Deprotonation of *µ***-Vinyliminium Ligands in Diiron Complexes: A Route for the Synthesis of Mono- and Polynuclear Species Containing Novel Multidentate Ligands**

Luigi Busetto, Fabio Marchetti, Stefano Zacchini, and Valerio Zanotti*

Dipartimento di Chimica Fisica e Inorganica, Universita` *di Bologna, Viale Risorgimento 4, 40136 Bologna, Italy*

Received February 10, 2005

The C_{*â*}-H hydrogen in the diiron vinyliminium complexes $[Fe_2{\mu \eta^1:\eta^3-C_\gamma(R')=C_\beta HC_\alpha=}$ $N(Me)(R)$ $\{\mu$ -CO $(CO)(Cp)$ ₂ $[SO_3CF_3]$ (R = Me, 1; R = Bz, 2 (Bz = CH₂Ph); R = Xyl, 3 (Xyl $(2.6-Me₂C₆H₃)$) is easily removed by sodium hydride; different products are consequently formed, depending on the nature of the substituents R and R'. Thus, deprotonation of $[Fe₂$ μ - η^{1} : η^{3} -C(R′)=CHC=N(Me)(R)}(*µ*-CO)(CO)(Cp)₂][SO₃CF₃] (R = Me, R′ = COOMe, **1a**; R = Me, $R' = Me$, **1b**; $R = Bz$, $R' = COOMe$, **2a**) yields the tetranuclear complexes $[Fe_2{\mu \eta^1:\eta^2-C(R')-}$ $CCN(Me)(R){\mu$ -CO $(CO)(Cp)_{2}]_{2}$ ($R = Me$, $R' = COOMe$, $4a$; $R = Me$, $R' = Me$, $4b$; $R = Bz$, $R' = \text{COOMe}$, **4c**). Conversely, treatment with NaH of the vinyliminium complexes $[Fe_2{\mu}$ - η^{1} : η^{3} -C(R′)=CHC=N(Me)(R)}(μ -CO)(CO)(Cp)₂][SO₃CF₃] (R = Me, R′ = SiMe₃, **1d**; R = Me, $R' = Tol$, **1e**; $R = Bz$, $R' = SiMe₃$, **2b**; $R = Bz$, $R' = Tol$, **2c** (Tol = 4-MeC₆H₄); $R = Xyl$, $R' =$ SiMe₃, **3a**; R = Xyl, R' = Tol, **3b**; R = Xyl, R' = Ph, **3c**) leads to the selective formation of the corresponding μ -aminocarbyne alkynyl complexes $[Fe₂{\mu$ -CN(Me)(R) $\{\mu$ -CO)(CO)(C=CR')- $(Cp)_2$] $(R = Me, R' = SiMe_3, 5a; R = Me, R' = Tol, 5b; R = Bz, R' = SiMe_3, 5c; R = Bz, R'$ $\mathbf{F} = \text{Tol}, \mathbf{5d}; \mathbf{R} = \text{Xyl}, \mathbf{R}' = \text{SiMe}_3, \mathbf{5e}; \mathbf{R} = \text{Xyl}, \mathbf{R}' = \text{Tol}, \mathbf{5f}; \mathbf{R} = \text{Xyl}, \mathbf{R}' = \text{Ph}, \mathbf{5g}$). Compounds **5c**,**d** react with methyl iodide to give the vinyliminium cations $[Fe_2{\mu \eta}^2 \cdot \eta^3 \cdot C(R') = C(\text{Me})C$ $N(Me)(Bz)\{(u-CO)(CO)(Cp)_2\}^+(R' = \text{SiMe}_3, \textbf{6a}; R' = \text{Tol}, \textbf{6b})$. Finally, the reactions of $[Fe_2\{\mu - \text{Co}_3\}^+(R' = \text{Si}_3\textbf{c}_3)]$ η^{1} : η^{3} -C(R′)=CHC=N(Me)(R)}(*µ*-CO)(CO)(Cp)₂][SO₃CF₃] (R = Me, R′ = Buⁿ, **1c**; R = Xyl, R′ $=$ Me, 3d; R = Xyl, R' = COOMe, 3e; R = Xyl, R' = CMe₂OH, 3f) with NaH afford the

1-metalla-2-aminocyclopenta-1,3-dien-5-one species [Fe(Cp)(CO){CN(Me)(R)CHC(R′)C(O)}] $(R = Me, R' = Bu^n, \mathbf{7a}; R = Xyl, R' = Me, \mathbf{7b}; R = Xyl, R' = COMe, \mathbf{7c}; R = Xyl, R' = GOMe$ CMe2OH, **7d**). The molecular structures of **4a**'CH**2Cl2**, **4b**, **5e**, and **7b** have been determined by X-ray diffraction studies.

Introduction

Insertions of alkynes into the metal-carbon bond of bridging alkylidene¹ and alkylidyne² dinuclear complexes provide a synthetic pathway to the C-C bond formation in dinuclear transition-metal complexes. The alkyne (R′CCR′′) insertion reaction, extended to the diiron μ -aminocarbynes $[Fe_2\{\mu\text{-CN}(Me)(R)\}\mu\text{-CO})(CO)$ - $(NCMe)(Cp)_2$ [SO₃CF₃] (R = Me, CH₂Ph (Bz), 2,6- $Me₂C₆H₃$ (Xyl)), provided access to the novel bridging

vinyliminium complexes $[Fe_2\{\mu - \eta^1 : \eta^3 - C(R') = C(R'')C =$ $N(Me)(R){\mu$ -CO $(CO)(Cp)_2$ [SO₃CF₃] (R = Me (1), Bz (2), Xyl (**3**)).3 Since the reactivity of vinyliminium ligands has been largely unexplored,⁴ we have started to investigate the reactions of **¹**-**³** with nucleophiles. In particular, we have found that $NaBH_4$ adds H^- at the μ -vinyliminium ligand to form neutral derivatives, whose nature depends on the steric hindrance of the iminium nitrogen substituents.⁵ Indeed, the sterically demanding Xyl group inhibits hydride attack at the iminium carbon and directs the addition to the C*^â* position, affording the bis-alkylidene complexes $[Fe₂$ μ *η*1:*η*2-C(R′)CH2CN(Me)(Xyl)}(*µ*-CO)(CO)(Cp)2]. In contrast, with the less hindered Me or $CH₂Ph$ substituent,

Organomet. Chem. **2005**, *690*, 837.

^{*} To whom correspondence should be addressed. E-mail: valerio.zanotti@unibo.it. Tel: +39/0512093700. Fax: +39/0512093690. (1) (a) Dyke, A. F.; Knox, S. A. R.; Naish, P. J.; Taylor, G. E. *J.*

Chem. Soc., Chem. Commun. **1980**, 803. (b) Sumner Jr., C. E.; Collier, J. A.; Pettit, R. *Organometallics* **1982**, *1*, 1350. (c) Colborn, R. E.; Dyke, A. F.; Knox, S. A. R.; Macpherson, K.; Orpen, A. G. *J. Organomet. Chem*. **1982**, *239*, C15. (d) Adams, P. Q.; Davies, D. L.; Dyke, A. F.; Knox, S. A. R.; Mead, K. A.; Woodward. P. *J. Chem. Soc., Chem. Commun. 1983, 222. (e) Colborn, R. E.; Davies, D. L.; Dyke, A. F.; Knox,*
S. A. R.; Mead, K. A.; Orpen, A. G.; Guerchais, J. E.; Roué, J. *J. Chem.
Soc., Dalton Trans. 1989, 1799. (f) Akita, M.; Hua, R.; Nakanishi, S.;* Tanaka, M.; Moro-oka, Y. *Organometallics* **1997**, *16*, 5572. (g) Rowsell, B. D.; McDonald, R.; Ferguson, M. J.; Cowie, M. *Organometallics* **2003**, *22*, 2944. (h) Kaneko, Y.; Suzuki, T.; Isobe, K.; Maitlis, P. M. *J. Organomet. Chem.* **1998**, *554*, 155.

⁽²⁾ Casey, C. P.; Woo, L. K.; Fagan, P. J.; Palermo, R. E.; Adams, B. R. *Organometallics* **1987**, *6*, 447.

⁽³⁾ Albano, V. G.; Busetto, L.; Marchetti, F.; Monari, M.; Zacchini, S.; Zanotti, V. *Organometallics* **2003,** *22*, 1326. (b) Albano, V. G.; Busetto, L.; Marchetti, F.; Monari, M.; Zacchini, S.; Zanotti, V. *J. Organomet. Chem*. **2004,** *689*, 528.

^{(4) (}a) Bernard, D. J.; Esteruelas, M. A.; Lopez, A. M.; Modrego, J.; Puerta, M. C.; Valerga, P. *Organometallics* **1999**, *18*, 4995. (b) Gamble, A. S.; White, P. S.; Templeton, J. L. *Organometallics* **1991**, *10*, 693. (5) (a) Albano, V. G.; Busetto, L.; Marchetti, F.; Monari, M.; Zacchini, S.; Zanotti, V. *Organometallics* **2004**, 23, 3348. (b) Albano, V. G., Busetto, L.; Marchetti, F.; Monari, M.; Zacchini, S.; Zanotti, V. J.

Chart 1. Vinyliminium Complexes Investigated in This Paper

the reaction with NaBH4 occurs selectively at the iminium carbon, yielding the vinylalkylidene complexes $[Fe_2\{\mu-\eta^1:\eta^3-C(R')=CHC(H)N(Me)_2\}(\mu-CO)(CO)(Cp)_2]$ - $[SO_3CF_3]$ (Scheme 1).

In addition to nucleophilic additions, the reactivity of the bridging vinyliminium ligand in **¹**-**³** could be further extended by the removal of the C_β -H proton. This possibility is suggested by the deprotonation of the vinyliminium ligand, described for the mononuclear $complex [Ru(Cp)\{C(=NEt_2)CH=CPh_2\}(CO)(PPrⁱ3)][BF_4],$ to form the aminoallenyl derivative $[Ru(Cp)\{C(NEt₂)\}$ $C=CPh_2$ }(CO)(PPrⁱ₃)].⁴a Moreover, the Fe-C_α interaction in the *u*-vinvliminium species 1–3 displays some tion in the μ -vinyliminium species $1-3$ displays some Fisher-type aminocarbene character,³ and adjacent ^C-H hydrogens, in Fisher carbenes, are known to be acidic.6

These considerations led us to determine to what extent C_β -H is susceptible to deprotonation, with the aim of exploring the opportunities that this would eventually offer. Here, we present the results of these investigations, which have been performed on a variety of vinyliminium complexes (Chart 1), to elucidate possible steric and electronic effects due to the nature of the substituents R and R′.

Results

Synthesis of Tetrairon Complexes. Compounds $[Fe₂{\mu-\eta¹:\eta³-C(R')=CHC=N(Me)(R)}{\mu-CO)(CO)(Cp)₂}.$

 $[SO_3CF_3]$ ($R = Me$, $R' = COOMe$, **1a**; $R = R' = Me$, **1b**; $R = Bz$, $R' = COOMe$, **2a**) react with NaH in THF solution, affording the novel tetrairon complexes $[Fe₂{\mu}$ - $\eta^1:\eta^2$ -C(R')CCN(Me)(R)}(μ -CO)(CO)(Cp)₂]₂ (R = Me, R' $=$ COOMe, **4a**; $R = R' = Me$, **4b**; $R = Bz$, $R' = COOMe$, **4c**) (Scheme 2).

