

Volume 24, Number 13, June 20, 2005

© Copyright 2005 American Chemical Society

Communications

A New Synthetic Route to High-Valent Half-Sandwich Group 4 Metallacarborane Alkyls. Synthesis and Structural Characterization of $[\eta^1:\eta^6-(Me_2NCH_2CH_2)C_2B_{10}H_{11}]Hf(CH_2SiMe_3)_2$

Mak-Shuen Cheung,[†] Hoi-Shan Chan,[†] and Zuowei Xie^{*,†,‡}

Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China, and State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, China

Received April 15, 2005

Summary: A half-sandwich group 4 metallacarborane alkyl was prepared and structurally characterized for the first time via an alkane elimination reaction of Hf- $(CH_2SiMe_3)_4$ with the zwitterionic salt Me_2NHCH_2 - $CH_2C_2B_{10}H_{12}$. This method avoids using the strong reducing agents [nido- $R_2C_2B_{10}H_{10}/M_2$ (M = group 1metal) as starting materials, which allows the synthesis of high-valent group 4 metallacarboranes of the C_2B_{10} system.

Group 4 metallacarboranes of the C_2B_4 and C_2B_9 systems have been extensively investigated.¹ A series of full- and half-sandwich complexes have been prepared and structurally characterized, in which group 4 metals are usually η^5 bound to the open C_2B_3 pentagonal bonding face.^{2,3} In sharp contrast, the chemistry of group 4 metallacarboranes of the C_2B_{10} system is highly limited due to the strong reducing power of *nido*- $R_2C_2B_{10}H_{10}^{2-}$ dianions, which can readily reduce M(IV) to M(II).^{4,5} It is clear that the high-valent group 4 metallacarboranes involving an η^6 -carboranyl ligand cannot be prepared by conventional salt metathesis methods. The recently developed redox methodology for the synthesis of $[\eta^5:\eta^6:\sigma$ -Me₂Si(C₉H₆)(C₂B₁₀H₁₀CH₂NMe)]-Zr(NC₅H₅) is not applicable to prepare half-sandwich group 4 metallacarboranes bearing an η^6 -carboranyl ligand.⁶ Therefore, a new methodology is definitely desirable.

On the other hand, it has been documented that the alkane elimination reaction of $C_2B_9H_{13}$ with Cp^*M - $(CH_3)_3$ ($Cp^* = C_5Me_5$) is a very effective method for the preparation of mixed-sandwich group 4 metallacarbo-

^{*}To whom correspondence should be addressed. Fax: (852)-26035057. Tel: (852)26096269. E-mail: zxie@cuhk.edu.hk.

[†] The Chinese University of Hong Kong.

[‡] Nankai University.

⁽¹⁾ For reviews, see: (a) Grimes, R. N. In Comprehensive Organometallic Chemistry II; Abel, E. W., Stone, F. G. A., Wilkinson, G., Eds.; Pergamon: Oxford, U.K., 1995; Vol. 1, p 371. (b) Saxena, A. K.; Hosmane, N. S. Chem. Rev. **1993**, 93, 1081. (c) Grimes, R. N. Coord. Chem. Rev. **2000**, 200/202, 773. (d) Hosmane, N. S.; Maguire, J. A. Organometallics **2005**, 24, 1356.

^{(2) (}a) Swisher, R. G.; Sinn, E.; Grimes, R. N. Organometallics 1984, 3, 599. (b) Siriwardance, U.; Zhang, H.; Hosmane, N. S. J. Am. Chem. Soc. 1990, 112, 9637. (c) Zhang, H.; Jia, L.; Hosmane, N. S. Acta Crystallogr. 1993, C49, 453. (d) Thomas, C. J.; Jia, L.; Zhang, H.; Siriwardane, U.; Maguire, J. A.; Wang, Y.; Brooks, K. A.; Weiss, V. P.; Hosmane, N. S. Organometallics 1995, 14, 1365. (e) Stockman, K. E.; Houseknecht, K. L.; Boring, E. A.; Sabat, M.; Finn, M. G.; Grimes, R. N. Organometallics 1995, 14, 3014. (f) Mao, S. S. H.; Tilley, T. D.; Rheingold, A. L.; Hosmane, N. S. J. Organomet. Chem. 1997, 533, 257. (g) Hosmane, N. S.; Wang, Y.; Zhang, H.; Lu, K. J.; Maguire, J. A.; Gray, T. G.; Brooks, K. A.; Waldhör, E.; Kaim, W.; Kremer, R. K. Organometallics 1997, 16, 1365. (h) Hosmane, N. S.; Zhang, H.; Jia, L.; Colacot, T. J.; Maguire, J. A.; Wang, X.; Hosmane, S. N.; Brooks, K. A. Organometallics 1999, 18, 516. (i) Hosmane, N. S.; Zheng, C. Acta Crystallogr. 2000, C56, 525. (j) Dodge, T.; Curtis, M. A.; Russel, J. M.; Sabat, M.; Finn, M. G.; Grimes, R. N. J. Am. Chem. Soc. 2000, 122, 10573.

