact, tog the two units, can C(32)-C(33) interaction (C(32)-C(33) (1 (1.446(5) and 1.435(7) Å) inter ding interaction }(μ -CO)(CO)(Cp) ely), indicating	Me)(Xyl)}(μ - ation. First, and Fe(3)- in 4a,b are ng distance 0)(CO)(Cp) ₂] between the gether with account for action com- 0(25)-C(26) .493(5) and 1.451(7) Å), ractions are s in [Fe ₂ { μ - 0 ₂] (1.535(3) also some
that present in $CO)(CO)(Cp)_2]$, w the $Fe(2)-C(26)$ C(33) (2.506(3) a significantly sho in $[Fe_2\{\mu$ -C(CO ₂ I (2.589(2) Å), suggent metal and C _β in steric repulsions the lengthening pared to a pure \dot{C} (1.471(5) and 1. 1.467(7) Å) and 0. C(33)-C(34) (1.4 shorter than the $C(CO_2Me)CH_2CI$ and 1.489(3) Å, delocalization in	[Fe ₂ {μ-C(C) where C_{β} h (2.477(3) ϵ and 2.454(ϵ orter than Me)CH ₂ CN gesting som the forme between th of the C(2 louble bond 473(7) Å), C(26)-C(27) 448(5) and correspond N(Me)(Xyl) , respective the C(25)	$(O_2Me)CH_2CN(Mas sp3 hybridizaand 2.456(5) Å)(b) Å) distancesthe correspondin(Me)(Xyl)}(\mu-COme interactions hfor. This fact, togthe two units, can(Me)-C(33) intera-(Second, both CC(32)-C(33) (1(1.446(5) and1.435(7) Å) interding interaction(\mu-CO)(CO)(Cp)(ely), indicating(\mu-C(26)-C(27) a$	Me)(Xyl)}(μ - ation. First, and Fe(3)- in 4a,b are ng distance 0)(CO)(Cp) ₂] between the gether with account for action com- C(25)-C(26) .493(5) and 1.451(7) Å), ractions are s in [Fe ₂ { μ - 0 ₂] (1.535(3) also some and C(32)-
that present in $CO)(CO)(Cp)_2]$, w the $Fe(2)-C(26)$ C(33) (2.506(3) a significantly sho in $[Fe_2{\mu-C(CO_2I)$ (2.589(2) Å), sugg metal and C_β in steric repulsions the lengthening pared to a pure \dot{C} (1.471(5) and 1. 1.467(7) Å) and 0. C(33)-C(34) (1.4 shorter than the $C(CO_2Me)CH_2CI$ and 1.489(3) Å, delocalization in C(33)-C(34) sys	[Fe ₂ {μ-C(C) where C_{β} h (2.477(3) a and 2.454(f orter than Me)CH ₂ CN gesting som the forme between th of the C(2 louble bond 473(7) Å), C(26)-C(27 448(5) and correspond N(Me)(Xyl) , respective the C(25) stems and	$(O_2Me)CH_2CN(Mas sp^3 hybridizaand 2.456(5) Å)(5) Å) distancesthe correspondin(Me)(Xyl)}(\mu-COme interactions hfor. This fact, togthe two units, can(Me)(-C(33)) intera-(C(32)-C(33)) (1)(1.446(5)) and(1.435(7) Å) interding interaction(\mu-CO)(CO)(Cp)(ely), indicating(\mu-C(26)-C(27)) asuggesting an$	Me)(Xyl)}(μ - ation. First, and Fe(3)- in 4a,b are ng distance 0)(CO)(Cp) ₂] between the gether with account for action com- C(25)-C(26) .493(5) and 1.451(7) Å), ractions are s in [Fe ₂ { μ - 0 ₂] (1.535(3) also some and C(32)- allylidene

that the two moieties composing **4b** are completely identical, whereas they differ only in the orientation of the carboxylate groups in **4a**. In particular, the C(35)–O(3)-O(4)-C(36) group in **4a** is nearly coplanar with Fe(4)–C(32)–C(33) (Fe(4)–C(32)–C(35)–O(3) dihedral angle $-15.3(5)^{\circ}$), whereas C(28)–O(1)-O(2)-C(29) is almost orthogonal to the plane determined by Fe(1)–C(25)-C(26) (Fe(1)–C(25)-C(28)-O(1) dihedral angle 90.0(4)°). This orientation of the COOMe groups allows extra stabilization of the molecule via a weak interaction between O(1) and C(35) (O(1)···C(35) = 2.750(45) Å), which is significantly shorter than the sum of the van der Waals radii of carbon and oxygen (i.e. 3.15 Å).

The ¹H NMR spectrum of **4a**, recorded at 233 K, shows a unique set of resonances for the two Fe₂ frames: thus, two Cp resonances are observed (at δ 4.84 and 4.35 ppm) and one signal is found for the COOMe groups (at δ 4.00 ppm). The main feature in the ¹³C NMR spectrum, recorded at 233 K, consists of the typical low-field resonance attributable to the aminocarbene carbons C_{α} (δ 247.3 ppm). At room temperature, the spectra show some broadening and a single resonance for the four Cp ligands, indicating the occurrence of an exchange process. The latter requires exchange between the aminocarbene ligand and the terminally bonded CO. Fluxionality within the $Cp_2Fe_2(CO)_2$ frame is favored by the fact that both aminocarbene and CO can easily switch between bridging and terminal coordination positions. A related fluxional behavior has been observed in diiron aminocarbene complexes of the type $[Fe_2(\mu-CO)_2\{CH(NR_2)\}(CO)(Cp)_2],$ in which exchange between terminally bonded aminocarbene and CO ligands resulted in the equivalence of the Cp ligands, on the NMR time scale.⁷ Compound **4c** behaves similarly to 4a and shows fluxionality, whereas 4b does not exhibit any exchange process at room temperature, suggesting that the fluxionality observed for **4a**,**c** is related to the presence of the COOMe groups.

The NMR spectra of **4c**, recorded at 233 K, indicate the presence of one isomer, although several isomeric forms are possible, due to the different orientations that the nonequivalent nitrogen substituents (Me and Bz) can assume, and because of the hindered rotation around the N-C(carbene) bond. The observed isomer is, presumably, the Z,Z form, in which steric repulsions between the benzyl groups are minimized (Chart 2).

Synthesis and Reactivity of σ -Coordinated Acetylide Diiron Complexes. The reaction of 1d,e, 2b,c, and $3\mathbf{a}-\mathbf{c}$ with NaH results in formation of the σ -alkynyl complexes $[Fe_2\{\mu$ -CN(Me)(R)} $(\mu$ -CO)(CO)(C \equiv CR')(Cp)₂] (R = Me, R' = SiMe_3, 5a; R = Me, R' = Tol, 5b; R = Bz, R' = SiMe_3, 5c; R = Bz, R' = Tol, 5d; R = Xyl, R' = SiMe_3, 5e; R = Xyl, R' = Tol, 5f; R = Xyl, R' = Ph, 5g), in about 90% yield (Scheme 3). The molecular structure of $[Fe_2\{\mu$ -CN(Me)(Xyl)}(\mu-CO)(CO)(C \equiv CSiMe_3)-(Cp)₂] (5e) has been established by X-ray diffraction analysis (Figure 3 and Table 3).

The $Fe_2(\mu$ -CO)(CO)(Cp)₂ core in **5e** shows a cis arrangement of the Cp ligands, as in the parent compound **3a**. The N(1)–C(13) interaction (1.307(7) Å) falls within the range found previously for other aminocarbyne species,⁸ and it shows some significant double-bond character, also indicating the iminium nature of the bridging ligand. The Xyl group is on the side opposite to C=CSiMe₃, to minimize steric repulsions. A comparison of Fe(1)-C(12) (2.021(6) Å) and Fe(2)-C(12) (1.843-(7) Å) shows the remarkable asymmetry of μ -CO, and this is due to the different electronic properties of the terminal ligands present on Fe(1) and Fe(2). In particular, μ -CO shows a longer interaction with Fe(1), which is bonded to an acidic terminal CO, whereas Fe(2) is bonded to a stronger σ -donor such as C=CSiMe₃. The latter adopts an almost linear geometry, in agreement with the sp hybridizations of C(23) and C(24) (Fe(2)- $C(23)-C(24) = 177.2(5)^{\circ}$ and C(23)-C(24)-Si(1) =

⁽⁷⁾ Zanotti, V.; Bordoni, S.; Busetto, L.; Carlucci, L.; Palazzi, A.; Serra, R.; Albano, V. G.; Monari, M.; Prestopino, F.; Laschi, F.; Zanello, P. *Organometallics* **1995**, *14*, 5232.