Compounds **4a**-**^c** have been obtained in 60-70% yield, after purification by column chromatography on alumina, and characterized by IR and NMR spectra and ESI-MS analyses.

The structures of **4a**,**b** have been determined by X-ray diffraction: the ORTEP molecular diagrams are shown in Figures 1 and 2, whereas relevant bond lengths and angles are reported in Tables 1 and 2, respectively. Molecules $4a,b$ each have two $[Fe_2\{\mu-C(R')CCN(Me)_2\}$ - $(\mu\text{-CO})(CO)(Cp)_2$ (R' = CO₂Me, **4a**; R' = Me, **4b**) moieties, with the $Fe(1)-Fe(2)$ and $Fe(3)-Fe(4)$ axes nearly orthogonal $(Fe(1)-Fe(2)-Fe(3)-Fe(4)$ dihedral angles $-89.18(2)$ and $-84.07(4)$ °, respectively). Each

Figure 1. ORTEP drawing of $[Fe₂{\mu$ -C(COOMe)CCN- $(Me)_2$ $(\mu$ -CO $(CO)(Cp)_2$ ₂ (4a). All H atoms have been omitted for clarity. Thermal ellipsoids are at the 30% probability level.

^{(6) (}a) Fischer, H.; Kreissel, F. R.; Schubert, U.; Hoffman, P.; Dotz, K. H.; Weiss, K. In *Transition Metal Carbene Complexes*; VCH: Weinheim, Germany, 1983. (b) Kreiter, C. G. *Angew. Chem., Int. Ed. Engl.* **1968**, *7*, 390. (c) Casey, C. P.; Anderson, R. L. *J. Am. Chem. Soc.* **1974**, *96*, 1230. (d) Casey, C. P.; Brunsvold, W. R. *J. Organomet. Chem*. **1976**, *118*, 309. (e) Bernasconi, C. F. *Chem. Soc. Rev.* **1997**, *26*, 299. (f) Plantevin, V.; Wojcicki, A. *J. Organomet. Chem*. **2004,** *689*, 2000.

Figure 2. ORTEP drawing of $[Fe_2\{\mu$ -C(Me)CCN(Me)₂} $(\mu$ - $CO(CO)(Cp)_{2}]_{2}$ (4b), All H atoms have been omitted for clarity. Thermal ellipsoids are at the 30% probability level. Only the main image of the disordered Cp ligand bonded to Fe(1) is reported.

Table 1. Selected Bond Lengths (Å) and Angles (deg) for 4a

	(0.05) 101 10		
$Fe(1)-Fe(2)$	2.5251(8)	$Fe(3)-Fe(4)$	2.5299(9)
$Fe(1)-C(21)$	1.753(4)	$Fe(4)-C(23)$	1.746(4)
$Fe(1)-C(22)$	1.976(4)	$Fe(4)-C(24)$	1.975(4)
$Fe(2)-C(22)$	1.846(4)	$Fe(3)-C(24)$	1.859(4)
$Fe(1)-C(25)$	2.014(3)	$Fe(4)-C(32)$	1.990(3)
$Fe(2)-C(25)$	2.031(3)	$Fe(3)-C(32)$	1.999(3)
$Fe(2)-C(26)$	2.477(3)	$Fe(3)-C(33)$	2.506(3)
$Fe(2)-C(27)$	1.901(4)	$Fe(3)-C(34)$	1.889(3)
$C(21) - O(21)$	1.150(5)	$C(23) - O(23)$	1.155(5)
$C(22) - O(22)$	1.191(5)	$C(24)-O(24)$	1.184(4)
$C(25)-C(26)$	1.471(5)	$C(32) - C(33)$	1.493(5)
$C(26)-C(27)$	1.446(5)	$C(33)-C(34)$	1.448(5)
$N(1) - C(27)$	1.305(5)	$N(2) - C(34)$	1.325(5)
$N(1)-C(30)$	1.460(5)	$N(2) - C(37)$	1.454(5)
$N(1) - C(31)$	1.477(5)	$N(2) - C(38)$	1.467(5)
$C(25)-C(28)$	1.497(5)	$C(32) - C(35)$	1.499(5)
$C(28)-O(1)$	1.205(4)	$C(35)-O(3)$	1.211(4)
$C(28)-O(2)$	1.351(4)	$C(35)-O(4)$	1.353(4)
$C(29)-O(2)$	1.446(4)	$C(36)-O(4)$	1.440(4)
$C(26)-C(33)$	1.408(5)	O(1)C(35)	2.750(45)
$Fe(1)-C(25)-Fe(2)$	77.25(12)	$Fe(4)-C(32)-Fe(3)$	78.74(12)
$C(25)-C(26)-C(27)$	100.2(3)	$C(32) - C(33) - C(34)$	99.5(3)
$C(26)-C(27)-Fe(2)$	94.5(2)	$C(33)-C(34)-Fe(3)$	96.5(2)
$C(26)-C(27)-N(1)$	127.0(3)	$C(33)-C(34)-N(2)$	128.6(3)
$Fe(2)-C(27)-N(1)$	137.9(3)	$Fe(3)-C(34)-N(2)$	134.6(3)
$C(25)-C(26)-C(33)$	130.3(3)	$C(32)-C(33)-C(26)$	129.1(3)
$C(27) - C(26) - C(33)$	128.1(3)	$C(34)-C(33)-C(26)$	130.8(3)

moiety contains an $Fe₂(\mu$ -CO)(CO)(Cp)₂ core and a bridging μ -C(R')CCN(Me)₂ ligand. The former adopts a cis arrangement of the Cp ligands as in the parent compounds **1a**,**b**. The bridging ligand resembles the bisalkylidene present in $[Fe₂{\mu-C(CO₂Me)CH₂CN(Me)}$ $(Xyl)\{\mu\text{-CO}(CO)(Cp)_2\}$.^{5a} The iron atoms show a nearly pure σ interaction with the bridging carbon atoms in the two moieties $(Fe(1) - C(25) = 2.014(3)$ and 1.981(5) Å, $Fe(2)-C(25) = 2.031(3)$ and 2.001(5) Å, $Fe(4)-C(32)$

Table 2. Selected Bond Lengths (Å) and Angles (deg) for 4b

		$(\mathbf{u}\mathbf{e}\mathbf{g})$ for \mathbf{v}	
$Fe(1)-Fe(2)$	2.514(7)	$Fe(3)-Fe(4)$	2.5132(11)
$Fe(1)-C(21)$	1.716(7)	$Fe(4)-C(23)$	1.730(6)
$Fe(1)-C(22)$	1.964(6)	$Fe(4)-C(24)$	1.982(6)
$Fe(2)-C(22)$	1.847(6)	$Fe(3)-C(24)$	1.822(6)
$Fe(1)-C(25)$	1.981(5)	$Fe(4)-C(32)$	1.989(5)
$Fe(2)-C(25)$	2.001(5)	$Fe(3)-C(32)$	2.001(5)
$Fe(2)-C(26)$	2.456(5)	$Fe(3)-C(33)$	2.454(5)
$Fe(2)-C(27)$	1.886(5)	$Fe(3)-C(34)$	1.892(5)
$C(21) - O(21)$	1.164(7)	$C(23)-O(23)$	1.150(6)
$C(22) - O(22)$	1.188(7)	$C(24)-O(24)$	1.189(7)
$C(25)-C(26)$	1.473(7)	$C(32) - C(33)$	1.467(7)
$C(26)-C(27)$		$C(33)-C(34)$	
$N(1) - C(27)$	1.451(7)		1.435(7)
	1.313(7)	$N(2)-C(34)$	1.313(7)
$N(1) - C(30)$	1.466(7)	$N(2) - C(37)$	1.467(7)
$N(1) - C(31)$	1.462(7)	$N(2) - C(38)$	1.457(7)
$C(25)-C(28)$	1.525(7)	$C(32) - C(35)$	1.528(7)
$C(26)-C(33)$	1.425(7)		
$Fe(1)-C(25)-Fe(2)$	78.32(19)	$Fe(4)-C(32)-Fe(3)$	78.08(19)
$C(25)-C(26)-C(27)$	101.7(4)	$C(32) - C(33) - C(34)$	101.8(4)
$C(26)-C(27)-Fe(2)$	93.9(3)	$C(33)-C(34)-Fe(3)$	94.0(3)
$C(26)-C(27)-N(1)$	127.8(5)	$C(33)-C(34)-N(2)$	129.2(5)
$Fe(2)-C(27)-N(1)$	138.2(4)	$Fe(3)-C(34)-N(2)$	136.6(4)
$C(25)-C(26)-C(33)$		$C(32)-C(33)-C(26)$	
$C(27) - C(26) - C(33)$	125.3(5)	$C(34)-C(33)-C(26)$	124.1(4) 133.1(5)
	131.7(5)		
$= 1.990(3)$ and 1.989(5) Å, Fe(3)-C(32) = 1.999(3) and			
2.001(5) Å for $4a,b$, respectively), as expected for			
a bridging alkylidene. Conversely, the $Fe(2)-C(27)$			
$(1.901(4)$ and $1.886(5)$ Å) and Fe(3)–C(34) (1.889(3) and			
$1.892(5)$ Å) interactions as well as $N(1)$ –C(27) (1.305(5)			
and $1.313(7)$ Å) and N(2)–C(34) (1.325(5) and 1.313(7)			
A) show some double-bond character, typical for a			
terminal aminocarbene ligand. The two $[Fe_2\{\mu\text{-C(R')}\}$			
$CCN(Me)_2$ { $(\mu$ -CO)(CO)(Cp) ₂] units in 4a,b are joined by			
the $C(26) - C(33)$ interaction (1.408(5) and 1.425(7) Å),			
which shows some double-bond character. The C(26) and			
$C(33)$ atoms adopt an almost perfect sp ² hybridization			
(sum of angles $358.6(5)$ and $359.4(5)$ ° for 4a and $358.7(8)$			
and 359.0(8)° for 4b), and the C(25)-C(26)-C(27)-			
$C(32) - C(33) - C(34)$ unit is nearly planar (mean devia-			
tion from the $C(25)-C(26)-C(27)-C(32)-C(33)-C(34)$			
least-squares plane 0.1619 and 0.1878 Å, for $4a,b$,			
respectively). Relative to this plane, the CpFe(2) and			
$CpFe(3)$ fragments lay on opposite sides, to minimize			
steric repulsions. The sp^2 hybridization of $C(26)$ and			
$C(33)$ in the bridging bis-alkylidene ligands generates			
some important differences between these ligands and			
that present in $[Fe_2\{\mu$ -C(CO ₂ Me)CH ₂ CN(Me)(Xyl)}(μ -			
$CO(CO)(Cp)2$, where C_{β} has sp ³ hybridization. First,			
the Fe(2)–C(26) (2.477(3) and 2.456(5) Å) and Fe(3)–			
$C(33)$ (2.506(3) and 2.454(5) Å) distances in 4a,b are			
significantly shorter than the corresponding distance			
in $[Fe_2\{\mu$ -C(CO ₂ Me)CH ₂ CN(Me)(Xyl)}(μ -CO)(CO)(Cp) ₂]			
$(2.589(2)$ Å), suggesting some interactions between the			
metal and C_{β} in the former. This fact, together with			
steric repulsions between the two units, can account for			
the lengthening of the $C(26)-C(33)$ interaction com-			
pared to a pure double bond. Second, both $C(25)-C(26)$			
$(1.471(5)$ and $1.473(7)$ Å), $C(32)$ -C(33) $(1.493(5)$ and			
1.467(7) Å) and C(26)–C(27) (1.446(5) and 1.451(7) Å),			
$C(33)$ – $C(34)$ (1.448(5) and 1.435(7) Å) interactions are			
shorter than the corresponding interactions in $[Fe2{\mu}$ -			
$C(CO_2Me)CH_2CN(Me) (Xyl)\} (\mu-CO) (CO)(Cp)_2$ (1.535(3)			
and 1.489(3) Å, respectively), indicating also some			
delocalization in the $C(25)-C(26)-C(27)$ and $C(32)$ -			
$C(33)-C(34)$ systems and suggesting an allylidene			
contribution to the bonding. Finally, it is worth noting			

