A Family of Scandium and Yttrium Tris((trimethylsilyl)methyl) Complexes with Neutral N₃ **Donor Ligands**

Cara S. Tredget, Sally C. Lawrence, Benjamin D. Ward, Robert G. Howe, Andrew R. Cowley, and Philip Mountford*

Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.

Received March 19, 2005

The first group 3 organometallic compounds containing the tris(3,5-dimethylpyrazolyl)methane $(HC(Me_2pz)_3)$ and 1,3,5-trimethyltriazacyclohexane $(Me_3[6]aneN_3)$ ligands are reported, together with the homologous 1,4,7-triazacyclononane-supported compounds and trichloride derivatives for many of the ligands. Reaction of $M(CH_2SiMe_3)_3(THF)_2$ (M = Sc, Y) with $Me_3[9]aneN_3$ (1.4,7-trimethyltriazacyclononane), $HC(Me_2pz)_3$, or $Me_3[6]aneN_3$ gave the corresponding tris((trimethylsilyl)methyl) derivatives M(Me₃[9]aneN₃)(CH₂SiMe₃)₃ (M = Sc (1), Y (2)), M{HC(Me_2pz)_3}(CH_2SiMe_3)_3 (M = Sc (3), Y (4)), and M(Me_3[6]aneN_3)(CH_2- $SiMe_{3}$ (M = Sc (12), Y (13)). Reaction of 3 with 2,6-dimethylphenol (ArOH) gave the tris-(aryloxide) derivative $Sc{HC(Me_2pz)_3}(OAr)_3$ (9), and reaction of $HC(Me_2pz)_3$ with MCl_3 gave $M{HC(Me_2pz)_3}Cl_3$ (M = Sc (5), Y(6)). Attempts to prepare tris((trimethylsilyl)methyl) complexes with the more sterically demanding tris(3-R-pyrazolyl) methanes ($R = {}^{i}Pr$, Ph, ^tBu) or the related tris(pyrazolyl)methylsilane ligand were unsuccessful. However, the trichlorides $M{HC(iPrpz)_3}Cl_3$ (M = Sc (7), Y (8)) and $M{MeSi(Me_2pz)_3}Cl_3$ (M = Sc (10), Y (11)) could be made. In related studies the reaction of ScCl₃(THF)₃ with Me₃[6]aneN₃ afforded $Sc(Me_3[6]aneN_3)Cl_3$ (14), but the yttrium congener could not be prepared. The compounds 1, 3, 4, 9, 11, and 14 have been crystallographically characterized. Competitive ligand exchange reactions for the tris(alkyl) compounds M(L)(CH₂SiMe₃)₃ established the binding preference $L = Me_3[9]aneN_3 > Me_3[6]aneN_3 > HC(Me_2pz)_3$ for M = Sc and $L = Me_3[9]aneN_3$ > HC(Me₂pz)₃ > Me₃[6]aneN₃ for M = Y. Reaction of ScR₃(THF)₂ (R = CH₂SiMe₃, Ph) with 1-(3,5-di-tert-butyl-2-hydroxybenzyl)-4,7-dimethyltriazacyclononane (HL¹) or 1-(3,5-di-tertbutyl-2-hydroxybenzyl)-4,7-diisopropyltriazacyclononane (HL²) gave organoscandium derivatives of mono(phenoxy)-substituted triazacyclononane ligands, namely $Sc(L^1)R_2$ (R = CH_2SiMe_3 (15), Ph (17)) and $Sc(L^2)(CH_2SiMe_3)_2$ (16). Reaction of 15 with 2 equiv of TolOH (Tol = p-tolyl) afforded $Sc(L^1)(OTol)_2$ (18), which was crystallographically characterized.