rane alkyl complexes.^{3a} We wondered if such an alkane elimination methodology could be applied to the C_2B_{10} ligand system. Although the neutral acids of R₂C₂B₁₀H₁₂ are unknown, their deprotonated forms R₂C₂B₁₀H₁₁⁻ have been well characterized.^{7,8} It is anticipated that only the kinetic isomers of R₂C₂B₁₀H₁₁⁻ containing a bridging hydrogen atom are capable of reacting with neutral metal alkyls. In view of the coordination ability and Lewis basicity of the appended amine in the $Me_2NCH_2C_2B_9H_{10}^{2-}$ ligand, ^{3k,1} 1-Me₂NCH₂CH₂-1,2- $C_2B_{10}H_{11}^9$ was chosen as the starting material. We report in this communication the synthesis and structural characterization of the first half-sandwich group 4 metallacarborane alkyl complex.

Treatment of 1-Me₂NCH₂CH₂-1,2-C₂B₁₀H₁₁ with excess finely cut Na metal in THF gave, after removal of Na by filtration, $[(Me_2NCH_2CH_2)C_2B_{10}H_{11}]Na_2(THF)_x$, followed by reaction with 2 equiv of Me₃NHCl in THF at -30 °C to afford the kinetic product 1-Me₂NHCH₂- $CH_2\mathchar`-1,3\mathchar`-C_2B_{10}H_{12}$ (1) in 92% yield.10 The 1H and ^{13}C NMR spectra supported the presence of the Me₂NHCH₂-CH₂ group. Its ¹¹B NMR spectrum exhibited a 1:1:1:2: 1:1:1:1:1 splitting pattern, which changed to a 2:1:1:2: 2:2 pattern after heating at 80 °C for 5 h. This result suggested that **1** is the kinetic product.^{7,8} Compound **1** is a zwitterionic salt containing two acidic protons, one from the appended CH₂CH₂NHMe₂ unit and the other

(4) (a) Salentine, C. G.; Hawthorne, M. F. J. Am. Chem. Soc. 1975, 97, 426. (b) Lo, F. Y.; Strouse, C. E.; Callan, K. P.; Knobler, C. B.;
 Hawthorne, M. F. J. Am. Chem. Soc. 1975, 97, 428. (c) Salentine, C.
 G.; Hawthorne, M. F. Inorg. Chem. 1976, 15, 2872.
 (5) Kwong, W.-C.; Chan, H.-S.; Tang, Y.; Xie, Z. Organometallics

2004, 23, 3098

(6) Wang, Y.; Wang, H.; Li, H.-W.; Xie, Z. Organometallics 2002, *21*, 3311.

(9) Cheung, M.-S.; Chan, H.-S.; Xie, Z. Dalton, in press

from the open six-membered C₂B₄ face. Treatment of 1 with 1 equiv of $Hf(CH_2SiMe_3)_4^{11}$ in toluene at room temperature gave, after recrystallization from toluene, $[\eta^{1}:\eta^{6}-(Me_{2}NCH_{2}CH_{2})C_{2}B_{10}H_{11}]Hf(CH_{2}SiMe_{3})_{2}(2)$ in 30% isolated yield (Scheme 1).¹² It is noteworthy that the corresponding zirconium analogue was not isolable, due to low thermal stability. Complex 2 was extremely airand moisture-sensitive but was stable for days under an inert atmosphere in the solid state.