that the two moieties composing **4b** are completely identical, whereas they differ only in the orientation of the carboxylate groups in **4a**. In particular, the $C(35)$ - $O(3)$ - $O(4)$ - $C(36)$ group in **4a** is nearly coplanar with $O(3)-O(4)-C(36)$ group in **4a** is nearly coplanar with $F_{\text{P}}(4)-C(32)-C(33)$ ($F_{\text{P}}(4)-C(32)-C(35)-O(3)$ dihedral $Fe(4)-C(32)-C(33)$ (Fe(4)-C(32)-C(35)-O(3) dihedral angle $-15.3(5)$ °), whereas $C(28)-O(1)-O(2)-C(29)$ is almost orthogonal to the plane determined by $Fe(1)$ - $C(25)-C(26)$ (Fe(1)-C(25)-C(28)-O(1) dihedral angle 90.0(4)°). This orientation of the COOMe groups allows extra stabilization of the molecule via a weak interaction between $O(1)$ and $C(35)$ $(O(1)\cdots C(35) = 2.750(45)$ Å), which is significantly shorter than the sum of the van der Waals radii of carbon and oxygen (i.e. 3.15 Å).

The 1H NMR spectrum of **4a**, recorded at 233 K, shows a unique set of resonances for the two $Fe₂$ frames: thus, two Cp resonances are observed (at *δ* 4.84 and 4.35 ppm) and one signal is found for the COOMe groups (at δ 4.00 ppm). The main feature in the ¹³C NMR spectrum, recorded at 233 K, consists of the typical low-field resonance attributable to the aminocarbene carbons C_α (δ 247.3 ppm). At room temperature, the spectra show some broadening and a single resonance for the four Cp ligands, indicating the occurrence of an exchange process. The latter requires exchange between the aminocarbene ligand and the terminally bonded CO. Fluxionality within the $\rm{Cp_2Fe_2(CO)_2}$ frame is favored by the fact that both aminocarbene and CO can easily switch between bridging and terminal coordination positions. A related fluxional behavior has been observed in diiron aminocarbene complexes of the type $[Fe₂(\mu$ -CO)₂{CH(NR₂)}(CO)(C_p)₂}, in which exchange between terminally bonded aminocarbene and CO ligands resulted in the equivalence of the Cp ligands, on the NMR time scale.7 Compound **4c** behaves similarly to **4a** and shows fluxionality, whereas **4b** does not exhibit any exchange process at room temperature, suggesting that the fluxionality observed for **4a**,**c** is related to the presence of the COOMe groups.

The NMR spectra of **4c**, recorded at 233 K, indicate the presence of one isomer, although several isomeric forms are possible, due to the different orientations that the nonequivalent nitrogen substituents (Me and Bz) can assume, and because of the hindered rotation around the N-C(carbene) bond. The observed isomer is, presumably, the *Z,Z* form, in which steric repulsions between the benzyl groups are minimized (Chart 2).

Synthesis and Reactivity of *σ***-Coordinated Acetylide Diiron Complexes.** The reaction of **1d**,**e**, **2b**,**c**, and **3a**-**^c** with NaH results in formation of the *^σ*alkynyl complexes $[Fe_2\{\mu\text{-CN}(Me)(R)\}\{\mu\text{-CO})(CO)(C\equiv$ $CR'(Cp)_2$ ($R = Me$, $R' = SiMe_3$, **5a**; $R = Me$, $R' = Tol$, **5b**; $R = Bz$, $R' = SiMe₃$, **5c**; $R = Bz$, $R' = Tol$, **5d**; $R =$ $Xyl, R' = SiMe₃,$ **5e**; $R = Xyl, R' = Tol,$ **5f**; $R = Xyl, R'$ $=$ Ph, $5g$), in about 90% yield (Scheme 3). The molecular structure of $[Fe_2\{\mu\text{-CN}(Me)(Xyl)\}\{\mu\text{-CO})(CO)(C\equiv CSiMe_3)-$ (Cp)2] (**5e**) has been established by X-ray diffraction analysis (Figure 3 and Table 3).

The $Fe₂(\mu$ -CO $)(CO)(Cp)₂$ core in **5e** shows a cis arrangement of the Cp ligands, as in the parent compound **3a.** The $N(1) - C(13)$ interaction $(1.307(7)$ Å) falls within the range found previously for other aminocarbyne species,⁸ and it shows some significant double-bond character, also indicating the iminium nature of the bridging ligand. The Xyl group is on the side opposite to $C = CSiMe₃$, to minimize steric repulsions. A comparison of Fe(1)–C(12) (2.021(6) Å) and Fe(2)–C(12) (1.843-(7) Å) shows the remarkable asymmetry of *µ*-CO, and this is due to the different electronic properties of the terminal ligands present on $Fe(1)$ and $Fe(2)$. In particular, μ -CO shows a longer interaction with $Fe(1)$, which is bonded to an acidic terminal CO , whereas $Fe(2)$ is bonded to a stronger σ -donor such as $C = CSiMe₃$. The latter adopts an almost linear geometry, in agreement with the sp hybridizations of $C(23)$ and $C(24)$ (Fe(2)- $C(23)-C(24) = 177.2(5)$ ° and $C(23)-C(24)-Si(1) =$

⁽⁷⁾ Zanotti, V.; Bordoni, S.; Busetto, L.; Carlucci, L.; Palazzi, A.; Serra, R.; Albano, V. G.; Monari, M.; Prestopino, F.; Laschi, F.; Zanello, P. *Organometallics* **1995**, *14*, 5232.

^{(8) (}a) Boss, K.; Cox, M. G.; Dowling, C.; Manning, A. R. *J. Organomet. Chem*. **2000**, *612*, 18. (b) Albano, V. G.; Busetto, L.; Camiletti, C.; Castellari, C.; Monari, M.; Zanotti, V. *J. Chem. Soc., Dalton Trans.* **1997**, 4671. (c) Albano, V. G.; Busetto, L.; Camiletti, C.; Monari, M.; Zanotti, V. *J. Organomet. Chem.* **1998**, *563*, 153. (d) Albano, V. G.; Busetto, L.; Monari, M.; Zanotti, V. *J. Organomet. Chem.* **2000**, *606*, 163.

Figure 3. ORTEP drawing of the main image of $[Fe₂{\mu}$ - $CN(Me)(Xyl)\{\mu\text{-CO})(CO)(C\equiv CSiMe_3)(Cp)_2\}$ (5e). All H atoms have been omitted for clarity. Thermal ellipsoids are at the 30% probability level. Only the main images of the disordered groups are reported.

Table 3. Selected Bond Lengths (Å) and Angles (deg) for 5e

$Fe(1)-Fe(2)$	2.5069(13)	$C(11) - O(11)$	1.140(7)
$Fe(1)-C(11)$	1.757(6)	$C(12)-O(12)$	1.168(7)
$Fe(1)-C(12)$	2.021(6)	$N(1) - C(13)$	1.307(7)
$Fe(2)-C(12)$	1.843(7)	$N(1) - C(14)$	1.494(7)
$Fe(1)-C(13)$	1.875(5)	$N(1) - C(15)$	1.462(12)
$Fe(2)-C(13)$	1.824(5)	$C(23)-C(24)$	1.240(7)
$Fe(2)-C(23)$	1.889(5)	C(24)Si(1)	1.806(6)
$Fe(1)-C(13)-Fe(2)$	85.3(2)	$C(13)-N(1)-C(14)$	122.6(5)
$Fe(2)-C(23)-C(24)$	177.2(5)	$C(13)-N(1)-C(15)$	121.8(8)
$C(23)-C(24)-Si(1)$	173.7(5)	$C(14)-N(1)-C(15)$	115.1(8)

173.7(5)°). The Fe(2)-C(23) distance (1.889(5) Å) reveals some π interaction between the metal and the acetylide, and this causes a slight lengthening of the $C(23)-C(24)$ bond $(1.240(7)$ Å) compared to a pure C=C triple bond (e.g. 1.18 Å in HC=CH).⁹

Compounds **5c**-**^g** exist in solution as mixtures of two isomers, as usually found in complexes of the type $[Fe₂{\mu$ -CN(Me)(R)}(${\mu}$ -CO)(CO)(L)(Cp)₂] (L = C(O)R, $CH₂CN$, CN, Cl; $R = Xyl$, Bz).⁸ These isomers are due to the different orientations that the nonequivalent nitrogen substituents (Me and $CH₂Ph$, or Me and Xyl) can assume with respect to the μ -CN interaction, which exhibits partial double-bond character. A characteristic downfield 13C NMR resonance accounts for the presence of the aminocarbyne carbon (e.g. at *δ* 330.5 ppm for **5a**).

Finally, attempts to transform the *σ*-alkynyl species **5a**-**^g** into the parent vinyliminium compounds **¹**-**3**, or into new vinylidene ligands $(Fe₂{=C=CH(R')})$, by treatment with $HSO₃CF₃$ failed, resulting in extensive decomposition. Conversely, the reaction of $[Fe₂{\mu}$ - $CN(Me)(Bz)\{\mu\text{-}CO)(CO)(C\equiv CR')(Cp)_2\}$ (R' = SiMe₃, 5c; $R' = Tol$, **5d**) with an excess of methyl iodide in refluxing

THF, followed by exchange of I^- with $\mathrm{SO}_3\mathrm{CF}_3$ ⁻, yielded the vinyliminium complexes $[Fe_2\{\mu-\eta^1:\eta^3-C(R')=C(Me)C=$ $N(Me)(Bz)\{\mu\text{-CO})(CO)(Cp)_2[SO_3CF_3]$ ($R' = SIMe_3$, **6a**; $R' = Tol$, **6b**) (Scheme 4).