Introduction

Non-cyclopentadienyl organometallic compounds of group 3 (and the lanthanide 4f elements) are currently attracting considerable attention. A range of neutral and (especially) anionic supporting ligands have recently been employed in these efforts, and this work has recently been comprehensively reviewed.¹⁻³ One particular emphasis has been on the synthesis and reactivity (including olefin polymerization catalysis $^{4-6}$) of cationic alkyl derivatives; Okuda has very recently reviewed the latter rapidly evolving area.⁷ Our present contribution reports the development of scandium and

vttrium tris((trimethylsilyl)methyl) complexes supported by a family of neutral *fac*-coordinated N₃ donor ligands, together with some related systems. Bercaw⁸ reported the first group 3 complexes of 1,4,7-trimethyltriazacyclononane ($Me_3[9]aneN_3$; see Chart 1 for the ligands used herein and the nomenclature adopted), namely $M(Me_3[9]aneN_3)X_3$ (I in Chart 2; M = Sc, Y; X= Cl, Me). Reaction of Sc(Me₃[9]aneN₃)Me₃ with BAr^{F₃} $(Ar^F = C_6F_5)$ in THF-*d*₈ afforded a species (not isolated) which was formulated as $Sc(Me_3[9]aneN_3)Me_2(\mu-Me)$ -BAr^F₃. The NMR spectra of this compound were broad, but the compound nonetheless "proved competent" for ethylene polymerization at 80 °C (no activity data were given). Hessen subsequently disclosed the triazacyclononane-amide group 3 complexes II (Chart 2, M = Y,⁹ La¹⁰). Activation of the yttrium congener with $[PhNMe_2H][BAr^{F_4}]$ forms a cationic alkyl complex which is active for the polymerization of ethylene.⁹ Okuda has

^{*} To whom correspondence should be addressed. E-mail: philip.mountford@chem.ox.ac.uk

⁽¹⁾ Piers, W. E.; Emslie, D. J. H. Coord. Chem. Rev. 2002, 233-234, 131.

⁽²⁾ Edelmann, F. T.; Freckmann, D. M. M.; Schumann, H. Chem. Rev. 2002, 102, 1851.

⁽³⁾ Mountford, P.; Ward, B. D. Chem. Commun. 2003, 1797 (feature article review).

⁽⁴⁾ Gromada, J.; Carpentier, J.-F.; Mortreux, A. Coord. Chem. Rev. (4) Groman, e., e., f.
2004, 248, 397.
(5) Gibson, V. C.; Spitzmesser, S. K. Chem. Rev. 2003, 103, 283.
(6) Hou, Z.; Wakatsuki, Y. Coord. Chem. Rev. 2002, 231, 1.
(6) Hou, Z.; Oberla, J. Adv. Swith Catal 2005, 347, 339.

⁽⁷⁾ Arndt, S.; Okuda, J. Adv. Synth. Catal. 2005, 347, 339.

⁽⁸⁾ Hajela, S.; Schaefer, W. P.; Bercaw, J. E. J. Organomet. Chem. 1997, 532, 45.

⁽⁹⁾ Bambirra, S.; van Leusen, D.; Meetsma, A.; Hessen, B.; Teuben, J. H. Chem. Commun. 2001, 637.

⁽¹⁰⁾ Tazelaar, C. G. J.; Bambirra, S.; van Leusen, D.; Meetsma, A.; Hessen, B.; Teuben, J. H. Organometallics 2004, 23, 936.

 $R' = Me (HL^1) \text{ or } {}^{i}Pr (HL^2)$

recently employed crown ethers (O donors) to stabilize both neutral and cationic lanthanide (trimethylsilyl)methyl complexes such as III (Chart 2), which was the first structurally characterized cationic lanthanidealkyl complex.¹¹ However, the cationic crown ether complexes were not catalytically active. In a recent communication¹² we reported that the tris((trimethylsilyl)methyl) complexes $Sc(L)(CH_2SiMe_3)_3$ (L = Me₃[9]aneN₃, HC(Me₂pz)₃) formed highly active ethylene polymerization catalysts on activation with BAr_{3}^{F} . These are the most active ethylene polymerization catalysts reported to date for cationic scandium systems. Furthermore, $Sc{HC(Me_2pz)_3}(CH_2SiMe_3)_3$ was the first group 3 organometallic compound of $HC(Me_2pz)_3$,¹³ which is the neutral analogue of the very widely exploited tris(pyrazolyl)hydroborate ligand, [HB(Me₂pz)₃]⁻.¹⁴⁻¹⁶ The CH₂SiMe₃ ligands appear to be critical to good catalyst activity, since Bercaw's Sc(Me₃- $[9]aneN_3)Me_3$ gave about 15% of the activity under otherwise identical conditions.^{17} The cationic alkyl complex [Sc{HC(Me₂pz)₃}(CH₂SiMe₃)₂(THF)]⁺ was isolated as its $[BAr_{4}^{F}]^{-}$ salt.¹² Full details of our work on

the synthesis and stoichiometric and catalytic chemistry of *cationic* alkyl systems will be reported in a future contribution.