^{(8) (}a) Boss, K.; Cox, M. G.; Dowling, C.; Manning, A. R. J. Organomet. Chem. 2000, 612, 18. (b) Albano, V. G.; Busetto, L.; Camiletti, C.; Castellari, C.; Monari, M.; Zanotti, V. J. Chem. Soc., Dalton Trans. 1997, 4671. (c) Albano, V. G.; Busetto, L.; Camiletti, C.; Monari, M.; Zanotti, V. J. Organomet. Chem. 1998, 563, 153. (d) Albano, V. G.; Busetto, L.; Monari, M.; Zanotti, V. J. Organomet. Chem. 2000, 606, 163.

Figure 3. ORTEP drawing of the main image of $[Fe_2\{\mu CN(Me)(Xyl)\}(\mu - CO)(CO)(C \equiv CSiMe_3)(Cp)_2]$ (**5e**). All H atoms have been omitted for clarity. Thermal ellipsoids are at the 30% probability level. Only the main images of the disordered groups are reported.

Table 3. Selected Bond Lengths (Å) and Angles(deg) for 5e

		(* * 8 /		
	Fe(1)-Fe(2)	2.5069(13)	C(11)-O(11)	1.140(7)
	Fe(1)-C(11)	1.757(6)	C(12) - O(12)	1.168(7)
	Fe(1)-C(12)	2.021(6)	N(1)-C(13)	1.307(7)
	Fe(2)-C(12)	1.843(7)	N(1)-C(14)	1.494(7)
	Fe(1)-C(13)	1.875(5)	N(1)-C(15)	1.462(12)
	Fe(2)-C(13)	1.824(5)	C(23) - C(24)	1.240(7)
	Fe(2)-C(23)	1.889(5)	C(24)Si(1)	1.806(6)
				100 ((5)
ł	Fe(1) - C(13) - Fe(2)) 85.3(2)	C(13) - N(1) - C(14)	122.6(5)
ł	Fe(2) - C(23) - C(24)	a) 177.2(5)	C(13) - N(1) - C(15)	121.8(8)
(C(23) - C(24) - Si(1)) 173.7(5)	C(14) - N(1) - C(15)	115.1(8)

173.7(5)°). The Fe(2)–C(23) distance (1.889(5) Å) reveals some π interaction between the metal and the acetylide, and this causes a slight lengthening of the C(23)–C(24) bond (1.240(7) Å) compared to a pure C=C triple bond (e.g. 1.18 Å in HC=CH).⁹

Compounds $\mathbf{5c}-\mathbf{g}$ exist in solution as mixtures of two isomers, as usually found in complexes of the type $[Fe_2\{\mu\text{-}CN(Me)(R)\}(\mu\text{-}CO)(CO)(L)(Cp)_2]$ (L = C(O)R, CH₂CN, CN, Cl; R = Xyl, Bz).⁸ These isomers are due to the different orientations that the nonequivalent nitrogen substituents (Me and CH₂Ph, or Me and Xyl) can assume with respect to the μ -CN interaction, which exhibits partial double-bond character. A characteristic downfield ¹³C NMR resonance accounts for the presence of the aminocarbyne carbon (e.g. at δ 330.5 ppm for **5a**).

Finally, attempts to transform the σ -alkynyl species **5a**-**g** into the parent vinyliminium compounds **1**-**3**, or into new vinylidene ligands (Fe₂{=C=CH(R')}), by treatment with HSO₃CF₃ failed, resulting in extensive decomposition. Conversely, the reaction of [Fe₂{ μ -CN(Me)(Bz)}(μ -CO)(CO)(C=CR')(Cp)₂] (R' = SiMe₃, **5c**; R' = Tol, **5d**) with an excess of methyl iodide in refluxing

THF, followed by exchange of I⁻ with SO₃CF₃⁻, yielded the vinyliminium complexes [Fe₂{ μ - η ¹: η ³-C(R')=C(Me)C= N(Me)(Bz)}(μ -CO)(CO)(Cp)₂][SO₃CF₃] (R' = SiMe₃, **6a**; R' = Tol, **6b**) (Scheme 4).

Complex **6a** has been previously obtained by insertion of MeC=CSiMe₃ into the Fe-aminocarbyne bond of [Fe₂{ μ -CN(Me)(Bz)}(μ -CO)(NCMe)(Cp)₂][SO₃CF₃].^{5b} The spectroscopic properties of **6b** are those expected for a bridging vinyliminium diiron complex.³

Synthesis of 1-Metalla-2-aminocyclopenta-1,3dien-5-one Complexes. The vinyliminium complexes 1c and 3d-f react with NaH to give the corresponding 1-metalla-2-aminocyclopenta-1,3-dien-5-one complexes 7a-d, in about 70-80% yield (Scheme 5).

Complexes 7a-d have been purified by chromatography and fully characterized by spectroscopy and elemental analysis. Moreover, the X-ray structure of

 $[Fe(Cp)(CO) \{CN(Me)(Xyl)CHC(Me)C(O)\}]$ (7b) has been determined: the ORTEP molecular diagram is shown in Figure 4, and relevant bond lengths and angles are reported in Table 4. The five atoms constituting the 1-metalla-2-aminocyclopenta-1,3-dien-5-one ring are essentially coplanar (mean deviation from the Fe(1)-C(7)-C(8)-C(9)-C(10) least-squares plane 0.0116 Å). The Fe(1)-C(7) (1.940(3) Å) and Fe(1)-C(10) (1.910(3) Å) interactions are typical for a metal-acyl and a metal-aminocarbene; the latter shows a strong π backbonding, whereas the former is mainly a σ interaction. Accordingly, the C(7)–O(2) interaction (1.216(3) Å) is an almost pure double bond, and also the aminocarbene C(10)-N(1) interaction (1.328(3) Å) shows a partial double-bond character. The C-C interactions present an alternating behavior; thus, C(8)-C(9) (1.332(4) Å) is an almost pure double bond, whereas C(7)-C(8)(1.508(4) Å) and C(9)-C(10) (1.467(4) Å) are essentially single bonds.

In the ¹³C NMR spectra of **7a**–**d**, typical low-field resonances have been found for the acyl carbon (e.g. at δ 270.7 ppm for **7b**) and for the aminocarbene carbon

⁽⁹⁾ Simonetta, M.; Gavezzotti, A. In *The Chemistry of the Carbon–Carbon Triple Bond*; Wiley: New York, 1978.

Figure 4. ORTEP drawing of [Fe(Cp)(CO){CN(Me)(Xyl)-

 $CHC(Me)\dot{C}(O)$ [7b). All H atoms, except H(9), have been omitted for clarity. Thermal ellipsoids are at the 30% probability level.

Table 4. Selected Bond Lengths (Å) and Angles (deg) for 7b

Fe(1)-C(6)	1.727(3)	C(9)-C(10)	1.467(4)	
Fe(1) - C(7)	1.940(3)	C(7) - O(2)	1.216(3)	
Fe(1) - C(10)	1.910(3)	C(8)-C(11)	1.501(4)	
C(6) - O(1)	1.138(4)	C(10)-N(1)	1.328(3)	
C(7) - C(8)	1.508(4)	N(1)-C(12)	1.471(3)	
C(8)-C(9)	1.332(4)	N(1)-C(13)	1.441(3)	
$O(10) = E_{2}(1) = O(7)$	00.00(10)	Q(0) = Q(0) = Q(10)	115.0(9)	
C(10) - Fe(1) - C(7)	82.92(12)	U(8) = U(9) = U(10)	110.0(3)	
Fe(1)-C(7)-C(8)	113.4(2)	C(9)-C(10)-Fe(1)	115.27(19)	
C(7) - C(8) - C(9)	1133(3)			

Chart 3. E/Z Isomers for Complex 7d

 C_{α} (e.g. at 266.2 ppm for **7b**). NOE investigations have outlined that the nitrogen substituents of both **7b** and **7c** adopt in solution the *E* arrangement, in agreement with what is observed in the solid state. Conversely, complex **7d** exists in solution as mixture of two isomeric forms, which have been identified as *E* and *Z*, with a prevalence of the former (Chart 3).

Examples of 1-metallacyclopent-3-ene-2,5-dione¹⁰ and 1-metallacyclopent-3-en-2-one complexes¹¹ have been reported in the literature. Interestingly, complex **7b** represents, to our knowledge, the first 1-metallacyclopenta-1,3-dien-5-one ring structurally characterized.