Complex **6a** has been previously obtained by insertion of $MeC \equiv CSiMe₃$ into the Fe-aminocarbyne bond of $[Fe₂{\mu$ -CN(Me)(Bz)}(μ -CO)(NCMe)(Cp)₂][SO₃CF₃].^{5b} The spectroscopic properties of **6b** are those expected for a bridging vinyliminium diiron complex.3

Synthesis of 1-Metalla-2-aminocyclopenta-1,3 dien-5-one Complexes. The vinyliminium complexes **1c** and **3d**-**^f** react with NaH to give the corresponding 1-metalla-2-aminocyclopenta-1,3-dien-5-one complexes **7a**-**d**, in about 70-80% yield (Scheme 5).

Complexes **7a**-**^d** have been purified by chromatography and fully characterized by spectroscopy and elemental analysis. Moreover, the X-ray structure of

[Fe(Cp)(CO){CN(Me)(Xyl)CHC(Me)C(O)}] (**7b)** has been determined: the ORTEP molecular diagram is shown in Figure 4, and relevant bond lengths and angles are reported in Table 4. The five atoms constituting the 1-metalla-2-aminocyclopenta-1,3-dien-5-one ring are essentially coplanar (mean deviation from the $Fe(1)$ - $C(7)-C(8)-C(9)-C(10)$ least-squares plane 0.0116 Å). The Fe(1)–C(7) (1.940(3) Å) and Fe(1)–C(10) (1.910(3) Å) interactions are typical for a metal-acyl and a metal-aminocarbene; the latter shows a strong *^π* backbonding, whereas the former is mainly a *σ* interaction. Accordingly, the $C(7)-O(2)$ interaction $(1.216(3)$ Å) is an almost pure double bond, and also the aminocarbene $C(10)-N(1)$ interaction $(1.328(3)$ Å) shows a partial double-bond character. The C-C interactions present an alternating behavior; thus, $C(8) - C(9)$ (1.332(4) Å) is an almost pure double bond, whereas $C(7)-C(8)$ $(1.508(4)$ Å) and $C(9)$ – $C(10)$ $(1.467(4)$ Å) are essentially single bonds.

In the 13C NMR spectra of **7a**-**d**, typical low-field resonances have been found for the acyl carbon (e.g. at *δ* 270.7 ppm for **7b**) and for the animocarbene carbon (e.g. at *δ* 270.7 ppm for **7b**) and for the aminocarbene carbon (e.g. at *δ* 270.7 ppm for **7b**) and for the aminocarbene carbon

Carbon Triple Bond; Wiley: New York, 1978.

Figure 4. ORTEP drawing of $[Fe(Cp)(CO)\{CN(Me)(Xyl)-$

CHC(Me)C(O)}] (**7b**). All H atoms, except H(9), have been omitted for clarity. Thermal ellipsoids are at the 30% probability level.

Table 4. Selected Bond Lengths (Å) and Angles (deg) for 7b

(0.05) 101 10				
$Fe(1)-C(6)$	1.727(3)	$C(9)-C(10)$	1.467(4)	
$Fe(1)-C(7)$	1.940(3)	$C(7)-O(2)$	1.216(3)	
$Fe(1)-C(10)$	1.910(3)	$C(8)-C(11)$	1.501(4)	
$C(6)-O(1)$	1.138(4)	$C(10)-N(1)$	1.328(3)	
$C(7)-C(8)$	1.508(4)	$N(1) - C(12)$	1.471(3)	
$C(8)-C(9)$	1.332(4)	$N(1) - C(13)$	1.441(3)	
$C(10)-Fe(1)-C(7)$	82.92(12)	$C(8)-C(9)-C(10)$	115.0(3)	
$Fe(1)-C(7)-C(8)$	113.4(2)	$C(9)-C(10)-Fe(1)$	115.27(19)	
$C(7)-C(8)-C(9)$	113.3(3)			

Chart 3. *E/Z* **Isomers for Complex 7d**

 C_{α} (e.g. at 266.2 ppm for **7b**). NOE investigations have outlined that the nitrogen substituents of both **7b** and **7c** adopt in solution the *E* arrangement, in agreement with what is observed in the solid state. Conversely, complex **7d** exists in solution as mixture of two isomeric forms, which have been identified as *E* and *Z*, with a prevalence of the former (Chart 3).

Examples of 1-metallacyclopent-3-ene-2,5-dione10 and 1-metallacyclopent-3-en-2-one complexes¹¹ have been reported in the literature. Interestingly, complex **7b** represents, to our knowledge, the first 1-metallacyclopenta-1,3-dien-5-one ring structurally characterized.

The formation of **7a**-**^d** is the result of an intramolecular rearrangement, which requires coupling of the vinyliminium with a CO ligand and fragmentation of the diiron assembly. It should be remarked that the diiron frame $Fe₂Co₂(\mu$ -CO) is usually very robust and is unaffected even by strong rearrangements, occurring

on the coordinated ligands. Fragmentation has been observed only in a few cases, which include the reaction of $[M_2{\mu\text{-CN}(Me)(R)}(\mu\text{-CO})(CO)_2(Cp)_2][SO_3CF_3]$ $(M = Fe, Ru)$ with KH and acetonitrile, to form a metallapyrrole ring,¹² and acetylide addition at coordinated nitrile in $[Fe_2\{\mu\text{-CN}(Me)(R)\}\mu\text{-CO})(CO)(p NCC_6H_4R$ ['] $(Cp)_2$ ⁺, yielding a five-membered metallacycle (1-metalla-2-amino-3-aza-5-alkylidenecyclopenta-1,3-diene).13

Discussion

Reactions of the vinyliminium complexes with NaH selectively form three different types of products, resulting from dimerization of the dinuclear compounds (**4a^c**), fragmentation (**7a**-**d**), or alkyne deinsertion (**5ag**). Since C_β -H proton abstraction is presumably the initial step in all of these reactions, the different outcomes could be related to the nature of the deprotonated intermediates (Chart 4). The simple proton abstraction would leave a zwitterionic intermediate (Chart 4, I), bearing a negative charge on the C_β and a positive charge placed on the iminium moiety. However, proton removal, generating an highly unsaturated organic fragment, can be accompanied by changes in the coordination mode: the bridging ligand might assume a bis-alkylidene coordination mode (II), in which the C*â*, no longer coordinated to the metals, displays a "carbene character". Other rearrangements are also possible, leading to a bridging alkynylaminocarbene (III),¹⁴ or a coordinated allene-1,3-diyl (IV).15

The formation of the tetranuclear complexes **4a**-**^c** (Scheme 2) is well explained by the dimerization of type II intermediates (Chart 4). Similar dimerizations have been reported for the deprotonated forms of some alkoxy- and aminocarbene complexes, which undergo oxidative coupling to give bridging bis-carbene complexes in an overall sequence described as "dehydrodimerization".16 The formation of **4a**-**^c** is presumably related to the smallness of both R and R′ substituents, which do not oppose steric hindrance to the dimerization. In agreement with this, the complexes

^{(10) (}a) Elarraoui, A.; Ros, J.; Yáñez, R.; Solans, X.; Font-Bardia, M. *J. Organomet. Chem.* **2002**, *642*, 107. (b) Mao, T.; Zhang, Z.; Washington, J.; Takats, J.; Jordan, R. B. *Organometallics* **1999**, *18*, 2331.

^{(11) (}a) Kayan, A.; Gallucci, J. C.; Wojcicki, A. *J. Organomet. Chem*. **2001**, *630*, 44. (b) Huffman, M. A.; Liebeskind, L. S. *Organometallics* **1992**, *11*, 255.

⁽¹²⁾ Busetto, L.; Camiletti, C.; Zanotti, V.; Albano, V. G.; Sabatino, P. *J. Organomet. Chem*. **2000**, *593*, 335.

⁽¹³⁾ Busetto, L.; Marchetti, F.; Zacchini, S.; Zanotti, V.; Zoli, E. *J. Organomet. Chem.*, in press. (14) Davis, J. H.; Lukehart, C. M.; Sacksteder, L. *Organometallics*

¹⁹⁸⁷, *6*, 50.

^{(15) (}a) Clarke, L. P.; Davies, J. E.; Raithby, P. R.; Shields, G. P.
Dalton 2000, 4527. (b) Akita, M.; Chung, M. C.; Terada, M.; Miyauti, M.; Tanaka, M.; Moro-oka, Y. J. Organomet. Chem. 1998, 565, 49.
M.; Tanaka, M.; Mo

metallics **1994**, *13*, 4676. (b) Rabier, A.; Lugan, N.; Mathieu, R. *J.*

Organomet. Chem. **²⁰⁰¹**, *⁶¹⁷*-*618*, 681. (c) Lattuada, L.; Licandro, E.; Maiorana, S.; Molinari, H.; Papagni, A. *Organometallics* **1991**, *10*, 807.

 $[Fe₂{\mu-\eta^1:\eta^3-C(R')=CHC=N(Me)(Xyl)}{\mu-CO(CO)(Cp)_2}$ $[SO_3CF_3]$ $(R' = Me, 3d; R' = COOMe, 3e)$, which differ from **1a**,**b** for the presence of the more hindered Xyl substituent, do not dimerize upon treatment with NaH.

The deinsertion of the acetylide unit (Scheme 5), which represents a different type of reaction path, consequent to C_β -H proton abstraction, should be better explained by the formation of an aminoalkylidene intermediate of type III (Chart 4).

Since the vinyliminium complexes have been obtained by alkyne insertion into Fe-aminocarbyne, the sequence shown in Scheme 3 can be considered the corresponding reverse reaction, although the acetylide fragment remains *σ* coordinated to an Fe atom.

It is not obvious why deinsertion is observed for the reactions of **1d**,**e**, **2b**,**c**, and **3a**-**c**, rather than dimerization or fragmentation. This behavior is related to the nature of the substituent at C_{γ} , since the sterically demanding SiMe₃ and aryl substituents are thought to prevent the dimerization. Moreover, (trimethylsilyl) and arylacetylides are among the most stable *σ*-alkynyl ligands, and this may also favor the formation of **5ag**.

Interestingly, the deinsertion reaction affords *σ*alkynyl complexes, which are not otherwise available. Attempts to generate the alkynyl complexes **5** by simple replacement of the labile nitrile ligand in $[Fe₂$ μ - $CN(Me)(R)\{\mu\text{-}CO)(CO)(NCR')(Cp)_2][SO_3CF_3](R'=Me,$ aryl) with $LiC=CR''$ have been unsuccessful. In fact, acetylides cause the deprotonation of the coordinated acetonitrile and subsequent rearrangement to cyanomethyl.17 Even when the nitriles do not contain acidic protons (e.g. NCCMe3, arylnitriles) the reactions with acetylides proceed via nucleophilic addition at the nitrile ligands, instead of producing its replacement.^{13,18}

Complexes **5a**-**^g** are interesting compounds for several reasons. They contain a *σ*-coordinated alkynyl ligand,19 whereas, in binuclear complexes, alkynyl ligands are more commonly found in bridging positions.20 Moreover, metal-alkynyl complexes represent an area of growing interest 21 for potential applications in nonlinear optics, 22 as luminescent materials, 23 and as molecular devices. 24

The third type of rearrangement observed, as a consequence of the treatment with NaH, consists of the fragmentation of the dinuclear precursor with formation of the metallacyclic complexes **7a**-**d.** Again, steric and

electronic factors related to the nature of the substituents R and R′ in the parent complexes **1c** and **3d**-**^f** seem to produce the observed fragmentation rather than dimerization or deinsertion. The process is presumably initiated by removal of the acidic C_β -H. However, since the stoichiometry of the reaction requires loss of $[CpFe]^+$ rather than H^+ , we cannot exclude the possibility that the initial step consists of one-electron reduction. To investigate this point, compounds **1c** and **3d**-**^f** have been treated with different bases, including NEt₃, sodium naphthalenide (NaNaph), and KOH, under conditions similar to those used in the reactions with NaH. Investigations were not conclusive, because both NaNaph and KOH reacted, leading to the formation of the corresponding metallacyclopentenone complexes **7** in lower, but still comparable, yields with respect to those obtained with NaH, whereas NEt3 failed to produce any transformation.