In this paper we report the synthesis and structural characterization of new organo-scandium and -yttrium complexes of $Me_3[9]aneN_3$, as well as the first group 3 organometallic and coordination complexes of $HC(Me_2pz)_3$ and 1,3,5-trimethyltriazacyclohexane ($Me_3[6]aneN_3$). We also report the first group 3 complexes of $MeSi(Me_2pz)_3$ as well as organoscandium derivatives of mono-(phenoxy)-substituted triazacyclononane ligands (L^1 and L^2 ; Chart 1). This family of compounds forms the basis for exploring further the stoichiometric and catalytic chemistry of group 3 neutral and cationic alkyl complexes.¹⁸

Results and Discussion

The syntheses of the new tris((trimethylsilyl)methyl) complexes of scandium and/or yttrium are summarized in Scheme 1. All start from the readily available $M(CH_2-SiMe_3)_3(THF)_2$ starting materials¹⁹ and previously reported face-capping ligands.^{20–23}

Compounds with Me₃[9]aneN₃ Ligands. Triazacyclononanes and their N-functionalized derivatives have been used as effective face-capping ligands across the full range of transition, main-group, and lanthanide metals. However, their organometallic chemistry in group 3 is comparatively underdeveloped, as discussed above. The compounds M(Me₃[9]aneN₃)(CH₂SiMe₃)₃ (M = Sc (1), Y (2)) were readily obtained as pale air- and moisture-sensitive solids in ca. 60-70% isolated yield. The NMR spectra of the new compounds suggest C_{3v} symmetry. The "up" and "down" (with respect to the metal) ring methylene protons appear as mutually coupled second-order multiplets consistent with the macrocycle being κ^3 bound to the M(CH₂SiMe₃)₃ fragment, the methylene and SiMe₃ protons of which appear as singlets. As shown by ¹H NMR spectroscopy in C₆D₆, the reactions to form **1** and **2** are quantitative. The X-ray structure of 1 has been determined and is discussed below. However, for this compound (and 2 and some other alkyl complexs reported herein) we have been unable to gain satisfactory elemental analysis, especially for carbon. For example, diffraction-quality crystals of **1** consistently gave lower than expected carbon analysis (in three different analytical laboratories), even when combustion aids were used. We believe that on the basis of the NMR spectra and several X-ray crystal structures that the compounds are authentic and analytically pure but that either their lability on heating or incomplete combustion is responsible for the disappointing elemental analyses.

Scheme 1. Synthesis of New Tris((trimethylsilyl)methyl) Complexes of Me₃[9]aneN₃, HC(Me₂Pz)₃, and Me₃[6]aneN₃

M = Sc (12) or Y (13)

Crystals of 1 contain two independent molecules in the asymmetric unit, and there are no significant differences between them. One of the two molecules is represented in Figure 1, and selected bond lengths and angles for both of them are listed in Table 1. The geometry at Sc is approximately octahedral, and while the Sc-CH₂ distances (average 2.279 Å) and Sc-CH₂-Si angles (average 135.7°) are within previously re-

Figure 1. Displacement ellipsoid plot (25% probability) of one of the two crystallographically independent molecules of Sc(Me₃[9]aneN₃)(CH₂SiMe₃)₃ (1). H atoms are omitted for clarity.