Complex 2 was fully characterized by ¹H, ¹³C, and ¹¹B NMR spectroscopy and elemental analyses.¹² Its molecular structure was further confirmed by single-crystal X-ray diffraction studies.¹³ The Hf atom is η^6 bound to the open C₂B₄ bonding face of a *nido*-carboranyl ligand, σ bound to two CH₂SiMe₃ units, and coordinated to the nitrogen atom of the side arm in a three-legged pianostool geometry, as shown in Figure 1. The Hf-cage atom distances range from 2.489(4) to 2.732(5) Å with an average value of 2.602(5) Å, indicating a highly asymmetrical η^6 bonding. Such a slip distortion may result from the intramolecular coordination of the functional side arm. As expected, this measured value is much longer than the average Hf-cage atom distances observed in the C₂B₉ system due to the larger bonding

29.59; II, 7.56; N, 2.40. Found. C, 25.25, II, 7.22, N, 2.50. (13) Crystal data for 2 ($C_{14}H_{43}B_{10}HfNS_{12}$; fw, 568.3): monoclinic, space group P_{21}/n , a = 9.686(1) Å, b = 17.468(1) Å, c = 16.423(1) Å, $\beta = 103.43(1)^\circ$, V = 2702.7(3) Å³, T = 293 K, Z = 4, $d_{caled} = 1.397$ g/cm³, $R1 = 0.037 (I > 2\sigma(I)), wR2(F^2) = 0.087.$

^{(3) (}a) Crowther, D. J.; Baenziger, N. C.; Jordan, R. F. J. Am. Chem. Soc. 1991, 113, 1455. (b) Johnson, S. E.; Knobler, C. B.; Hawthorne, M. F. J. Am. Chem. Soc. 1992, 114, 3996. (c) Kreuder, C.; Jordan, R. F.; Zhang, H. Organometallics 1995, 14, 2993. (d) Bowen, D. E.; Jordan, R. F.; Rogers, R. D. Organometallics 1995, 14, 3630. (e) Crowther, D. J.; Swenson, D. C.; Jordan, R. F. J. Am. Chem. Soc. 1995, 117, 10403.
(f) Yoshida, M.; Crowther, D. J.; Jordan, R. F. Organometallics 1997, 16, 1349. (g) Yoshida, M.; Jordan, R. F. Organometallics 1997, 16, 4508.
(h) Bei, X.; Kreuder, C.; Swenson, D. C.; Jordan, R. F.; Young, V. G.; Jordan, R. F. Organometallics 1998, 17, 1085. (i) Bei, X.; Young, V. G.; Jordan, R. F. Organometallics 2001, 20, 355. (j) Zhu, Y.; Vyakaranam, K.; Maguire, J. A.; Quintana, W.; Teixidor, F.; Viñas, C.; Hosmane, N. S. Inorg. Chem. Commun. 2001, 4, 486. (k) Kim, D.-H.; Won, J. H.; Kim, S.-J.; Ko, J.; Kim, S. H.; Cho, S.; Kang, S. O. Organometallics 2001, 20, 4298. (l) Lee, Y.-J.; Lee, J.-D.; Ko, J.; Kim, S.-H.; Kang, S. O. Chem. Commun. 2003, 1364. (m) Kwong, W.-C.; Chan, H.-S.; Tang, Y.; Xie, Z. Organometallics 2004, 23, 4301. R. F.; Rogers, R. D. Organometallics 1995, 14, 3630. (e) Crowther, D. Z. Organometallics 2004, 23, 4301.

^{(7) (}a) Tolpin, E. I.; Lipscomb, W. N. Inorg. Chem. 1973, 12, 2257. (b) Churchill, M. R.; Deboer, B. G. Inorg. Chem. 1973, 12, 2674. (c) Dunks, G. B.; Wiersema, R. J.; Hawthorne, M. F. J. Am. Chem. Soc. 1973, 95, 3174. (d) Alcock, N. W.; Taylor, J. G.; Wallbridge, M. G. H. W.; Taylor, J. G.; Wallbridge, M. G. H. J. Chem. Soc., Dalton Trans. 1987, 1805. (e) Getman, T. D.; Knobler, C. B.; Hawthorne, M. F. *Inorg. Chem.* **1990**, *29*, 158. (f) Bould, J.; Laromaine, A.; Viñas, C.; Teixidor, F.; Barton, L.; Rath, N. P.; Winter, R. E. K.; Kivekäs, R.; Sillanpää, R. Organometallics 2004, 23, 3335. (8) (a) Chui, K.; Li, H.-W.; Xie, Z. Organometallics 2000, 19, 5447.
 (b) Cheung, M.-S.; Chan, H.-S.; Xie, Z. Organometallics 2004, 23, 517.