The formation of $7\mathbf{a}-\mathbf{d}$ is the result of an intramolecular rearrangement, which requires coupling of the vinyliminium with a CO ligand and fragmentation of the diiron assembly. It should be remarked that the diiron frame Fe₂Cp₂(μ -CO) is usually very robust and is unaffected even by strong rearrangements, occurring

on the coordinated ligands. Fragmentation has been observed only in a few cases, which include the reaction of $[M_2\{\mu$ -CN(Me)(R) $\}(\mu$ -CO)(CO)₂(Cp)₂][SO₃CF₃] (M = Fe, Ru) with KH and acetonitrile, to form a metallapyrrole ring,¹² and acetylide addition at coordinated nitrile in [Fe₂{ μ -CN(Me)(R)}(μ -CO)(CO)(p-NCC₆H₄R')(Cp)₂]⁺, yielding a five-membered metallacycle (1-metalla-2-amino-3-aza-5-alkylidenecyclopenta-1,3-diene).¹³

Discussion

Reactions of the vinyliminium complexes with NaH selectively form three different types of products, resulting from dimerization of the dinuclear compounds (4ac), fragmentation (7a-d), or alkyne deinsertion (5a-d)**g**). Since C_{β} -H proton abstraction is presumably the initial step in all of these reactions, the different outcomes could be related to the nature of the deprotonated intermediates (Chart 4). The simple proton abstraction would leave a zwitterionic intermediate (Chart 4, I), bearing a negative charge on the C_{β} and a positive charge placed on the iminium moiety. However, proton removal, generating an highly unsaturated organic fragment, can be accompanied by changes in the coordination mode: the bridging ligand might assume a bis-alkylidene coordination mode (II), in which the C_{β} , no longer coordinated to the metals, displays a "carbene character". Other rearrangements are also possible, leading to a bridging alkynylaminocarbene (III),¹⁴ or a coordinated allene-1.3-divl (IV).¹⁵

The formation of the tetranuclear complexes $4\mathbf{a}-\mathbf{c}$ (Scheme 2) is well explained by the dimerization of type II intermediates (Chart 4). Similar dimerizations have been reported for the deprotonated forms of some alkoxy- and aminocarbene complexes, which undergo oxidative coupling to give bridging bis-carbene complexes in an overall sequence described as "dehydrodimerization".¹⁶ The formation of $4\mathbf{a}-\mathbf{c}$ is presumably related to the smallness of both R and R' substituents, which do not oppose steric hindrance to the dimerization. In agreement with this, the complexes

 ^{(10) (}a) Elarraoui, A.; Ros, J.; Yáñez, R.; Solans, X.; Font-Bardia,
 M. J. Organomet. Chem. 2002, 642, 107. (b) Mao, T.; Zhang, Z.;
 Washington, J.; Takats, J.; Jordan, R. B. Organometallics 1999, 18, 2331.

^{(11) (}a) Kayan, A.; Gallucci, J. C.; Wojcicki, A. J. Organomet. Chem. **2001**, 630, 44. (b) Huffman, M. A.; Liebeskind, L. S. Organometallics **1992**, 11, 255.

⁽¹²⁾ Busetto, L.; Camiletti, C.; Zanotti, V.; Albano, V. G.; Sabatino, P. J. Organomet. Chem. **2000**, 593, 335.

⁽¹³⁾ Busetto, L.; Marchetti, F.; Zacchini, S.; Zanotti, V.; Zoli, E. J. Organomet. Chem., in press.

⁽¹⁴⁾ Davis, J. H.; Lukehart, C. M.; Sacksteder, L. Organometallics 1987, 6, 50.

^{(15) (}a) Clarke, L. P.; Davies, J. E.; Raithby, P. R.; Shields, G. P. *Dalton* **2000**, 4527. (b) Akita, M.; Chung, M. C.; Terada, M.; Miyauti, M.; Tanaka, M.; Moro-oka, Y. *J. Organomet. Chem.* **1998**, *565*, 49.

^{(16) (}a) Rabier, A.; Lugan, N.; Mathieu, R.; Geoffroy, G. L. Organometallics **1994**, 13, 4676. (b) Rabier, A.; Lugan, N.; Mathieu, R. J. Organomet. Chem. **2001**, 617–618, 681. (c) Lattuada, L.; Licandro, E.;

Maiorana, S.; Molinari, H.; Papagni, A. Organometallics 1991, 10, 807.

 $[Fe_2\{\mu-\eta^1:\eta^3-C(R')=CHC=N(Me)(Xyl)\}(\mu-CO)(CO)(Cp)_2]$ - $[SO_3CF_3]$ (R' = Me, 3d; R' = COOMe, 3e), which differ from **1a**,**b** for the presence of the more hindered Xyl substituent, do not dimerize upon treatment with NaH.

The deinsertion of the acetylide unit (Scheme 5), which represents a different type of reaction path, consequent to C_{β} -H proton abstraction, should be better explained by the formation of an aminoalkylidene intermediate of type III (Chart 4).

Since the vinyliminium complexes have been obtained by alkyne insertion into Fe-aminocarbyne, the sequence shown in Scheme 3 can be considered the corresponding reverse reaction, although the acetylide fragment remains σ coordinated to an Fe atom.

It is not obvious why deinsertion is observed for the reactions of 1d.e. 2b.c. and 3a-c. rather than dimerization or fragmentation. This behavior is related to the nature of the substituent at C_{γ} , since the sterically demanding SiMe₃ and aryl substituents are thought to prevent the dimerization. Moreover, (trimethylsilyl)and any lacetylides are among the most stable σ -alkynyl ligands, and this may also favor the formation of 5ag

Interestingly, the deinsertion reaction affords σ alkynyl complexes, which are not otherwise available. Attempts to generate the alkynyl complexes **5** by simple replacement of the labile nitrile ligand in $[Fe_2]$ CN(Me)(R){(μ -CO)(CO)(NCR')(Cp)₂][SO₃CF₃] (R' = Me, aryl) with LiC=CR" have been unsuccessful. In fact, acetylides cause the deprotonation of the coordinated acetonitrile and subsequent rearrangement to cyanomethyl.¹⁷ Even when the nitriles do not contain acidic protons (e.g. NCCMe₃, arylnitriles) the reactions with acetylides proceed via nucleophilic addition at the nitrile ligands, instead of producing its replacement.^{13,18}

Complexes 5a-g are interesting compounds for several reasons. They contain a σ -coordinated alkynyl ligand,19 whereas, in binuclear complexes, alkynyl ligands are more commonly found in bridging positions.²⁰ Moreover, metal-alkynyl complexes represent an area of growing interest²¹ for potential applications in nonlinear optics,²² as luminescent materials,²³ and as molecular devices.²⁴

The third type of rearrangement observed, as a consequence of the treatment with NaH, consists of the fragmentation of the dinuclear precursor with formation of the metallacyclic complexes 7a-d. Again, steric and

electronic factors related to the nature of the substituents R and R' in the parent complexes 1c and 3d-f seem to produce the observed fragmentation rather than dimerization or deinsertion. The process is presumably initiated by removal of the acidic C_{β} -H. However, since the stoichiometry of the reaction requires loss of [CpFe]+ rather than H⁺, we cannot exclude the possibility that the initial step consists of one-electron reduction. To investigate this point, compounds 1c and 3d-f have been treated with different bases, including NEt₃, sodium naphthalenide (NaNaph), and KOH, under conditions similar to those used in the reactions with NaH. Investigations were not conclusive, because both NaNaph and KOH reacted, leading to the formation of the corresponding metallacyclopentenone complexes 7 in lower, but still comparable, yields with respect to those obtained with NaH, whereas NEt3 failed to produce any transformation.

Moreover, the reaction with NaH has been carried out on the C_{β}-deuterated vinyliminium complex [Fe₂{ μ - η ¹: η^{3} -C(Buⁿ)=C(D)C=N(Me)_{2}{(\mu-CO)(CO)(Cp)_{2}}[SO_{3}CF_{3}] (1f). The reaction affords the metallacyclic ring 7a, with loss of deuterium at C_{β} (Scheme 6).

This result is in agreement with the hypothesis that removal of the C_{β} -H proton in the vinyliminium complexes 1c is the initial step of the process; however, it is not conclusive evidence, because the C_{β} -H in **7a** is expected to be acidic as well, and deuterium-hydrogen exchange could take place on the metallacycle 7, during the workup.