Table 1. Selected Bond Lengths (Å) and Angles (deg) for $Sc(Me_3[9]aneN_3)(CH_2SiMe_3)_3 (1)^a$

(Lo]ou= 00/ (ο ==Δ/	
Sc(1) - N(1)	2.4688(15)	[2.4537(14)]
Sc(1) - N(2)	2.4604(14)	[2.4664(14)]
Sc(1) - N(3)	2.4726(14)	[2.4583(14)]
Sc(1) - C(10)	2.2887(17)	[2.2799(17)]
Sc(1) - C(14)	2.2970(17)	[2.2952(16)]
Sc(1) - C(18)	2.2574(18)	[2.2572(18)]
N(1)-Sc(1)-N(2)	71.81(5)	[71.30(5)]
N(1)-Sc(1)-N(3)	71.21(5)	[72.20(5)]
N(2)-Sc(1)-N(3)	70.87(5)	[71.52(5)]
N(1)-Sc(1)-C(10)	158.16(6)	[160.02(6)]
N(2)-Sc(1)-C(10)	90.90(6)	[92.94(6)]
N(3)-Sc(1)-C(10)	90.85(6)	[91.49(6)]
N(1)-Sc(1)-C(14)	91.34(6)	[90.53(5)]
N(2)-Sc(1)-C(14)	159.42(5)	[158.01(6)]
N(3)-Sc(1)-C(14)	92.89(6)	[91.52(5)]
C(10) - Sc(1) - C(14)	102.20(6)	[101.62(6)]
N(1)-Sc(1)-C(18)	94.13(7)	[97.34(6)]
N(2)-Sc(1)-C(18)	93.17(6)	[94.79(6)]
N(3)-Sc(1)-C(18)	160.83(6)	[164.70(6)]
C(10)-Sc(1)-C(18)	100.20(7)	[96.12(7)]
C(14) - Sc(1) - C(18)	99.93(7)	[99.88(6)]
Sc(1)-C(10)-Si(1)	131.02(9)	[125.38(9)]
Sc(1)-C(14)-Si(2)	135.87(9)	[138.36(9)]
Sc(1)-C(18)-Si(3)	141.35(10)	[142.31(10)]

^a Values in brackets correspond to the other crystallographically independent molecule in the asymmetric unit.

ported^{24,25} ranges (distances, range 2.166-2.295, average 2.232 Å; angles, range 115.5–149.8, average 131.7°) for compounds containing a $Sc-CH_2SiR_3$ ligand ($R_3 =$ Me₃ or Me₂Ph), they are certainly among the largest reported to date. However, precise comparisons cannot be made, since there is no six-coordinate tris((triorganosilyl)methyl) derivative among the 15 compounds containing a Sc-CH₂SiR₃ linkage listed on the current Cambridge Crystallographic Database.^{24,25} The structurally characterized compounds closest to 1 (and also to **3** described below) are Piers' Sc(CH₂SiMe₂Ph)₃(THF)₂ (average Sc-CH₂ = 2.251 Å, average Sc-CH₂-Si = $123.4^{\circ})^{26}$ and $Sc{HB(Me_2pz)_3}(CH_2SiMe_3)_2(THF)$ (average Sc-CH₂ = 2.251 Å, average Sc-CH₂-Si = 134.9°), the latter being formally zwitterionic with a positive charge at Sc and a negative charge at boron.²⁷ The

(11) Arndt, S.; Zeimentz, P. M.; Spaniol, T. P.; Okuda, J.; Honda, M.; Tatsumi, K. Dalton 2003, 3622. (12) Lawrence, S. C.; Ward, B. D.; Dubberley, S. R.; Kozak, C. M.;

Mountford, P. Chem. Commun. 2003, 2880.

(13) For an up-to-date review see: Bigmore, H. R.; Lawrence, S. C.; Mountford, P.; Tredget, C. S. Dalton 2005, 635.

(14) Trofimenko, S. Chem. Rev. 1993, 93, 943.

(15) Trofimenko, S. The Coordination Chemsitry of Pyrazole-Derived Ligands; Wiley: New York, 1986.

(16) Trofimenko, S. Chem. Rev. 1972, 72, 497.

(17) Tredget, C. S.; Mountford, P. Unpublished results.