⁽¹⁰⁾ To a THF (25 mL) solution of $1-Me_2NCH_2CH_2-1$, $2-C_2B_{10}H_{11}$ (215 mg, 1.0 mmol) was added finely cut Na metal (230 mg, 10.00 mmol), and the mixture was stirred at room temperature for 3 days. After removal of excess Na and addition of Me₃NHCl (191 mg, 2.0 mmol) at -30 °C, the reaction mixture was then stirred for 1 h at room temperature. The precipitate was filtered off and washed with THF $(5 \text{ mL} \times 3)$. The THF solutions were then combined and concentrated under vacuum to give 1 as a white solid (200 mg, 92%). ¹H NMR (acetone- d_6): $\delta 3.62$ (m, 2H, CH₂CH₂NH(CH₃)₂), 3.16 (s, 6H, CH₂CH₂-NH(CH₃)₂), 2.82 (m, 2H, CH₂CH₂NH(CH₃)₂). ¹³C NMR (acetone- d_6): δ 67.7 (CH₂CH₂NH(CH₃)₂), 60.6 (CH₂CH₂NH(CH₃)₂), 40.2 (CH₂CH₂NH- $(CH_3)_2$), cage carbons were not observed. ¹¹B NMR (acetone- d_6): δ 17.6 (1B), 13.6 (1B), 7.8 (1B), -4.3 (2B), -9.1 (1B), -16.4 (1B), -18.9 (1B),-21.6 (1B), -31.6 (1B). IR (KBr, cm⁻¹): $\nu_{\rm BH}$ 2524 (vs). Anal. Calcd for C₆H₂₃B₁₀N: C, 33.16; H, 10.67; N, 6.44. Found: C, 32.86; H, 10.39; N, 6.41.

⁽¹¹⁾ Collier, M. R.; Lappert, M. F.; Pearce, R. J. Chem. Soc., Dalton Trans. 1973, 445.

⁽¹²⁾ To a toluene (15 mL) suspension of 1 (217 mg, 1.0 mmol) was slowly added a toluene (10 mL) solution of Hf(CH₂SiMe₃)₄ (527 mg, 1.0 mmol) with stirring at room temperature, and the reaction mixture was stirred overnight. The precipitate was filtered off and washed with toluene (5 mL \times 2). The toluene solutions were then combined and concentrated under vacuum to about 10 mL, from which 2 was isolated as colorless crystals after this solution stood at room temperature overnight (170 mg, 30%). Mp: 53 °C dec. ¹H NMR (benzene- d_6): δ 2.65 (m, 2H, CH₂CH₂N(CH₃)₂), 2.33 (m, 2H, CH₂CH₂N(CH₃)₂), 2.15 (s, 6H, $CH_2CH_2N(CH_3)_2)$, 1.79 (d, J = 12.0 Hz, 2H, $CH_2Si(CH_3)_3)$, 0.91 (d, J = 12.0 Hz, 2H, $CH_2Si(CH_3)_3)$, 0.91 (d, J = 12.0 Hz, 2H, $CH_2Si(CH_3)_3$), 0.91 (d, J = 12.0 Hz, 2H, $CH_2Si(CH_3)_3$), 0.91 (d, J = 12.0 Hz, 2H, $CH_2Si(CH_3)_3$), 0.91 (d, J = 12.0 Hz, 2H, $CH_2Si(CH_3)_3$), 0.91 (d, J = 12.0 Hz, 2H, $CH_2Si(CH_3)_3$), 0.91 (d, J = 12.0 Hz, 2H, $CH_2Si(CH_3)_3$), 0.91 (d, J = 12.0 Hz, 2H, $CH_2Si(CH_3)_3$), 0.91 (d, J = 12.0 Hz, 2H, $CH_2Si(CH_3)_3$), 0.91 (d, J = 12.0 Hz, 2H, $CH_2Si(CH_3)_3$), 0.91 (d, J = 12.0 Hz, 2H, $CH_2Si(CH_3)_3$), 0.91 (d, J = 12.0 Hz, 2H, $CH_2Si(CH_3)_3$), 0.91 (d, J = 12.0 Hz, 2H, $CH_2Si(CH_3)_3$), 0.91 (d, J = 12.0 Hz, 2H, $CH_2Si(CH_3)_3$), 0.91 (d, J = 12.0 Hz, $CH_$ Ch_2Ch_2N(CH_3)_2), 1.75 (d, $\beta = 12.6$ Hz, 2H, Ch_2SI(CH_3)_3), 0.87 (d, $\beta = 12.0$ Hz, 2H, CH_2SI(CH_3)_3), 0.48 (s, 18H, CH_2SI(CH_3)_3). ¹³C NMR (benzene- d_6): δ 68.9 (CH₂CH₂N(CH₃)₂), 41.8 (CH₂CH₂N(CH₃)₂), 32.0 (CH₂CH₂N(CH₃)₂), 14.4 (CH₂Si(CH₃)₃), 3.1 (CH₂Si(CH₃)₃). ¹¹B NMR (benzene- d_6): δ 7.9 (1B), 3.5 (1B), 0.4 (2B), -3.2 (2B), -5.4 (3B), -21.3(dB). IR (KBr, cm⁻¹): ν_{BR} 2529. Anal. Calcd for $C_{14}H_{43}B_{10}HNS_{12}$: C, 29.59; H, 7.63; N, 2.46. Found: C, 29.23; H, 7.22; N, 2.55.