Conclusions

The C_{β} -H hydrogen in the vinyliminium complexes $[Fe_2\{\mu-\eta^1:\eta^3-C_{\nu}(\mathbf{R}')=C_{\beta}HC_{\alpha}=N(Me)(\mathbf{R})\}(\mu-CO)(CO)(Cp)_2] [SO_3CF_3]$ (1-3) is efficiently removed by NaH. The resulting neutral species are not stable and rapidly evolve to give tetra-, di-, or mononuclear complexes, depending on the properties of the substituents R and R' on the ligand. The formation of tetrairon species is limited to R = Me, CH_2Ph and to the presence of relatively small R' groups (COOMe, Me) at C_{ν} . When the steric demand of R and/or R' increases, the Fe-Fe bond can be broken, resulting in mononuclear 1-metalla-2-aminocyclopenta-1,3-dien-5-one compounds. Finally, in the presence of substituents $R' = SiMe_3$, Ph, Tol, which can generate stable σ -alkynyl ligands ($-C \equiv CR'$), the reaction provides cleavage of the $C_{\alpha}-C_{\beta}$ bond, independent of the nature of R, affording diiron aminocarbyne complexes having a terminal alkynyl ligand. These reactions are very selective and do not form mixtures of products.

The results reported here, compared with previous findings on the reactions with NaBH₄,⁵ evidence that

⁽¹⁷⁾ Albano, V. G.; Busetto, L.; Marchetti, F.; Monari, M.; Zanotti, V. J. Organomet. Chem. 2002, 649, 64.

 ⁽¹⁸⁾ Albano, V. G.; Bordoni, S.; Busetto, L.; Marchetti, F.; Monari,
 M.; Zanotti, V. J. Organomet. Chem. 2003, 684, 37.

⁽¹⁹⁾ Hurst, S. K.; Ren, T. J. Organomet. Chem. 2003, 670, 188. (20) (a) Lang, H.; George, D. S. A.; Rheinwald, G. Coord. Chem. Rev. **2000**, 206–207, 101. (b) Nast, R. Coord. Chem. Rev. **1982**, 47, 89. (c) Cherkas, A. A.; Randall, L. H.; Taylor, N. J.; Mott, G. N.; Yule, J. E.; Guinamant, J. L.; Carty, A. J. Organometallics **1990**, *9*, 1677. (d) Darren, S. A.; McDonald, R.; Cowie, M. Organometallics **1998**, *17*, 2553. (e) Hogarth, G.; Redmond, S. P. J. Organomet Chem. 1997, 534, 221. (f) Smith, W. F.; Yule, J.; Taylor, N. J.; Paik, H. N.; Carty, A. J. Inorg. Chem. 1977, 16, 1593.

⁽²¹⁾ Long, N. J.; Williams, C. K.; Angew. Chem., Int. Ed. 2003, 42, 2586

^{(22) (}a) Whittall, I. R.; McDonagh, A. M.; Humphrey, M. G.; Samoc, M. Adv. Organomet. Chem. 1998, 42, 291. (b) Whittall, I. R.; McDonagh, A. M.; Humphrey, M. G.; Samoc, M. Adv. Organomet. Chem. 1999,

^{43, 349.}

⁽²³⁾ Yam V. W. W. Acc. Chem. Res. 2002, 35, 555.

^{(24) (}a) Ziessel, R.; Hissler, M.; El-Ghayoury, A.; Harriman, A. Coord. Chem. Rev. 1998, 180, 1251. (b) Paul, F.; Lapinte, C. Coord. Chem. Rev. 1998, 178-180, 431.

the reaction products strongly depend on the nature of the hydride reagent: NaH acts exclusively as a base, whereas the nucleophile NaBH₄ provides H^- addition.

Moreover, these results indicate that the bridging vinyliminium ligand can generate new and reactive organic fragments, which are stabilized through coordination to the metal centers, yielding a variety of new and interesting mono- and polymetallic species. Exploitation of the acidic character of C_{β} -H in μ -vinyliminium ligands, for generating new C-C and C-heteroatom bonds, is currently under investigation and will be the matter of future reports.

Experimental Section

General Data. All reactions were routinely carried out under a nitrogen atmosphere, using standard Schlenk techniques. Unless otherwise stated, solvents were distilled immediately before use under nitrogen from appropriate drying agents. Chromatography separations were carried out on columns of deactivated alumina (4% w/w water). Glassware was oven-dried before use. Infrared spectra were recorded on a Perkin-Elmer Spectrum 2000 FT-IR spectrophotometer, and elemental analyses were performed on a ThermoQuest Flash 1112 Series EA instrument. ESI MS spectra were recorded on a Waters Micromass ZQ 4000 with samples dissolved in CH₃CN. All NMR measurements were performed on Varian Gemini 300 and Mercury Plus 400 instruments. The chemical shifts for ¹H and ¹³C were referenced to internal TMS. The spectra were fully assigned via DEPT experiments and ¹H, ¹³C correlations measured using gs-HSQC and gs-HMBC experiments.²⁵ Unless otherwise specified, NMR spectra were recorded at 298 K; NMR signals due to a second isomeric form (where it has been possible to detect and/or resolve them) are italicized. NOE measurements were recorded using the DPFGSE-NOE sequence.²⁶ All the reagents were commercial products (Aldrich) of the highest purity available and were used as received. $[Fe_2(CO)_4(Cp)_2]$ was purchased from Strem and used as received. The compounds $[Fe_2{\mu-CN(Me)(R)}(\mu CO(CO)(NCMe)(Cp)_2][SO_3CF_3]^{8d}$ (R = Me, Xyl) and $[Fe_2\{\mu-\eta^1:$ η^{3} -C(R')=CHC=N(Me)(R)}(μ -CO)(CO)(Cp)₂][SO₃CF₃] (1a,b,d,e; $2\mathbf{a}-\mathbf{c}$; $3\mathbf{a}-\mathbf{e}$) were prepared as described in the literature.³

Synthesis of $[Fe_2\{\mu-\eta^1:\eta^3-C_{\gamma}(Bu^n)=C_{\beta}HC_{\alpha}=N(Me)_2\}(\mu-\eta^2)$ CO)(CO)(Cp)₂][SO₃CF₃] (1c) and [Fe₂{ μ - η ¹: η ³-C_{γ}(Buⁿ)= $C_{\beta}DC_{\alpha}=N(Me)_{2}$ (μ -CO)(CO)(Cp)_{2}[SO_{3}CF_{3}] (1f). HC=CBuⁿ (0.068 mL, 0.59 mmol) was added to a solution of $[Fe_2]{\mu}$ $CN(Me)_{2}$ {(μ -CO)(CO)(NCMe)(Cp)_{2}][SO₃CF₃] (250 mg, 0.471 mmol), in THF (20 mL). The mixture was stirred at boiling temperature for 60 min, and then the solvent was removed under reduced pressure and the residue chromatographed on an alumina column. Elution with MeOH afforded a green band, which was collected and evaporated to dryness. Crystallization from a CH₂Cl₂ solution, layered with diethyl ether, gave crystals of 1c. Yield: 248 mg, 90%. Anal. Calcd for C₂₂H₂₆F₃Fe₂NO₅S: C, 45.15; H, 4.48; N, 2.39. Found: C, 44.99; H, 4.52; N, 2.29. IR (CH₂Cl₂): v(CO) 1990 (vs), 1805 (s), v(C_aN) 1682 (m) cm⁻¹. ¹H NMR (CDCl₃): δ 5.16, 4.99 (s, 10 H, Cp); 4.52 (s, 1 H, C_{β} H); 4.14, 3.74 (m, 2 H, C_{γ} CH₂); 3.83, 3.25 (s, 6 H, NMe); 2.05, 1.86 (m, 2 H, C_yCH₂CH₂); 1.67 (m, 2 H, C_yCH₂-CH₂CH₂); 1.10 (t, 3 H, ${}^{3}J_{\text{HH}} = 7.32$ Hz, C₂CH₂CH₂CH₂CH₂CH₃). ¹³C NMR (CDCl₃): δ 257.0 (μ-CO); 225.6 (C_α); 212.8 (C_γ); 209.6 (CO); 89.6, 87.3 (Cp); 54.7 (C_γCH₂); 51.3 (C_β); 50.9, 44.7 (NMe); 37.7 (C_yCH₂CH₂); 22.8 (C_yCH₂CH₂CH₂); 14.1 (C_yCH₂CH₂- $CH_{9}CH_{3}$).