Moreover, the reaction with NaH has been carried out on the C_β-deuterated vinyliminium complex $[Fe_2{\mu-\eta^1}$: *η*³-C(Buⁿ)=C(D)C=N(Me)₂}(*µ*-CO)(CO)(Cp)₂][SO₃CF₃] (**1f**). The reaction affords the metallacyclic ring **7a**, with loss of deuterium at C_β (Scheme 6).

This result is in agreement with the hypothesis that removal of the C_β -H proton in the vinyliminium complexes **1c** is the initial step of the process; however, it is not conclusive evidence, because the C_β -H in **7a** is expected to be acidic as well, and deuterium-hydrogen exchange could take place on the metallacycle **7**, during the workup.

Conclusions

The C_β –H hydrogen in the vinyliminium complexes $[Fe_2\{\mu-\eta^1:\eta^3-C_\gamma(R')=C_\beta HC_\alpha=N(Me)(R)\}\{\mu-CO)(CO)(Cp)_2\}$ - $[SO_3CF_3]$ $(1-3)$ is efficiently removed by NaH. The resulting neutral species are not stable and rapidly evolve to give tetra-, di-, or mononuclear complexes, depending on the properties of the substituents R and R′ on the ligand. The formation of tetrairon species is limited to $R = Me$, CH₂Ph and to the presence of relatively small R′ groups (COOMe, Me) at C*γ*. When the steric demand of R and/or R′ increases, the Fe-Fe bond can be broken, resulting in mononuclear 1-metalla-2-aminocyclopenta-1,3-dien-5-one compounds. Finally, in the presence of substituents $R' = SIMe₃$, Ph, Tol, which can generate stable σ -alkynyl ligands ($-C\equiv CR'$), the reaction provides cleavage of the $C_{\alpha}-C_{\beta}$ bond, independent of the nature of R, affording diiron aminocarbyne complexes having a terminal alkynyl ligand. These reactions are very selective and do not form mixtures of products.

The results reported here, compared with previous findings on the reactions with NaBH4, ⁵ evidence that

⁽¹⁷⁾ Albano, V. G.; Busetto, L.; Marchetti, F.; Monari, M.; Zanotti, V. *J. Organomet. Chem*. **2002,** *649*, 64.

⁽¹⁸⁾ Albano, V. G.; Bordoni, S.; Busetto, L.; Marchetti, F.; Monari, M.; Zanotti, V. *J. Organomet. Chem*. **2003,** *684*, 37.

⁽¹⁹⁾ Hurst, S. K.; Ren, T. *J. Organomet. Chem*. **2003**, *670*, 188. (20) (a) Lang, H.; George, D. S. A.; Rheinwald, G. *Coord. Chem. Rev*. **2000**, 206–207, 101. (b) Nast, R. Coord. Chem. Rev. **1982**, 47, 89. (c)
Cherkas, A. A.; Randall, L. H.; Taylor, N. J.; Mott, G. N.; Yule, J. E.;
Guinamant, J. L.; Carty, A. J. Organometallics **1990**, 9, 1677. (d) Darren, S. A.; McDonald, R.; Cowie, M. *Organometallics* **1998**, *17*, 2553. (e) Hogarth, G.; Redmond, S. P. *J. Organomet Chem*. **1997**, 534, 221. (f) Smith, W. F.; Yule, J.; Taylor, N. J.; Paik, H. N.; Carty, A. J. *Inorg. Chem.* **1977**, *16*, 1593.

⁽²¹⁾ Long, N. J.; Williams, C. K.; *Angew. Chem., Int. Ed.* **2003**, *42*, 2586.

^{(22) (}a) Whittall, I. R.; McDonagh, A. M.; Humphrey, M. G.; Samoc, M. *Adv. Organomet. Chem*. **1998**, *42*, 291. (b) Whittall, I. R.; McDonagh, A. M.; Humphrey, M. G.; Samoc, M. *Adv. Organomet. Chem*. **1999**,

⁴³, 349.

⁽²³⁾ Yam V. W. W. *Acc. Chem. Res.* **2002**, *35*, 555.

^{(24) (}a) Ziessel, R.; Hissler, M.; El-Ghayoury, A.; Harriman, A. *Coord. Chem. Rev.* **1998,** 180, 1251. (b) Paul, F.; Lapinte, C. *Coord. Chem. Rev.* **¹⁹⁹⁸**, *¹⁷⁸*-*180*, 431.

the reaction products strongly depend on the nature of the hydride reagent: NaH acts exclusively as a base, whereas the nucleophile $NaBH_4$ provides H^- addition.

Moreover, these results indicate that the bridging vinyliminium ligand can generate new and reactive organic fragments, which are stabilized through coordination to the metal centers, yielding a variety of new and interesting mono- and polymetallic species. Exploitation of the acidic character of C_{β} -H in μ -vinyliminium ligands, for generating new C-C and C-heteroatom bonds, is currently under investigation and will be the matter of future reports.

Experimental Section

General Data. All reactions were routinely carried out under a nitrogen atmosphere, using standard Schlenk techniques. Unless otherwise stated, solvents were distilled immediately before use under nitrogen from appropriate drying agents. Chromatography separations were carried out on columns of deactivated alumina (4% w/w water). Glassware was oven-dried before use. Infrared spectra were recorded on a Perkin-Elmer Spectrum 2000 FT-IR spectrophotometer, and elemental analyses were performed on a ThermoQuest Flash 1112 Series EA instrument. ESI MS spectra were recorded on a Waters Micromass ZQ 4000 with samples dissolved in CH3CN. All NMR measurements were performed on Varian Gemini 300 and Mercury Plus 400 instruments. The chemical shifts for 1H and 13C were referenced to internal TMS. The spectra were fully assigned via DEPT experiments and ¹H, ¹³C correlations measured using gs-HSQC and gs-HMBC experiments.25 Unless otherwise specified, NMR spectra were recorded at 298 K; NMR signals due to a second isomeric form (where it has been possible to detect and/or resolve them) are italicized. NOE measurements were recorded using the DPFGSE-NOE sequence.26 All the reagents were commercial products (Aldrich) of the highest purity available and were used as received. $[Fe₂(CO)₄(Cp)₂]$ was purchased from Strem and used as received. The compounds $[Fe₂{\mu}-CN(Me)(R)](\mu-$ CO)(CO)(NCMe)(Cp)₂][SO₃CF₃]^{8d} (R = Me, Xyl) and [Fe₂{ μ - η ¹: $η$ ³-C(R′)=CHC=N(Me)(R)}(*µ*-CO)(CO)(Cp)₂][SO₃CF₃] (**1a**,**b**,**d**,**e**; **2a**-**c**; **3a**-**e**) were prepared as described in the literature.3

Synthesis of $[Fe_2\{\mu-\eta^1:\eta^3-C_\nu(Bu^n)=C_\beta HC_\alpha=N(Me)_2\}$ **CO**)(**CO**)(**Cp**)₂][SO₃**CF**₃] (1c) and [Fe₂{*µ*- η ¹: η ³·C_{*γ*}(Buⁿ)= $C_{\beta}DC_{\alpha}$ =N(Me)₂}(μ -CO)(CO)(Cp)₂][SO₃CF₃] (1f). HC=CBuⁿ $(0.068 \text{ mL}, 0.59 \text{ mmol})$ was added to a solution of $[Fe_2\{\mu-$ CN(Me)2}(*µ*-CO)(CO)(NCMe)(Cp)2][SO3CF3] (250 mg, 0.471 mmol), in THF (20 mL). The mixture was stirred at boiling temperature for 60 min, and then the solvent was removed under reduced pressure and the residue chromatographed on an alumina column. Elution with MeOH afforded a green band, which was collected and evaporated to dryness. Crystallization from a CH_2Cl_2 solution, layered with diethyl ether, gave crystals of **1c**. Yield: 248 mg, 90%. Anal. Calcd for $C_{22}H_{26}F_3Fe_2NO_5S$: C, 45.15; H, 4.48; N, 2.39. Found: C, 44.99; H, 4.52; N, 2.29. IR (CH₂Cl₂): ν (CO) 1990 (vs), 1805 (s), ν (C_aN) 1682 (m) cm⁻¹. ¹H NMR (CDCl₃): δ 5.16, 4.99 (s, 10 H, Cp); 4.52 (s, 1 H, C*â*H); 4.14, 3.74 (m, 2 H, C*γ*C*H*2); 3.83, 3.25 (s, 6 H, NMe); 2.05, 1.86 (m, 2 H, C_{*γ*}CH₂CH₂); 1.67 (m, 2 H, C_{*γ*}CH₂-CH₂CH₂); 1.10 (t, 3 H, ³J_{HH} = 7.32 Hz, C_{*γ*}CH₂CH₂CH₂CH₂). ¹³C NMR (CDCl₃): *δ* 257.0 (μ -CO); 225.6 (C_α); 212.8 (C_{*γ}*); 209.6</sub> (CO); 89.6, 87.3 (Cp); 54.7 (C*γ*CH2); 51.3 (C*â*); 50.9, 44.7 (NMe); 37.7 (C_γCH₂CH₂); 22.8 (C_γCH₂CH₂CH₂); 14.1 (C_γCH₂CH₂- $CH₂CH₃$).

Complex $[Fe_2\{\mu-\eta^1:\eta^3-C_\gamma(Bu^n)=C_\beta DC_\alpha=N(Me)_2\}(\mu-CO)(CO)$ - $(Cp)_2$ [SO₃CF₃] (**1f**) was synthesized by the same procedure

described for **1c**, by reacting $[Fe_2\{\mu\text{-CN}(Me)_2\}(\mu\text{-CO})(CO)$ - $(NCMe)(Cp)_2][SO_3CF_3]$ with $DC=CBu^n$. The latter was prepared treating HC=CBuⁿ, in THF solution at -40 °C, with an equimolar amount of BunLi, followed by treatment with D₂O. Yield: 88%. Color: green. Anal. Calcd for $C_{22}H_{27}F_3Fe_2$ -NO5S: C, 45.08; H, 4.64; N, 2.39. Found: C, 45.11; H, 4.61; N, 2.35. IR (CH₂Cl₂): *ν*(CO) 1990 (vs), 1805 (s), *ν*(C_αN) 1682 (m) cm-1. 1H NMR (CDCl3): *δ* 5.23, 5.07 (s, 10 H, Cp); 4.18, 3.75 (m, 2 H, C*γ*C*H*2); 3.87, 3.29 (s, 6 H, NMe); 2.05, 1.87 (m, 2 H, C_γCH₂CH₂); 1.69 (m, 2 H, C_γCH₂CH₂CH₂); 1.11 (t, 3 H, ${}^{3}J_{\text{HH}} = 7.32 \text{ Hz}, \text{ C}_{\gamma} \text{CH}_{2} \text{CH}_{2} \text{CH}_{2} \text{CH}_{3}$).