Figure 1. Molecular structure of $[\eta^{1:}\eta^{6-}(Me_2NCH_2CH_2)-C_2B_{10}H_{11}]Hf(CH_2SiMe_3)_2$ (2). Selected bond distances (Å) and angles (deg): Hf(1)-C(1) = 2.489(4), Hf(1)-B(2) = 2.705(5), Hf(1)-C(3) = 2.674(4), Hf(1)-B(4) = 2.418(5), Hf(1)-B(5) = 2.593(5), Hf(1)-B(6) = 2.732(5), Hf(1)-N(1) = 2.340(4), Hf(1)-C(15) = 2.173(4), Hf(1)-C(19) = 2.163(5); Si(1)-C(15)-Hf(1) = 130.7(2), Si(2)-C(19)-Hf(1) = 141.7-(3), C(15)-Hf(1)-N(1) = 92.8(1), C(19)-Hf(1)-N(1) = 95.7-(2), C(15)-Hf(1)-C(19) 105.2(2).

face: for example, 2.505(5) Å in $[Cp^*(C_2B_9H_{11})HfMe]_n^{3e}$ and 2.516(10) Å in $(Cp^*)(\eta^5-C_2B_9H_{11})Hf(\mu-\eta^5:\eta^{1-}C_2B_9H_{10}) Hf(Cp^*)(H)$,^{3f} but is close to the average Zr-cage atom distance of 2.623(5) Å found in $[\eta^5:\eta^6:\sigma$ -Me₂Si(C₉H₆)- $(C_2B_{10}H_{10}CH_2NMe)]Zr(NC_5H_5)^6$ if the difference, 0.02 Å, between Shannon's ionic radii¹⁴ of Zr(IV) and Hf(IV) is taken into account. The Hf–C σ bond distances of 2.173-(4) and 2.163(5) Å with an average value of 2.168(5) Å compare to the average Hf–C distances of 2.261(12) Å in $(C_{23}H_{28}N_4-4,5)Hf(CH_2SiMe_3)_2$, ^{15a} 2.331(16) Å in $(C_{20}-H_{22}N_4-3,3)Hf(CH_2SiMe_3)_2$, ^{15a} 2.316(8) Å in Cp₂Hf(CH₂-CMe₂)(PMe₃), ^{15b} and 2.255(1) Å in Cp₂Hf(CH₂CH₂CPh=CPh). ^{15c}

In summary, the alkane elimination reaction of Hf-(CH₂SiMe₃)₄ with the zwitterionic salt 1-Me₂NHCH₂-CH₂-1,3-C₂B₁₀H₁₂ (1) resulted in the isolation and structural characterization of the first example of halfsandwich group 4 metallacarborane alkyls of the C₂B₁₀ system. The advantages of using 1 as a reagent are as follows: (1) to avoid redox reactions, facilitating the formation of high-valent group 4 metallacarboranes, (2) to stabilize the resultant metal alkyl complexes via the intramolecular coordination, and (3) to provide the second acidic proton. This is also a new route to highvalent group 4 metallacarboranes.

Acknowledgment. The work described in this article was supported by grants from the Research Grants Council of the Hong Kong Special Administration Region (Project No. CUHK4254/01P), Direct Grant (Project No. 2060274), and State Key Laboratory of Elemento-Organic Chemistry, Nankai University (Project No. 0314).

Supporting Information Available: Tables of crystallographic data collection details, atomic coordinates, bond distances and angles, anisotropic thermal parameters, and hydrogen atom coordinates for complex **2** as CIF files. This material is available free of charge via the Internet at http://pubs.acs.org.

OM050290Y

⁽¹⁴⁾ Shannon, R. D. Acta Crystallogr. 1976, A32, 751.

^{(15) (}a) Scott, M. J.; Lippard, S. J. Inorg. Chim. Acta 1997, 263,
287. (b) Buchwald, S. L.; Kreutzer, K. A.; Fisher, R. A. J. Am. Chem.
Soc. 1990, 112, 4600. (c) Erker, G.; Dorf, U.; Rheingold, A. L.
Organometallics 1988, 7, 138.