 $\begin{array}{l} Complex \ [Fe_2\{\mu-\eta^{1}:\eta^3-C_{\gamma}(Bu^n)=C_{\beta}DC_{\alpha}=N(Me)_2\}(\mu-CO)(CO)-(Cp)_2][SO_3CF_3] \ (1f) \ was \ synthesized \ by \ the \ same \ procedure \end{array}$

described for **1c**, by reacting $[Fe_2\{\mu$ -CN(Me)₂](μ -CO)(CO)-(NCMe)(Cp)₂][SO₃CF₃] with DC=CBuⁿ. The latter was prepared treating HC=CBuⁿ, in THF solution at -40 °C, with an equimolar amount of BuⁿLi, followed by treatment with D₂O. Yield: 88%. Color: green. Anal. Calcd for C₂₂H₂₇F₃Fe₂-NO₅S: C, 45.08; H, 4.64; N, 2.39. Found: C, 45.11; H, 4.61; N, 2.35. IR (CH₂Cl₂): ν (CO) 1990 (vs), 1805 (s), ν (C_aN) 1682 (m) cm⁻¹. ¹H NMR (CDCl₃): δ 5.23, 5.07 (s, 10 H, Cp); 4.18, 3.75 (m, 2 H, C_{γ}CH₂CH₂); 3.87, 3.29 (s, 6 H, NMe); 2.05, 1.87 (m, 2 H, C_{γ}CH₂CH₂); 1.69 (m, 2 H, C_{γ}CH₂CH₂CH₂); 1.11 (t, 3 H, ³J_{HH} = 7.32 Hz, C_{γ}CH₂CH₂CH₂CH₃).

Synthesis of $[Fe_2\{\mu-\eta^1:\eta^3-C_{\gamma}(CMe_2OH)=C_{\beta}HC_{\alpha}=N(Me)-$ (Xyl) {(μ -CO)(CO)(Cp)₂] [SO₃CF₃] (3f). A solution of the complex $[Fe_2{\mu-CN(Me)(Xyl)}(\mu-CO)(CO)(NCMe)(Cp)_2][SO_3 CF_3$] (210 mg, 0.331 mmol), in CH_2Cl_2 , was treated with $HC \equiv$ CC(Me)₂OH (0.041 mL, 0.42 mmol). The mixture was stirred at boiling temperature for 4 h and then filtered on a Celite pad. Removal of the solvent gave a residue that was washed with diethyl ether $(2 \times 20 \text{ mL})$. Crystallization from a CH₂Cl₂ solution, layered with diethyl ether, afforded brown crystals of **3f**. Yield: 191 mg, 85%. Anal. Calcd for C₂₈H₃₀F₃Fe₂NO₆S: C, 49.65; H, 4.46; N, 2.07. Found: C, 49.82; H, 4.38; N, 2.13. IR (CH₂Cl₂): ν (CO) 1998 (vs), 1806 (s), ν (C_aN) 1632 (m) cm⁻¹. ¹H NMR (CDCl₃): δ 8.07–6.73 (m, 3 H, Me₂C₆H₃); 5.44, 5.29, 5.22, 4.68 (s, 10 H, Cp); 4.95 (s, 1 H, C_βH); 4.15 (s, 3 H, NMe); $2.40, 2.20, 1.92, 1.73 (s, 6 H, Me_2C_6H_3); 1.51 (s, 6 H, CMe_2OH);$ *E:Z* ratio 5:1. ¹³C NMR (CDCl₃): δ 255.6 (μ -CO); 231.1 (C $_{\alpha}$); 210.3 (CO); 209.6 (C_{γ}); 144.5 (ipso-Me₂C₆H₃); 139.7, 136.6, 132.9, 131.0, 129.3 (Me₂C₆H₃); 90.8, 89.5, 88.3, 87.0 (Cp); 70.0 (CMe₂OH); 48.7 (C_b); 45.8 (NMe); 32.0, 31.4 (CMe₂OH); 17.6, $17.0 (Me_2C_6H_3).$

Synthesis of $[Fe_2\{\mu-\eta^1:\eta^2C_{\nu}(\mathbf{R}')C_{\beta}C_{\alpha}N(\mathbf{Me})(\mathbf{R})\}(\mu-CO) (CO)(Cp)_2]_2$ (R = Me, R' = COOMe, 4a; R = Me, R' = Me, 4b; $\mathbf{R} = \mathbf{CH}_2\mathbf{Ph}$, $\mathbf{R}' = \mathbf{COOMe}$, 4c). Compound 1a (148 mg, 0.252 mmol), in THF solution (10 mL), was treated with NaH (35 mg, 1.46 mmol). The mixture was stirred for 20 min and then filtered on an alumina pad. Removal of the solvent and chromatography of the residue on an alumina column, with a mixture of $\mathrm{CH}_2\mathrm{Cl}_2$ and THF (4:1) as eluent, afforded a dark gray band, which was collected. Crystallization at -20 °C from CH_2Cl_2 solution layered with petroleum ether (bp 40-60° C) gave crystals of 4a. Yield: 66 mg, 60%. Anal. Calcd for C38H38-Fe₄N₂O₈: C, 52.22; H, 4.38; N, 3.20. Found: C, 52.26; H, 4.41; N, 3.20. IR (CH₂Cl₂): v(CO) 1939 (s), 1751 (vs), 1741 (vs), 1688 (w), 1659 (w), ν (C_{α}N) 1568 (w), 1541 (w) cm⁻¹. ¹H NMR (CDCl₃, 233 K): δ 4.84, 4.35 (s, 20 H, Cp); 4.00 (s, 6 H, CO₂Me); 3.32, 2.26 (s, 12 H, NMe). ¹³C NMR (CDCl₃, 233K): δ 278.4 (μ-CO); 247.3 (C_{α}); 216.0 (CO); 181.8 (CO₂Me); 151.4 (C_{γ}); 87.4, 87.3 (Cp); 71.6 (C_{β}); 51.5 (CO₂Me); 47.1, 43.1 (NMe). ESI-MS (ES⁺): m/z 874 [M⁺, 11%], 437 [M/2⁺, 100%], 409 [M/2⁺ - CO, 68%].

Complexes **4b**,**c** were prepared by following the same procedure described for the synthesis of **4a**, by reacting NaH with **1b** and **2a**, respectively. Crystals of **4b** suitable for X-ray analysis were collected by a dichloromethane solution layered with *n*-pentane, at -20 °C.

4b. Yield: 70%. Color: blue-grey. Anal. Calcd for $C_{36}H_{38}$ -Fe₄N₂O₄: C, 55.01; H, 4.87; N, 3.56. Found: C, 55.07; H, 4.92; N, 3.63. IR (CH₂Cl₂): ν (CO) 1921 (s), 1740 (s-sh), 1728 (vs), ν (C_aN) 1603 (w), 1558 (wm) cm⁻¹. ¹H NMR (CDCl₃): δ 4.84, 4.48 (s, 20 H, Cp); 3.71, 3.48 (s, 12 H, NMe); 1.85 (s, 6 H, C₇Me). ¹³C NMR (CDCl₃): δ 272.0 (μ -CO); 262.4 (C_a); 221.9 (CO); 172.6 (C₇); 86.8, 84.7 (Cp); 79.2 (C_β); 51.4, 42.8 (NMe); 13.2 (C₇Me).

4c. Yield: 68%. Color: dark gray. Anal. Calcd for $C_{50}H_{46}$ -Fe₄N₂O₈: C, 58.52; H, 4.52; N, 2.73. Found: C, 58.43; H, 4.60; N, 2.77. IR (CH₂Cl₂): ν (CO) 1939 (s), 1752 (vs), 1742 (vs), 1687 (w), 1659 (w), ν (C_aN) 1568 (w), 1537 (w) cm⁻¹. ¹H NMR (CDCl₃, 233 K): δ 7.45–6.91 (m, 10 H, Ph); 4.87, 4.40 (s, 20 H, Cp); 4.81, 4.52 (d, 4 H, ²J_{HH} = 13.7 Hz, CH₂Ph); 4.03 (s, 6 H, CO₂Me); 2.07 (s, 6 H, NMe). ¹³C NMR (CDCl₃, 233 K): δ 278.6 (μ -CO); 246.8 (C_a); 216.1 (CO); 181.7 (CO₂Me); 151.4 (C_y);

⁽²⁵⁾ Wilker, W.; Leibfritz, D.; Kerssebaum, R.; Beimel, W. Magn. Reson. Chem. 1993, 31, 287.

⁽²⁶⁾ Stott, K.; Stonehouse, J.; Keeler, J.; Hwang, T. L.; Shaka, A. J. J. Am. Chem. Soc. **1995**, *117*, 4199.

135.2–127.8 (Ph); 87.7, 87.3 (Cp); 70.8 (C_{β}); 63.3 (CH₂Ph); 51.4 (CO₂*Me*); 39.8 (NMe). ESI-MS (ES⁺): *m*/*z* 1026 [M⁺, 7%], 513 [M/2⁺, 100%], 485 [M/2⁺ – CO, 37%].