(18) Note added during manuscript revision: Gade has very recently reported a tris(oxazoline) organoscandium compound akin to some of the compounds we report herein: Ward, B. D.; Bellemin-Laponnaz,

S.; Gade, L. H. Angew. Chem., Int. Ed. **2005**, 44, 1668. (19) Lappert, M. F.; Pearce, R. J. Chem. Soc., Chem. Commun. **1973**,

126. (20) Madison, S. A.; Batal, D. J. (Unilever PLC, U.K.; Unilever NV)

U.S. Patent 5,284,944, 1994. (21) Hoerr, C. W.; Rapkin, E.; Brake, A. E.; Warner, K. N.; Harwood,

H. J. J. Am. Chem. Soc. 1956, 78, 4667. (22) Reger, D. L.; Grattan, T. C.; Brown, K. J.; Little, C. A.; Lamba,

J. J. S.; Rheingold, A. L.; Sommer, R. D. J. Organomet. Chem. 2000, 607. 120.

(23) Pullen, E. E.; Rheingold, A. L.; Rabinovich, D. Inorg. Chem. Commun. 1999, 194.

(24) Allen, F. H.; Kennard, O. Chem. Des. Automation News 1993, 8, 1, 31.

(25) Fletcher, D. A.; McMeeking, R. F.; Parkin, D. J. J. Chem. Inf. *Comput. Sci.* **199**, *36*, 746. (26) Emslie, D. J. H.; Piers, W. E.; Parvez, M.; McDonald, R.

Organometallics 2002, 21, 4226.

relatively long Sc–CH₂ distances and obtuse Sc–CH₂– Si angles in **1** are attributed to the six-coordinate, comparatively crowded environment in this compound. While there is some variation between the individual Sc–CH₂ distances and Sc–CH₂–Si angles, it is not clear why this should be, on the basis of the intermolecular disposition of the CH₂SiMe₃ groups. The Sc–N distances (average 2.463 Å) are considerably longer than in Bercaw's Sc(Me₃[9]aneN₃)Cl₃ (average 2.337 Å),⁸ due to the additional steric crowding in **1** and the better donor ability of CH₂SiMe₃ in comparison to Cl.

Compounds with Tris(pyrazolyl)methane and Tris(pyrazolyl)methylsilane Ligands. Tris(pyrazolyl)methane ligands¹³ are the neutral analogues of the tris(pyrazolyl)hydroborates,¹⁴⁻¹⁶ among which [HB-(Me₂pz)₃]⁻ ("Tp*") is the most widely used. Tris(pyrazolyl)hydroborate derivatives of the group 3 (and lanthanide) elements in general are extremely wellknown,²⁸ and within group 3 the organometallic compounds $Y\{HB(Me_2pz)_3\}R_2(THF) (R = CH_2SiMe_3, Ph),^{29}$ $Sc{HB(Me_2pz)_3}(CH_2SiMe_3)_2(THF)$, and $Sc{HB(^tBu, Mepz_{3}$ (CH₂SiMe₃)₂²⁷ have recently been described by Bianconi (yttrium) and Piers. In contrast, only one tris-(pyrazolyl)methane compound of the rare-earth metals has so far been described, namely $Ce{HC(pz)_3}(NO_3)_4$, which was disclosed in a crystallographic report in 2002,³⁰ and no rare-earth tris(pyrazolyl)silane compound has been reported at all.

As summarized in Scheme 1, the compounds $M{HC-(Me_2pz)_3}(CH_2SiMe_3)_3$ (M = Sc (3), Y (4)) are readily prepared from $M(CH_2SiMe_3)_3(THF)_2$ in ca. 60–70% isolated yields as pale-colored solids. Their NMR spectra feature resonances attributed to coordinated $HC(Me_2-pz)_3$ groups as well as CH_2SiMe_3 ligands and are consistent with C_{3v} -symmetrical products. NMR tubescale syntheses are quantitative.