Synthesis of [Fe₂{*µ***_{-**} η ^{*2*}**·** C_{γ} (**CMe₂OH)**=**C**_{*å*}**HC**_{*a*}=**N**(**Me**)• $(Xyl)\{(u\text{-}CO)(CO)(Cp)_2\}$ $[SO_3CF_3]$ (3f). A solution of the complex $[Fe_2\{\mu\text{-CN}(Me)(Xyl)\}\{\mu\text{-CO})(CO)(NCMe)(Cp)_2][SO_3 CF₃$] (210 mg, 0.331 mmol), in $CH₂Cl₂$, was treated with $HC \equiv$ CC(Me)2OH (0.041 mL, 0.42 mmol). The mixture was stirred at boiling temperature for 4 h and then filtered on a Celite pad. Removal of the solvent gave a residue that was washed with diethyl ether $(2 \times 20 \text{ mL})$. Crystallization from a CH_2Cl_2 solution, layered with diethyl ether, afforded brown crystals of **3f**. Yield: 191 mg, 85%. Anal. Calcd for $C_{28}H_{30}F_3Fe_2NO_6S$: C, 49.65; H, 4.46; N, 2.07. Found: C, 49.82; H, 4.38; N, 2.13. IR (CH2Cl2): *^ν*(CO) 1998 (vs), 1806 (s), *^ν*(CRN) 1632 (m) cm-1. 1H NMR (CDCl3): *^δ* 8.07-6.73 (m, 3 H, Me2C6*H*3); 5.44, *5.29*, 5.22, *4.68* (s, 10 H, Cp); 4.95 (s, 1 H, C*â*H); 4.15 (s, 3 H, NMe); 2.40, 2.20, 1.92, 1.73 (s, 6 H, Me ₂C₆H₃); 1.51 (s, 6 H, CMe₂OH); *E*:*Z* ratio 5:1. ¹³C NMR (CDCl₃): δ 255.6 (μ -CO); 231.1 (C_α); 210.3 (CO); 209.6 (C_γ); 144.5 (ipso-Me₂C₆H₃); 139.7, 136.6, 132.9, 131.0, 129.3 (Me2*C*6H3); 90.8, *89.5*, *88.3*, 87.0 (Cp); 70.0 (*C*Me2OH); 48.7 (C*â*); 45.8 (NMe); 32.0, 31.4 (C*Me*2OH); 17.6, 17.0 Me ₂C₆H₃).

Synthesis of [Fe₂{*u***-***n***¹:***n***²C_{***′***}</sub>(R')C_{***β***}C_{***a***}N**(Me)(R)}(*u*-CO)- $(CO)(Cp)_{2}]_{2}$ ($R = Me, R' = COOMe, 4a; R = Me, R' = Me,$ **4b;** $R = CH_2Ph$, $R' = COOMe$, **4c**). Compound **1a** (148 mg, 0.252 mmol), in THF solution (10 mL), was treated with NaH (35 mg, 1.46 mmol). The mixture was stirred for 20 min and then filtered on an alumina pad. Removal of the solvent and chromatography of the residue on an alumina column, with a mixture of $\mathrm{CH_2Cl_2}$ and THF (4:1) as eluent, afforded a dark gray band, which was collected. Crystallization at -20 °C from CH_2Cl_2 solution layered with petroleum ether (bp 40-60°C) gave crystals of **4a**. Yield: 66 mg, 60%. Anal. Calcd for C₃₈H₃₈-Fe4N2O8: C, 52.22; H, 4.38; N, 3.20. Found: C, 52.26; H, 4.41; N, 3.20. IR (CH2Cl2): *ν*(CO) 1939 (s), 1751 (vs), 1741 (vs), 1688 (w), 1659 (w), $\nu(C_{\alpha}N)$ 1568 (w), 1541 (w) cm⁻¹. ¹H NMR (CDCl₃, 233 K): δ 4.84, 4.35 (s, 20 H, Cp); 4.00 (s, 6 H, CO₂Me); 3.32, 2.26 (s, 12 H, NMe). 13C NMR (CDCl3, 233K): *δ* 278.4 (*µ*-CO); 247.3 (C_α); 216.0 (CO); 181.8 (CO₂Me); 151.4 (C_γ); 87.4, 87.3 (Cp); 71.6 (C*â*); 51.5 (CO2*Me*); 47.1, 43.1 (NMe). ESI-MS (ES⁺): m/z 874 [M⁺, 11%], 437 [M/2⁺, 100%], 409 [M/2⁺ – CO, 68%].

Complexes **4b**,**c** were prepared by following the same procedure described for the synthesis of **4a,** by reacting NaH with **1b** and **2a**, respectively. Crystals of **4b** suitable for X-ray analysis were collected by a dichloromethane solution layered with *n*-pentane, at -20 °C.

4b. Yield: 70%. Color: blue-grey. Anal. Calcd for C₃₆H₃₈-Fe4N2O4: C, 55.01; H, 4.87; N, 3.56. Found: C, 55.07; H, 4.92; N, 3.63. IR (CH2Cl2): *ν*(CO) 1921 (s), 1740 (s-sh), 1728 (vs), $ν(C_{\alpha}N)$ 1603 (w), 1558 (wm) cm⁻¹. ¹H NMR (CDCl₃): δ 4.84, 4.48 (s, 20 H, Cp); 3.71, 3.48 (s, 12 H, NMe); 1.85 (s, 6 H, C*γ*Me). ¹³C NMR (CDCl₃): δ 272.0 (μ-CO); 262.4 (C_α); 221.9 (CO); 172.6 (C*γ*); 86.8, 84.7 (Cp); 79.2 (C*â*); 51.4, 42.8 (NMe); 13.2 (C*γMe*).

4c. Yield: 68%. Color: dark gray. Anal. Calcd for $C_{50}H_{46}$ -Fe4N2O8: C, 58.52; H, 4.52; N, 2.73. Found: C, 58.43; H, 4.60; N, 2.77. IR (CH2Cl2): *ν*(CO) 1939 (s), 1752 (vs), 1742 (vs), 1687 (w), 1659 (w), $\nu(C_{\alpha}N)$ 1568 (w), 1537 (w) cm⁻¹. ¹H NMR (CDCl₃, 233 K): *^δ* 7.45-6.91 (m, 10 H, Ph); 4.87, 4.40 (s, 20 H, Cp); 4.81, 4.52 (d, 4 H, $^{2}J_{\text{HH}} = 13.7 \text{ Hz}$, CH₂Ph); 4.03 (s, 6 H, CO2Me); 2.07 (s, 6 H, NMe). 13C NMR (CDCl3, 233 K): *δ* 278.6 (*μ*-CO); 246.8 (C_α); 216.1 (CO); 181.7 (CO₂Me); 151.4 (C_γ);

⁽²⁵⁾ Wilker, W.; Leibfritz, D.; Kerssebaum, R.; Beimel, W. *Magn. Reson. Chem.* 1993, *31*, 287.

⁽²⁶⁾ Stott, K.; Stonehouse, J.; Keeler, J.; Hwang, T. L.; Shaka, A. J. *J. Am. Chem. Soc.* **1995**, *117*, 4199.

135.2-127.8 (Ph); 87.7, 87.3 (Cp); 70.8 (C_β); 63.3 (CH₂Ph); 51.4 (CO2*Me*); 39.8 (NMe). ESI-MS (ES+): *m*/*z* 1026 [M+, 7%], 513 $[M/2^+, 100\%], 485 [M/2^+ - CO, 37\%].$

Synthesis of $[Fe_2\{\mu\text{-CN}(Me)(R)\}\{\mu\text{-CO})(CO)(C\equiv CSiMe_3\}$ **-** $(Cp)_2$ ($R = Me$, 5a; $R = Bz$, 5c; $R = Xyl$, 5e). Compound 1d (100 mg, 0.166 mmol), was dissolved in THF (15 mL) and treated with NaH (21 mg, 0.875 mmol). The mixture was stirred for 30 min, and then the solvent was removed. The residue was washed with petroleum ether $(2 \times 20 \text{ mL})$, dissolved in CH_2Cl_2 , and filtered on a Celite pad. Crystallization at -20 °C from CH_2Cl_2 solution, layered with petroleum ether, gave brown crystals of **5a**. Yield: 70 mg, 93%. Anal. Calcd for $C_{20}H_{25}Fe_2NO_2Si$: C, 53.24; H, 5.58; N, 3.10. Found: C, 53.27; H, 5.50; N, 3.11. IR (CH₂Cl₂): *ν*(C=C) 2011 (vs), *ν*(CO) 1972 (vs), 1794 (s), $ν(μ$ -CN) 1534 (w) cm⁻¹. ¹H NMR (CDCl₃): *^δ* 4.71, 4.68 (s, 10 H, Cp); 4.16, 4.02 (s, 6 H, NMe); -0.23 (s, 9 H, SiMe3). 13C NMR (CDCl3): *δ* 330.5 (*µ*-C); 263.9 (*µ*-CO); 212.3 (CO) ; 133.6, 117.6 $(C=C)$; 87.2, 85.7 (Cp) ; 52.1, 50.8 (NMe); 1.53 (SiMe₃).

Complexes **5c**,**e** were prepared by following the same procedure described for the synthesis of **5a,** by reacting NaH with **2b** and **3a**, respectively. Crystals of **5e** suitable for X-ray analysis were collected from a CH_2Cl_2 solution layered with petroleum ether, at -20 °C.

5c. Yield: 95%. Color: ochre yellow. Anal. Calcd for C₂₆H₂₉-Fe2NO2Si: C, 59.22; H, 5.54; N, 2.66. Found: C, 59.12; H, 5.70; N, 2.69. IR (CH₂Cl₂): *ν*(C≡C) 2011 (vs), *ν*(CO) 1972 (vs), 1794 (s), $\nu(\mu$ -CN) 1534 (w) cm⁻¹. ¹H NMR (CDCl₃): δ 7.57-7.38 (m, 5 H, Ph); 6.19 , 5.74 , 5.55 , 5.36 (d, 2 H, $^2J_{HH} = 15$ Hz, CH_2Ph); *4.80*, 4.77, 4.72, *4.65* (s, 10 H, Cp); 4.06, *3.91* (s, 3 H, NMe); -*0.14*, -0.17 (s, 9 H, SiMe3); isomer ratio 3:2. 13C NMR (CDCl3): *δ* 333.6 (*µ*-C); *263.6*, 263.2 (*µ*-CO); 212.4, *212.2* (CO); 136.2-126.9 (Ph and C=C); 118.0, 117.5 (C=C); 87.6, 87.4, *86.0*, 85.9 (Cp); 69.8, *69.0* (*C*H2Ph); *49.6*, 48.1 (NMe); *1.64*, 1.60 $(SiMe₃)$.