Synthesis of $[Fe_2{\mu-CN(Me)(R)}(\mu-CO)(CO)(C \equiv CSiMe_3) (Cp)_2$] (R = Me, 5a; R = Bz, 5c; R = Xyl, 5e). Compound 1d (100 mg, 0.166 mmol), was dissolved in THF (15 mL) and treated with NaH (21 mg, 0.875 mmol). The mixture was stirred for 30 min, and then the solvent was removed. The residue was washed with petroleum ether (2 \times 20 mL), dissolved in CH₂Cl₂, and filtered on a Celite pad. Crystallization at -20 °C from CH₂Cl₂ solution, layered with petroleum ether, gave brown crystals of 5a. Yield: 70 mg, 93%. Anal. Calcd for C₂₀H₂₅Fe₂NO₂Si: C, 53.24; H, 5.58; N, 3.10. Found: C, 53.27; H, 5.50; N, 3.11. IR (CH₂Cl₂): v(C=C) 2011 (vs), v(CO) 1972 (vs), 1794 (s), $\nu(\mu$ -CN) 1534 (w) cm⁻¹. ¹H NMR (CDCl₃): δ 4.71, 4.68 (s, 10 H, Cp); 4.16, 4.02 (s, 6 H, NMe); -0.23 (s, 9 H, SiMe₃). ¹³C NMR (CDCl₃): δ 330.5 (μ-C); 263.9 (μ-CO); 212.3 (CO); 133.6, 117.6 (C≡C); 87.2, 85.7 (Cp); 52.1, 50.8 (NMe); 1.53 (SiMe₃).

Complexes **5c**,**e** were prepared by following the same procedure described for the synthesis of **5a**, by reacting NaH with **2b** and **3a**, respectively. Crystals of **5e** suitable for X-ray analysis were collected from a CH_2Cl_2 solution layered with petroleum ether, at -20 °C.

5c. Yield: 95%. Color: ochre yellow. Anal. Calcd for C₂₆H₂₉-Fe₂NO₂Si: C, 59.22; H, 5.54; N, 2.66. Found: C, 59.12; H, 5.70; N, 2.69. IR (CH₂Cl₂): ν (C=C) 2011 (vs), ν (CO) 1972 (vs), 1794 (s), ν (μ -CN) 1534 (w) cm⁻¹. ¹H NMR (CDCl₃): δ 7.57–7.38 (m, 5 H, Ph); 6.19, 5.74, 5.55, 5.36 (d, 2 H, ²J_{HH} = 15 Hz, CH₂Ph); 4.80, 4.77, 4.72, 4.65 (s, 10 H, Cp); 4.06, 3.91 (s, 3 H, NMe); -0.14, -0.17 (s, 9 H, SiMe₃); isomer ratio 3:2. ¹³C NMR (CDCl₃): δ 333.6 (μ -C); 263.6, 263.2 (μ -CO); 212.4, 212.2 (CO); 136.2–126.9 (Ph and C=C); 118.0, 117.5 (C=C); 87.6, 87.4, 86.0, 85.9 (Cp); 69.8, 69.0 (CH₂Ph); 49.6, 48.1 (NMe); 1.64, 1.60 (SiMe₃).

5e. Yield: 90%. Color: ochre yellow. Anal. Calcd for $C_{27}H_{31}$ -Fe₂NO₂Si: C, 59.91; H, 5.77; N, 2.59. Found: C, 59.94; H, 5.77; N, 2.50. IR (CH₂Cl₂): ν (C=C) 2012 (vs), ν (CO) 1973 (vs), 1792 (s), $\nu(\mu$ -CN) 1506 (w) cm⁻¹. ¹H NMR (CDCl₃): δ 7.34–7.16 (m, 3 H, Me₂C₆H₃); 4.81, 4.29 (s, 10 H, Cp); 4.43 (s, 3 H, NMe); 2.67, 2.26 (s, 6 H, *Me*₂C₆H₃); -0.17 (s, 9 H, SiMe₃). ¹³C NMR (CDCl₃): δ 337.2 (μ -C); 263.6 (μ -CO); 212.8 (CO); 148.4 (ipso-Me₂C₆H₃); 134.3, 133.2, 129.9, 128.1, 128.0 (Me₂C₆H₃); 131.0, 118.3 (C=C); 87.6, 85.7 (Cp); 51.5 (NMe); 18.5, 17.9 (*Me*₂C₆H₃); 1.5 (SiMe₃).

Synthesis of $[Fe_2\{\mu-CN(Me)(R)\}(\mu-CO)(CO)(C\equiv CR') (Cp)_2$] (R = Me, R'= Tol, 5b; R = Bz, R'= Tol, 5d; R = Xyl, **R**'= **Tol**, **5f**; **R** = **Xyl**, **R**'= **Ph**, **5g**). A solution of **1e** (145 mg, 0.234 mmol) in THF (15 mL) was treated with NaH (27 mg, 1.17 mmol), and the mixture was stirred for 30 min. Then, the solvent was removed, the residue dissolved in a 1:1 mixture of toluene and diethyl ether, and this solution filtered on a Celite pad. Solvent removal afforded a brown powder of 5b. Yield: 100 mg, 91%. Anal. Calcd for C₂₄H₂₃Fe₂NO₂: C, 61.44; H, 4.94; N, 2.99. Found: C, 61.47; H, 4.95; N, 3.06. IR (THF): ν (C=C) 2087 (s), ν (CO) 1963 (vs), 1788 (s) cm⁻¹. ¹H NMR $(C_6D_5CD_3)$: δ 7.48, 7.34 (d, 4 H, ${}^3J_{HH} = 6.3$ Hz, C_6H_4 Me); 4.55, 4.29 (s, 10 H, Cp); 4.07, 4.00 (s, 3 H, NMe); 2.22 (s, 3 H, C₆H₄Me). ¹³C NMR (C₆D₅CD₃): δ 331.0 (μ -C); 261.0 (μ -CO); 213.7 (CO); 156.9 (ipso-C₆H₄Me); 137.9, 129.0, 126.1 (C₆H₄Me); 120.2, 107.8 (C=C); 87.9, 85.0 (Cp); 51.4, 50.0 (NMe); 21.3 $(C_6H_4Me).$

Complexes **5d**,**f**,**g** were prepared by following the same procedure described for the synthesis of **5b**, by reacting NaH with **2c** and **3b**,**c**, respectively.

5d. Yield: 88%. Color: ochre yellow. Anal. Calcd for $C_{30}H_{27}$ -Fe₂NO₂: C, 66.09; H, 4.99; N, 2.57. Found: C, 66.01; H, 4.83; N, 2.53. IR (THF): ν (C=C) 2090 (s), ν (CO) 1970 (vs), 1805 (s) cm⁻¹. ¹H NMR (C₆D₅CD₃): δ 7.56–6.80 (m, 9 H, C₆H₄Me and Ph); 5.48, 5.22 (d, ²J_{HH} = 14 Hz, CH₂Ph); 4.59, 4.55, 4.54, 4.34 (s, 10 H, Cp); 3.99, 3.98 (s, 3 H, NMe); 2.22, 2.19 (s, 3 H, $\rm C_6H_4\mathit{Me}$); isomer ratio 3:2. $^{13}\rm C$ NMR ($\rm C_6D_5CD_3$) δ 334.1, 333.7 (μ -C); 260.9, 260.6 (μ -CO); 213.7, 213.2 (CO); 157.4–124.4 ($\rm C_6H_4Me$ and Ph); 119.2, 119.1, 107.3, 106.8 (C=C); 87.6, 86.0, 85.8, 82.2 (Cp); 69.4, 68.8 (CH_2Ph); 48.1, 47.3 (NMe); 21.1 (C_6H_4\mathit{Me}).

5f. Yield: 90%. Color: ochre yellow. Anal. Calcd for $C_{31}H_{29}$ -Fe₂NO₂: C, 66.58; H, 5.23; N, 2.50. Found: C, 66.48; H, 5.21; N, 2.55. IR (CH₂Cl₂): ν (C=C) 2087 (m), ν (CO) 1971 (vs), 1792 (s), ν (CN) 1505 (w) cm⁻¹. ¹H NMR (C₆D₅CD₃): δ 7.17–6.79 (m, 7 H, C₆H₄Me and Me₂C₆H₃); 4.60, 4.53, 4.32, 3.98 (s, 10 H, Cp); 4.08, 4.05 (s, 3 H, NMe); 2.28, 2.12 (s, 6 H, Me₂C₆H₃); 2.22 (s, 3 H, C₆H₄Me); isomer ratio 7:1. ¹³C NMR (C₆D₅CD₃): δ 338.5 (μ -C); 259.3 (μ -CO); 214.2 (CO); 158.1–124.0 (C₆H₄Me and Me₂C₆H₃); 120.1, 106.2 (C=C); 87.8, 86.7, 86.1, 82.2 (Cp); 51.3 (NMe); 21.2 (C₆H₄Me); 18.3, 17.8 (Me₂C₆H₃). ESI-MS (ES⁺): m/z 559 [M⁺].

5g. Yield: 87%. Color: ochre yellow. Anal. Calcd for $C_{30}H_{27}$ -Fe₂NO₂: C, 66.09; H, 4.99; N, 2.57. Found: C, 66.00; H, 5.05; N, 2.56. IR (CH₂Cl₂): ν (C=C) 2086 (m), ν (CO) 1971 (vs), 1792 (s), ν (CN) 1504 (w) cm⁻¹. ¹H NMR (C₆D₅CD₃): δ 7.57–6.72 (m, 8 H, Ph and Me₂C₆H₃); 4.56, 4.54, 4.31, 3.95 (s, 10 H, Cp); 4.07, 4.04 (s, 3 H, NMe); 2.24, 2.19 (s, 6 H, Me_2 C₆H₃); isomer ratio 9:1. ¹³C NMR (C₆D₅CD₃): δ 338.3 (μ -C); 260.0 (μ -CO); 214.4 (CO); 161.7–125.0 (Ph and Me₂C₆H₃); 117.8, 106.2 (C=C); 87.6, 85.4 (Cp); 52.1 (NMe); 18.4, 17.7 (Me_2 C₆H₃).

Synthesis of $[Fe_2\{\mu, \eta^1: \eta^3-C_{\nu}(\mathbf{R}')=C_{\beta}(\mathbf{Me})C_{\alpha}=\mathbf{N}(\mathbf{Me})(\mathbf{Bz})\}$ - $(\mu$ -CO)(CO)(Cp)₂][SO₃CF₃] (R' = SiMe₃, 6a; R' = Tol, 6b). To a THF solution (15 mL) of 5c (120 mg, 0.228 mmol) was added MeI (0.9 mL, 14.5 mmol), and the resulting mixture was stirred at about 50 °C for 20 min. The solution was cooled to room temperature, and then AgCF₃SO₃ (88 mg, 0.344 mmol) was added; subsequent chromatography on alumina, using a 1:1 mixture of THF and MeCN as eluent, afforded a green band, corresponding to 6a. Yield: 68 mg, 43%. Anal. Calcd for C₂₈H₃₂F₃Fe₂NO₅SSi: C, 48.64; H, 4.67; N, 2.03. Found: C, 48.55; H, 4.62; N, 2.05. IR (CH₂Cl₂): v(CO) 1982 (vs), 1815 (s), ν(CN) 1652 (m) cm⁻¹. ¹H NMR (CDCl₃): δ 7.48–7.18 (m, 5 H, Ph); 5.77, 5.72, 4.77, 4.67 (d, ${}^{2}J_{HH} = 14$ Hz, 2 H, CH₂Ph); 5.00, 4.99, 4.53, 4.50 (s, 10 H, Cp); 3.96, 3.16 (s, 3 H, NMe); 2.23, 2.14 (s, 3 H, $C_{\beta}Me$); 0.70, 0.67 (s, 9 H, SiMe₃); Z:E ratio 2:1. ¹³C NMR (CDCl₃): δ 254.6, 253.1 (μ-CO); 222.3, 221.1 (C_α); 208.5 (CO); 195.2 (C_y); 132.4–128.9 (Ph); 89.0, 88.9, 88.4, 88.2 (Cp); 70.6 (C_{β}) ; 65.2, 62.3 (CH_2Ph) ; 45.4, 43.4 (NMe); 20.6, 20.2 $(C_{\beta}Me)$; 4.1 (SiMe₃).

Complex **6b** was prepared by following the same procedure described for the synthesis of **6a**, by reacting **5d** with MeI and $AgCF_3SO_3$.

6b. Yield: 66%. Color: ochre yellow. Anal. Calcd for $C_{32}H_{30}F_{3}Fe_{2}NO_{5}S$: C, 54.18; H, 4.26; N, 1.97. Found: C, 54.22; H, 4.39; N, 1.93. IR (CH₂Cl₂): ν (CO) 1989 (vs), 1807 (s), ν (CN) 1655 (m) cm⁻¹. ¹H NMR (CDCl₃): δ 7.56–7.11 (m, 9 H, Ph and C₆H₄Me); 5.74, 5.67, 5.14, 4.44 (d, 2H, ²J_{HH} = 15 Hz, CH₂Ph); 5.26, 5.25, 4.90, 4.89 (s, 10 H, Cp); 3.75, 3.03 (s, 3 H, NMe); 2.47 (s, 3 H, C₆H₄Me); 1.75, 1.73 (s, 3 H, C₆Me); *Z:E* ratio 3:1. ¹³C NMR (CDCl₃): δ 258.1 (μ -CO); 226.2, 225.0 (C_a); 210.6, 210.0 (CO); 202.2 (C_y); 150.8 (ipso-C₆H₄Me); 136.4–125.3 (Ph and C₆H₄Me); 91.7, 88.0, 87.9 (Cp); 66.4, 61.5 (CH₂Ph); 65.6, 65.3 (C_β); 45.9, 41.9 (NMe); 21.2 (C₆H₄Me); 18.3, 18.1 (C_βMe).

Synthesis of [$\dot{\mathbf{Fe}}(\mathbf{Cp})(\mathbf{CO})\{\mathbf{C}_{\alpha}\mathbf{N}(\mathbf{Me})(\mathbf{R})\mathbf{C}_{\beta}\mathbf{HC}_{\gamma}(\mathbf{R})\dot{\mathbf{C}}(\mathbf{O})\}$] ($\mathbf{R} = \mathbf{Me}, \mathbf{R}' = \mathbf{Bu}^n, \mathbf{7a}; \mathbf{R} = \mathbf{Xyl}, \mathbf{R}' = \mathbf{Me}, \mathbf{7b}; \mathbf{R} = \mathbf{Xyl}, \mathbf{R}' = \mathbf{COOMe}, \mathbf{7c}; \mathbf{R} = \mathbf{Xyl}, \mathbf{R}' = \mathbf{CMe_2OH}, \mathbf{7d}$). Complex 1c (200 mg, 0.342 mmol), was dissolved in THF (20 mL) and treated with NaH (38 mg, 1.58 mmol). The resulting mixture was stirred for 30 min and then filtered on an alumina pad. Removal of the solvent and chromatography of the residue on alumina, using a 1:1 mixture of CH₂Cl₂ and THF as eluent, afforded a brown band corresponding to **7a**. Yield: 73 mg, 68%. Anal. Calcd for C₁₆H₂₁FeNO₂: C, 60.97; H, 6.72; N, 4.44. Found: C, 61.03; H, 6.66; N, 4.48. IR (CH₂Cl₂): ν (CO) 1911

Table 5. Crystal Data and Experimental Details for 4a·CH₂Cl₂, 4b, 5e, and 7b

	$4\mathbf{a}\cdot CH_2Cl_2$	4b	5 e	7b
formula	$C_{39}H_{40}Cl_2Fe_4N_2O_8$	$C_{36}H_{38}Fe_4N_2O_4$	$C_{27}H_{31}Fe_2NO_2Si$	$C_{20}H_{21}FeNO_2$
fw	959.03	786.08	541.32	363.23
Т, К	150(2)	293(2)	293(2)	293(2)
λ, Å	0.71073	0.71073	0.71073	0.71073
cryst syst	monoclinic	monoclinic	orthorhombic	monoclinic
space group	$P2_1/n$	$P2_{1}/c$	Aba2	$P2_{1}/c$
a, Å	18.032(4)	12.735(3)	9.920(2)	9.3991(19)
b, Å	10.346(2)	27.480(6)	34.927(7)	19.964(4)
<i>c</i> , Å	21.479(4)	10.206(2)	14.849(3)	10.132(2)
β , deg	105.50(3)	112.80(3)	90	109.83(3)
cell vol, Å ³	3861.2(13)	3292.8(11)	5144.6(18)	1788.5(6)
Z	4	4	8	4
$D_{ m c},{ m g}~{ m cm}^{-3}$	1.650	1.586	1.398	1.349
μ,mm^{-1}	1.667	1.770	1.198	0.854
F(000)	1960	1616	256	760
cryst size, mm	0.24 imes 0.21 imes 0.15	0.19 imes 0.16 imes 0.11	0.24 imes 0.22 imes 0.14	0.24 imes 0.19 imes 0.11
θ limits, deg	1.31 - 26.37	1.48 - 25.03	1.17 - 25.03	2.04 - 28.70
no. of rflns collected	37 213	$26\ 427$	22 038	21148
no. of indep rflns	$7877 \ (R_{\rm int} = 0.0771)$	$5811 (R_{\rm int} = 0.1083)$	$4551 \ (R_{\rm int} = 0.0769)$	$4625 (R_{\rm int} = 0.0644)$
no. of data/restraints/params	7877/0/502	5811/178/417	4551/85/297	4625/0/221
goodness on fit on F^2	1.062	1.054	1.050	0.963
$R1 \left(I > 2\sigma(I) \right)$	0.0502	0.0564	0.0478	0.0494
wR2 (all data)	0.1416	0.1398	0.1212	0.1452
largest diff peak and hole, e ${ m \AA^{-3}}$	2.190/-1.385	0572/-0629	0.514/-0.340	0.350/-0.519