5e. Yield: 90%. Color: ochre yellow. Anal. Calcd for C₂₇H₃₁-Fe2NO2Si: C, 59.91; H, 5.77; N, 2.59. Found: C, 59.94; H, 5.77; N, 2.50. IR (CH₂Cl₂): *ν*(C≡C) 2012 (vs), *ν*(CO) 1973 (vs), 1792 (s), *^ν*(*µ*-CN) 1506 (w) cm-1. 1H NMR (CDCl3): *^δ* 7.34-7.16 (m, 3 H, Me2C6*H*3); 4.81, 4.29 (s, 10 H, Cp); 4.43 (s, 3 H, NMe); 2.67, 2.26 (s, 6 H, Me ₂C₆H₃); -0.17 (s, 9 H, SiMe₃). ¹³C NMR (CDCl3): *δ* 337.2 (*µ*-C); 263.6 (*µ*-CO); 212.8 (CO); 148.4 (ipso-Me₂C₆H₃); 134.3, 133.2, 129.9, 128.1, 128.0 (Me₂C₆H₃); 131.0, 118.3 (C=C); 87.6, 85.7 (Cp); 51.5 (NMe); 18.5, 17.9 ($Me₂C₆H₃$); 1.5 (SiMe₃).

Synthesis of $[Fe_2\{\mu$ **-CN(Me)(R)**} $(\mu$ **-CO)(CO)(C=CR′**)- $(Cp)_2$ ($R = Me$, $R′ = Tol$, 5b; $R = Bz$, $R′ = Tol$, 5d; $R = Xyl$, R' = Tol, 5f; $R = Xyl$, R' = Ph, 5g). A solution of 1e (145 mg, 0.234 mmol) in THF (15 mL) was treated with NaH (27 mg, 1.17 mmol), and the mixture was stirred for 30 min. Then, the solvent was removed, the residue dissolved in a 1:1 mixture of toluene and diethyl ether, and this solution filtered on a Celite pad. Solvent removal afforded a brown powder of **5b**. Yield: 100 mg, 91%. Anal. Calcd for $C_{24}H_{23}Fe_2NO_2$: C, 61.44; H, 4.94; N, 2.99. Found: C, 61.47; H, 4.95; N, 3.06. IR (THF): *ν*(C=C) 2087 (s), *ν*(CO) 1963 (vs), 1788 (s) cm⁻¹. ¹H NMR $(C_6D_5CD_3)$: δ 7.48, 7.34 (d, 4 H, ${}^3J_{HH} = 6.3$ Hz, C_6H_4 Me); 4.55, 4.29 (s, 10 H, Cp); 4.07, 4.00 (s, 3 H, NMe); 2.22 (s, 3 H, C6H4*Me*). 13C NMR (C6D5CD3): *δ* 331.0 (*µ*-C); 261.0 (*µ*-CO); 213.7 (CO); 156.9 (ipso-*C*6H4Me); 137.9, 129.0, 126.1 (*C*6H4Me); 120.2, 107.8 (C=C); 87.9, 85.0 (Cp); 51.4, 50.0 (NMe); 21.3 (C6H4*Me*).

Complexes **5d**,**f**,**g** were prepared by following the same procedure described for the synthesis of **5b,** by reacting NaH with **2c** and **3b**,**c**, respectively.

5d. Yield: 88%. Color: ochre yellow. Anal. Calcd for C₃₀H₂₇- $Fe₂NO₂: C, 66.09; H, 4.99; N, 2.57. Found: C, 66.01; H, 4.83;$ N, 2.53. IR (THF): *ν*(C≡C) 2090 (s), *ν*(CO) 1970 (vs), 1805 (s) cm⁻¹. ¹H NMR (C₆D₅CD₃): δ 7.56-6.80 (m, 9 H, C₆H₄Me and
Ph): 5.48, 5.22 (d, ²J_{ru} = 14 Hz, CH₂Ph): 4.59, 4.55, 4.54, 4.34 Ph); 5.48, 5.22 (d, ²J_{HH} = 14 Hz, C*H*₂Ph); 4.59, 4.55, 4.54, 4.34
(s, 10 H, C_D): 3.99, 3.98 (s, 3 H, NMa): 2.22, 2.19 (s, 3 H (s, 10 H, Cp); 3.99, *3.98* (s, 3 H, NMe); 2.22, *2.19* (s, 3 H, C6H4*Me*); isomer ratio 3:2. 13C NMR (C6D5CD3) *δ* 334.1, *333.7* (*µ*-C); 260.9, 260.6 (*µ*-CO); 213.7, *213.2* (CO); 157.4-124.4 (C_6H_4 Me and Ph); 119.2, 119.1, 107.3, 106.8 (C=C); 87.6, 86.0, 85.8, *82.2* (Cp); 69.4, *68.8* (*C*H2Ph); *48.1*, 47.3 (NMe); 21.1 (C6H4*Me*).

5f. Yield: 90%. Color: ochre yellow. Anal. Calcd for C₃₁H₂₉-Fe2NO2: C, 66.58; H, 5.23; N, 2.50. Found: C, 66.48; H, 5.21; N, 2.55. IR (CH₂Cl₂): *ν*(C≡C) 2087 (m), *ν*(CO) 1971 (vs), 1792 (s), *ν*(CN) 1505 (w) cm⁻¹. ¹H NMR (C₆D₅CD₃): δ 7.17-6.79 (m, 7 H, C6*H*4Me and Me2C6*H*3); 4.60, *4.53*, *4.32*, 3.98 (s, 10 H, Cp); 4.08, *4.05* (s, 3 H, NMe); 2.28, 2.12 (s, 6 H, *Me*2C6H3); 2.22 (s, 3 H, C₆H₄Me); isomer ratio 7:1.¹³C NMR (C₆D₅CD₃): *δ* 338.5 (*µ*-C); 259.3 (*µ*-CO); 214.2 (CO); 158.1-124.0 (*C*6H4Me and Me₂C₆H₃); 120.1, 106.2 (C=C); 87.8, 86.7, 86.1, 82.2 (Cp); 51.3 (NMe); 21.2 (C₆H₄Me); 18.3, 17.8 (Me ₂C₆H₃). ESI-MS (ES⁺): *m*/*z* 559 [M+].

5g. Yield: 87%. Color: ochre yellow. Anal. Calcd for C₃₀H₂₇-Fe2NO2: C, 66.09; H, 4.99; N, 2.57. Found: C, 66.00; H, 5.05; N, 2.56. IR (CH₂Cl₂): *ν*(C≡C) 2086 (m), *ν*(CO) 1971 (vs), 1792 (s), *^ν*(CN) 1504 (w) cm-1. 1H NMR (C6D5CD3): *^δ* 7.57-6.72 (m, 8 H, Ph and Me2C6*H*3); 4.56, *4.54*, *4.31*, 3.95 (s, 10 H, Cp); *4.07*, 4.04 (s, 3 H, NMe); 2.24, 2.19 (s, 6 H, $Me₂C₆H₃$); isomer ratio 9:1. 13C NMR (C6D5CD3): *δ* 338.3 (*µ*-C); 260.0 (*µ*-CO); 214.4 (CO); 161.7-125.0 (Ph and $Me₂C₆H₃$); 117.8, 106.2 (C=C); 87.6, 85.4 (Cp); 52.1 (NMe); 18.4, 17.7 ($Me₂C₆H₃$).

Synthesis of [Fe₂{*µ*- η ¹: η ³-C_{*i*}</sub>(**R**′)=C_{*β*}(**Me**)C_{*a*}=**N**(**Me**)(**Bz**)}- $(\mu$ -CO)(CO)(Cp)₂][SO₃CF₃] (R' = SiMe₃, 6a; R' = Tol, 6b). To a THF solution (15 mL) of **5c** (120 mg, 0.228 mmol) was added MeI (0.9 mL, 14.5 mmol), and the resulting mixture was stirred at about 50 °C for 20 min. The solution was cooled to room temperature, and then $AgCF₃SO₃$ (88 mg, 0.344 mmol) was added; subsequent chromatography on alumina, using a 1:1 mixture of THF and MeCN as eluent, afforded a green band, corresponding to **6a**. Yield: 68 mg, 43%. Anal. Calcd for C28H32F3Fe2NO5SSi: C, 48.64; H, 4.67; N, 2.03. Found: C, 48.55; H, 4.62; N, 2.05. IR (CH₂Cl₂): *ν*(CO) 1982 (vs), 1815 (s), *^ν*(CN) 1652 (m) cm-1. 1H NMR (CDCl3): *^δ* 7.48-7.18 (m, 5 H, Ph); 5.77, 5.72, 4.77, 4.67 $(d, {}^{2}J_{HH} = 14 \text{ Hz}, 2 \text{ H}, \text{ } CH_{2} \text{Ph})$; 5.00, *4.99*, 4.53, *4.50* (s, 10 H, Cp); *3.96*, 3.16 (s, 3 H, NMe); *2.23*, 2.14 (s, 3 H, C*â*Me); 0.70, *0.67* (s, 9 H, SiMe3); *Z*:*E* ratio 2:1. ¹³C NMR (CDCl₃): *δ* 254.6, 253.1 (μ-CO); 222.3, 221.1 (C_α); 208.5 (CO); 195.2 (C*γ*); 132.4-128.9 (Ph); *89.0*, 88.9, *88.4*, 88.2 (Cp); 70.6 (C*â*); *65.2*, 62.3 (*C*H2Ph); 45.4, *43.4* (NMe); *20.6*, 20.2 (C*âMe*); 4.1 (SiMe3).

Complex **6b** was prepared by following the same procedure described for the synthesis of **6a,** by reacting **5d** with MeI and $AgCF₃SO₃$.

6b. Yield: 66%. Color: ochre yellow. Anal. Calcd for C32H30F3Fe2NO5S: C, 54.18; H, 4.26; N, 1.97. Found: C, 54.22; H, 4.39; N, 1.93. IR (CH2Cl2): *ν*(CO) 1989 (vs), 1807 (s), *ν*(CN) 1655 (m) cm⁻¹. ¹H NMR (CDCl₃): δ 7.56-7.11 (m, 9 H, Ph and C₆H₄Me); 5.74, 5.67, 5.14, 4.44 (d, 2H, ²J_{HH} = 15 Hz, C*H*2Ph); *5.26*, 5.25, 4.90, *4.89* (s, 10 H, Cp); *3.75*, 3.03 (s, 3 H, NMe); 2.47 (s, 3 H, C6H4*Me*); *1.75*, 1.73 (s, 3 H, C*â*Me); *Z*:*E* ratio 3:1. ¹³C NMR (CDCl₃): δ 258.1 (μ -CO); 226.2, 225.0 (C_a); *210.6,* 210.0 (CO); 202.2 (C*γ*); 150.8 (ipso-*C*6H4Me); 136.4-125.3 (Ph and *C*6H4Me); 91.7, *88.0*, 87.9 (Cp); *66.4*, 61.5 (*C*H2Ph); 65.6, *65.3* (C*â*); 45.9, *41.9* (NMe); 21.2 (C6H4*Me*); *18.3*, 18.1 (C*âMe*).