(vs), $\nu(C_{\alpha}N)$ 1625 (w sh), $\nu(acyl)$ 1599 (m) cm⁻¹. ¹H NMR (CDCl₃): δ 7.29 (s, 1 H, C_βH); 4.48 (s, 5 H, Cp); 3.71, 3.49 (s, 6 H, NMe); 2.25 (m, 2 H, C_γCH₂); 1.41 (m, 2 H, C_γCH₂CH₂); 1.31 (m, 2 H, C_γCH₂CH₂CH₂); 0.89 (t, ³J_{HH} = 7.32 Hz, CH₂CH₂-CH₂CH₃). ¹³C NMR (CDCl₃) δ 272.0 (C=O); 262.3 (C_α); 221.9 (CO); 177.1 (C_γ); 145.5 (C_β); 84.8 (Cp); 51.4, 42.8 (NMe); 30.3, 27.0, 22.6 (CH₂); 13.9 (CH₂CH₂CH₂CH₃).

The reaction of **1f** with NaH was performed by the same procedure described for the synthesis of **7a**.

Complexes **7b-d** were prepared by following the same procedure described for the synthesis of **7a**, by reacting NaH with **3d-f**, respectively. Crystals of **7b** suitable for X-ray analysis were obtained by a CH_2Cl_2 solution layered with *n*-pentane, at -20 °C.

7b. Yield: 73%. Color: orange. Anal. Calcd for $C_{20}H_{21}$ -FeNO₂: C, 66.13; H, 5.83; N, 3.86. Found: C, 66.29; H, 5.74; N, 3.90. IR (CH₂Cl₂): ν (CO) 1916 (vs), ν (C_{α}N) 1627 (m), ν (acyl) 1597 (s) cm⁻¹. ¹H NMR (CDCl₃): δ 7.27–7.16 (m, 3 H, Me₂C₆H₃); 6.54 (s, 1 H, C_{β}H); 4.62 (s, 5 H, Cp); 3.82 (s, 3 H, NMe); 2.19, 2.10 (s, 6 H, *Me*₂C₆H₃); 1.70 (s, 3 H, C_{γ}Me). ¹³C NMR (CDCl₃): δ 270.7 (C=O); 266.2 (C_{α}); 221.3 (CO); 173.2 (C_{γ}); 148.0 (C_{β}); 145.3 (ipso-Me₂C₆H₃); 132.6, 132.1, 129.2, 128.8, 128.6 (Me₂C₆H₃); 84.8 (Cp); 48.7 (NMe); 17.6, 17.4 (*Me*₂C₆H₃); 13.1 (C_{γ}*Me*). ESI-MS (ES⁺): *m*/*z* 363 [M⁺].

7c. Yield: 67%. Color: orange. Anal. Calcd for $C_{21}H_{21}$ -FeNO₄: C, 61.94; H, 5.20; N, 3.44. Found: C, 62.01; H, 5.17; N, 3.45. IR (CH₂Cl₂): ν (CO) 1935 (vs), 1724 (s), ν (C_aN) 1624 (m), ν (acyl) 1610 (ms) cm⁻¹. ¹H NMR (CDCl₃): δ 7.34–7.08 (m, 3 H, Me₂C₆H₃); 7.03 (s, 1 H, C_βH); 4.68 (s, 5 H, Cp); 3.83 (s, 3 H, NMe); 3.69 (s, 3 H, COOMe); 2.19, 2.11 (s, 6 H, Me_2 C₆H₃). ¹³C NMR (CDCl₃): δ 267.5 (C_a); 241.3 (C=O); 221.9 (CO); 164.2 (COOMe); 151.7 (C_β); 145.1 (ipso-Me₂C₆H₃); 132.3, 132.7, 129.5, 129.0, 128.7 (Me₂C₆H₃); 85.3 (Cp); 52.0 (COOMe); 49.6 (NMe); 17.6, 17.4 (Me_2 C₆H₃).

7d. Yield: 88%. Color: brown. Anal. Calcd for C₂₂H₂₅-FeNO₃: C, 61.94; H, 5.20; N, 3.44. Found: C, 62.00; H, 5.20; N, 3.32. IR (CH₂Cl₂): ν (CO) 1926 (vs), ν (C_αN) 1620 (m), ν (acyl) 1578 (ms) cm⁻¹. ¹H NMR (CDCl₃): δ 7.42, 6.47 (s, 1 H, C_β); 7.29–7.16 (m, 3 H, Me₂C₆H₃); 5.27, 5.13 (s, 1 H, OH); 4.64, 3.99 (s, 5 H, Cp); 3.81, 3.67 (s, 3 H, NMe); 2.39, 2.33, 2.19, 2.09 (s, 6 H, Me₂C₆H₃); 1.44, 1.43, 1.19, 1.18 (s, 6 H, CMe₂OH); E:Z ratio 2:1. ¹³C NMR (CDCl₃): δ 278.3, 276.8 (C=O); 265.7, 263.8 (C_α); 223.8, 220.8 (CO); 177.5, 174.8 (C_γ); 149.0, 144.9 (ipso-Me₂C₆H₃); 145.0, 143.5 (C_{β}); 133.6, 133.0, 132.2, 131.8, 129.2, 129.1, 129.0, 128.9, 128.7, 128.1 (Me₂C₆H₃); 85.4, 84.9 (Cp); 71.5, 71.1 (CMe₂OH); 49.0, 44.6 (NMe); 29.8, 29.6, 28.9, 28.4 (CMe₂OH); 18.3, 17.5, 17.2 (Me₂C₆H₃).

X-ray Crystallography. Crystal data and collection details for 4a·CH₂Cl₂, 4b, 5e, and 7b are reported in Table 5. The diffraction experiments were carried out on a Bruker SMART 2000 diffractometer equipped with a CCD detector using Mo Kα radiation. Data were corrected for Lorentz-polarization and absorption effects (empirical absorption correction SADABS).27 Structures were solved by direct methods and refined by full-matrix least squares based on all data using $F^{2,28}$ Hydrogen atoms were fixed at calculated positions and refined by a riding model. All non-hydrogen atoms were refined with anisotropic displacement parameters, unless otherwise stated. The crystals of 5e appeared to be racemically twinned with a refined Flack parameter of 0.50(3).29 Disorder was found for one Cp ligand in 4b and 5e, and the Xyl and the SiMe₃ groups in **5e** are disordered. Disordered atomic positions were split and refined isotropically using similar distances and similar U restraints and one occupancy parameter per disordered group.

Acknowledgment. We thank the Ministero dell'Università e della Ricerca Scientifica e Tecnologica (MIUR) (project: "New strategies for the control of reactions: interactions of molecular fragments with metallic sites in unconventional species") and the University of Bologna ("Funds for Selected Research Topics") for financial support.

Supporting Information Available: Crystallographic data for compounds **4a**·CH₂Cl₂, **4b**, **5e**, and **7b** as CIF files. This material is available free of charge via the Internet at http://pubs.acs.org.

OM050095J

 ⁽²⁷⁾ Sheldrick, G. M. SADABS, program for empirical absorption correction; University of Göttingen, Göttingen, Germany, 1996.
 (28) Sheldrick, G. M. SHELX97, program for crystal structure

 ⁽²⁹⁾ Fination, G. H. Simman, postant of crystal tactare determination; University of Göttingen, Göttingen, Germany, 1997.
 (29) Flack, H. D. Acta Crystallogr., Sect. A 1983, 39, 876.