Synthesis of [Fe(Cp)(CO){C_aN(Me)(R)C_βHC_{*γ***}(R)C(O)}-]** $(R = Me, R' = Bu^n, 7a; R = Xyl, R' = Me, 7b; R = Xyl, R'$ $=$ **COOMe, 7c; R** = Xyl, **R**′ = **CMe₂OH, 7d**). Complex **1c** (200) mg, 0.342 mmol), was dissolved in THF (20 mL) and treated with NaH (38 mg, 1.58 mmol). The resulting mixture was stirred for 30 min and then filtered on an alumina pad. Removal of the solvent and chromatography of the residue on alumina, using a 1:1 mixture of CH_2Cl_2 and THF as eluent, afforded a brown band corresponding to **7a**. Yield: 73 mg, 68%. Anal. Calcd for C₁₆H₂₁FeNO₂: C, 60.97; H, 6.72; N, 4.44. Found: C, 61.03; H, 6.66; N, 4.48. IR (CH2Cl2): *ν*(CO) 1911

Table 5. Crystal Data and Experimental Details for $4a \cdot CH_2Cl_2$, 4b, 5e, and 7b

	$4a \cdot CH_2Cl_2$	4 _b	5e	7 _b
formula	$C_{39}H_{40}Cl_2Fe_4N_2O_8$	$C_{36}H_{38}Fe_4N_2O_4$	$C_{27}H_{31}Fe_2NO_2Si$	$C_{20}H_{21}FeNO_2$
fw	959.03	786.08	541.32	363.23
T, K	150(2)	293(2)	293(2)	293(2)
λ , A	0.71073	0.71073	0.71073	0.71073
cryst syst	monoclinic	monoclinic	orthorhombic	monoclinic
space group	$P2_1/n$	$P2_1/c$	Aba2	$P2_1/c$
a, A	18.032(4)	12.735(3)	9.920(2)	9.3991(19)
b, \AA	10.346(2)	27.480(6)	34.927(7)	19.964(4)
c, A	21.479(4)	10.206(2)	14.849(3)	10.132(2)
β , deg	105.50(3)	112.80(3)	90	109.83(3)
cell vol, \AA^3	3861.2(13)	3292.8(11)	5144.6(18)	1788.5(6)
Z	4	4	8	$\overline{4}$
D_c , g cm ⁻³	1.650	1.586	1.398	1.349
μ , mm ⁻¹	1.667	1.770	1.198	0.854
F(000)	1960	1616	256	760
cryst size, mm	$0.24 \times 0.21 \times 0.15$	$0.19 \times 0.16 \times 0.11$	$0.24 \times 0.22 \times 0.14$	$0.24 \times 0.19 \times 0.11$
θ limits, deg	$1.31 - 26.37$	$1.48 - 25.03$	$1.17 - 25.03$	$2.04 - 28.70$
no. of rflns collected	37 213	26 4 27	22 038	21 148
no. of indep rflns	7877 $(R_{\text{int}} = 0.0771)$	5811 $(R_{\text{int}} = 0.1083)$	$4551 (R_{\rm int} = 0.0769)$	$4625(R_{\rm int} = 0.0644)$
no. of data/restraints/params	7877/0/502	5811/178/417	4551/85/297	4625/0/221
goodness on fit on F^2	1.062	1.054	1.050	0.963
R1 $(I > 2\sigma(I))$	0.0502	0.0564	0.0478	0.0494
$wR2$ (all data)	0.1416	0.1398	0.1212	0.1452
largest diff peak and hole, $e \, \dot{A}^{-3}$	$2.190/-1.385$	$0572/-0629$	$0.514/-0.340$	$0.350/-0.519$

(vs), $\nu(C_{\alpha}N)$ 1625 (w sh), $\nu(\text{acyl})$ 1599 (m) cm⁻¹. ¹H NMR (CDCl3): *δ* 7.29 (s, 1 H, C*â*H); 4.48 (s, 5 H, Cp); 3.71, 3.49 (s, 6 H, NMe); 2.25 (m, 2 H, C_γCH₂); 1.41 (m, 2 H, C_γCH₂CH₂); 1.31 (m, 2 H, C_γCH₂CH₂CH₂); 0.89 (t, ³J_{HH} = 7.32 Hz, CH₂CH₂-CH₂CH₃). ¹³C NMR (CDCl₃) δ 272.0 (C=O); 262.3 (C_a); 221.9 (CO); 177.1 (C*γ*); 145.5 (C*â*); 84.8 (Cp); 51.4, 42.8 (NMe); 30.3, 27.0, 22.6 (CH2); 13.9 (CH2CH2CH2*C*H3).

The reaction of **1f** with NaH was performed by the same procedure described for the synthesis of **7a**.

Complexes **7b**-**^d** were prepared by following the same procedure described for the synthesis of **7a**, by reacting NaH with **3d**-**f**, respectively. Crystals of **7b** suitable for X-ray analysis were obtained by a CH_2Cl_2 solution layered with *n*-pentane, at -20 °C.

7b. Yield: 73%. Color: orange. Anal. Calcd for $C_{20}H_{21}$ -FeNO2: C, 66.13; H, 5.83; N, 3.86. Found: C, 66.29; H, 5.74; N, 3.90. IR (CH2Cl2): *^ν*(CO) 1916 (vs), *^ν*(CRN) 1627 (m), *^ν*(acyl) 1597 (s) cm-1. 1H NMR (CDCl3): *^δ* 7.27-7.16 (m, 3 H, Me2C6*H*3); 6.54 (s, 1 H, C*â*H); 4.62 (s, 5 H, Cp); 3.82 (s, 3 H, NMe); 2.19, 2.10 (s, 6 H, Me ₂C₆H₃); 1.70 (s, 3 H, C_γMe). ¹³C NMR (CDCl₃): δ 270.7 (C=O); 266.2 (C_α); 221.3 (CO); 173.2 (C*γ*); 148.0 (C*â*); 145.3 (ipso-Me2*C*6H3); 132.6, 132.1, 129.2, 128.8, 128.6 (Me2*C*6H3); 84.8 (Cp); 48.7 (NMe); 17.6, 17.4 (*Me*2C6H3); 13.1 (C*γMe*). ESI-MS (ES+): *m*/*z* 363 [M+].

7c. Yield: 67% . Color: orange. Anal. Calcd for $C_{21}H_{21}$ -FeNO4: C, 61.94; H, 5.20; N, 3.44. Found: C, 62.01; H, 5.17; N, 3.45. IR (CH₂Cl₂): *ν*(CO) 1935 (vs), 1724 (s), *ν*(C_αN) 1624 (m), *^ν*(acyl) 1610 (ms) cm-1. 1H NMR (CDCl3): *^δ* 7.34-7.08 (m, 3 H, Me2C6*H*3); 7.03 (s, 1 H, C*â*H); 4.68 (s, 5 H, Cp); 3.83 (s, 3 H, NMe); 3.69 (s, 3 H, COOMe); 2.19, 2.11 (s, 6 H, $Me₂C₆H₃$). ¹³C NMR (CDCl₃): δ 267.5 (C_a); 241.3 (C=O); 221.9 (CO); 164.2 (*COOMe*); 151.7 (C_{β}); 145.1 (ipso-Me₂C₆H₃); 132.3, 132.7, 129.5, 129.0, 128.7 (Me2*C*6H3); 85.3 (Cp); 52.0 (COO*Me*); 49.6 (NMe); 17.6, 17.4 ($Me₂C₆H₃$).

7d. Yield: 88%. Color: brown. Anal. Calcd for $C_{22}H_{25}$ FeNO3: C, 61.94; H, 5.20; N, 3.44. Found: C, 62.00; H, 5.20; N, 3.32. IR (CH2Cl2): *^ν*(CO) 1926 (vs), *^ν*(CRN) 1620 (m), *^ν*(acyl) 1578 (ms) cm-1. 1H NMR (CDCl3): *δ 7.42*, 6.47 (s, 1 H, C*â*); 7.29-7.16 (m, 3 H, Me2C6*H*3); *5.27*, 5.13 (s, 1 H, OH); 4.64, *3.99* (s, 5 H, Cp); 3.81, *3.67* (s, 3 H, NMe); *2.39*, *2.33*, 2.19, 2.09 (s, 6 H, Me ₂C₆H₃); *1.44*, *1.43*, 1.19, 1.18 (s, 6 H, CMe₂OH); *E*:*Z* ratio 2:1. ¹³C NMR (CDCl₃): δ 278.3, 276.8 (C=O); 265.7, *263.8* (CR); *223.8*, 220.8 (CO); 177.5, *174.8* (C*γ*); *149.0*, 144.9

(ipso-Me2*C*6H3); 145.0, *143.5* (C*â*); *133.6*, *133.0*, 132.2, 131.8, *129.2*, *129.1, <i>129.0, 128.9, 128.7, 128.1* ($Me₂C₆H₃$); *85.4, 84.9* (Cp); *71.5*, 71.1 (*C*Me2OH); 49.0, *44.6* (NMe); *29.8*, 29.6, 28.9, *28.4* (C*Me*2OH); *18.3*, 17.5, 17.2 (*Me*2C6H3).

X-ray Crystallography. Crystal data and collection details for **4a**'CH2Cl2, **4b**, **5e**, and **7b** are reported in Table 5. The diffraction experiments were carried out on a Bruker SMART 2000 diffractometer equipped with a CCD detector using Mo $K\alpha$ radiation. Data were corrected for Lorentz-polarization and absorption effects (empirical absorption correction SADABS).²⁷ Structures were solved by direct methods and refined by full-matrix least squares based on all data using *F*2. ²⁸ Hydrogen atoms were fixed at calculated positions and refined by a riding model. All non-hydrogen atoms were refined with anisotropic displacement parameters, unless otherwise stated. The crystals of **5e** appeared to be racemically twinned with a refined Flack parameter of 0.50(3).²⁹ Disorder was found for one Cp ligand in **4b** and **5e**, and the Xyl and the SiMe3 groups in **5e** are disordered. Disordered atomic positions were split and refined isotropically using similar distances and similar *U* restraints and one occupancy parameter per disordered group.

Acknowledgment. We thank the Ministero dell'Universita` e della Ricerca Scientifica e Tecnologica (MIUR) (project: "New strategies for the control of reactions: interactions of molecular fragments with metallic sites in unconventional species") and the University of Bologna ("Funds for Selected Research Topics") for financial support.

Supporting Information Available: Crystallographic data for compounds $4a$ ⁻CH₂Cl₂, **4b**, **5e**, and **7b** as CIF files. This material is available free of charge via the Internet at http://pubs.acs.org.

OM050095J

⁽²⁷⁾ Sheldrick, G. M. SADABS, program for empirical absorption correction; University of Göttingen, Göttingen, Germany, 1996. (28) Sheldrick, G. M. SHELX97, program for crystal structure

determination; University of Göttingen, Göttingen, Germany, 1997. (29) Flack, H. D. *Acta Crystallogr., Sect. A* **1983**, *39*, 876.