Attempts to prepare homologues of **3** and **4** using the different ring 3-substituted ligands $HC(Rpz)_3$ ($R = {}^iPr$, Ph, tBu ; see Chart 1) gave either ill-defined mixtures ($R = {}^iPr$ or Ph) or no reaction at all. The complexation reactions therefore appear to be rather sensitive to the nature of the pyrazolyl ring 3-substituent. For comparison and completeness we also attempted to prepare trichloride derivatives of the $HC(Me_2pz)_3$ and $HC(Rpz)_3$ ligands (eq 1). The compounds $M{HC(Me_2pz)_3}Cl_3$ (M

E-R = C-H, $R^3 = R^5 = Me$, M = Sc (5) or Y (6) E-R = C-H, $R^3 = {}^{i}Pr$, $R^5 = H$, M = Sc (7) or Y (8) E-R = Si-Me, $R^3 = R^5 = Me$, M = Sc (10) or Y (11)

= Sc (5), Y(6)) were readily isolated (ca. 75% yield), as were the ring 3-isopropyl-substituted homologues M{HC-(ⁱPrpz)₃}Cl₃ (M = Sc (7), Y(8)). However, ill-defined

Figure 2. Displacement ellipsoid plot (25% probability) of Sc{HC(Me₂pz)₃}(CH₂SiMe₃)₃ (**3**). H atoms and toluene molecules of crystallization are omitted for clarity.

Figure 3. Displacement ellipsoid plot (25% probability) of $Y{HC(Me_2pz)_3}(CH_2SiMe_3)_3$ (4). H atoms are omitted for clarity.

products were again formed with HC(Phpz)₃, while no reaction at all occurred with the most sterically demanding ligand, HC(^tBupz)₃. The compounds **5–8** are the first group 3 trichloride compounds of tris(pyrazolyl)methane, and their NMR spectra show the expected C_{3v} symmetry. A structurally characterized tris(pyrazolyl)methylsilane analogue is discussed later; the tris(pyrazolyl)methane complexes are assumed to have comparable molecular structures.

The X-ray structures of the tris((trimethylsilyl)methyl) compounds **3** and **4** have been determined. Displacement ellipsoid plots are shown in Figures 2 and 3, and selected distances and angles are listed in Tables 2 and 3. The structures are broadly similar but will be discussed in turn.

Molecules of 3, like those of 1, feature an approximately octahedral scandium center. The average Sc–N distance (2.420 Å) is somewhat shorter than that in 1 (2.463 Å), but this could to some extent be a consequence of the change in N atom hybridization from sp³ in Me₃-[9]aneN₃ to sp² in Me₂pz and the associated reduction in covalent radius. Further discussion of the differences

Table 2. Selected Bond Lengths (Å) and Angles (deg) for Sc{HC(Me₂Pz)₃}(CH₂SiMe₃)₃ (3)

Sc(1) - N(1)	2.3996(17)	Sc(1) - C(17)	2.291(2)
Sc(1) - N(3)	2.4422(17)	Sc(1) - C(21)	2.269(2)
Sc(1) - N(5)	2.4173(17)	Sc(1) - C(25)	2.281(2)
N(1)-Sc(1)-N(3)	76.63(6)	C(17)-Sc(1)-C(21)	99.87(8)
N(1)-Sc(1)-N(5)	77.76(6)	N(1)-Sc(1)-C(25)	90.20(7)
N(3)-Sc(1)-N(5)	70.83(6)	N(3)-Sc(1)-C(25)	89.34(7)
N(1) - Sc(1) - C(17)	168.87(7)	N(5)-Sc(1)-C(25)	158.61(7)
N(3) - Sc(1) - C(17)	93.98(7)	C(17)-Sc(1)-C(25)	95.72(9)
N(5)-Sc(1)-C(17)	93.63(8)	C(21)-Sc(1)-C(25)	105.89(9)
N(1) - Sc(1) - C(21)	87.50(7)	Sc(1)-C(17)-Si(1)	122.37(11)
N(3) - Sc(1) - C(21)	158.13(7)	Sc(1)-C(21)-Si(2)	134.55(12)
N(5)-Sc(1)-C(21)	91.35(7)	Sc(1)-C(25)-Si(3)	135.52(12)

Table 3. Selected Bond Lengths (Å) and Angles (deg) for Y{HC(Me₂Pz)₃}(CH₂SiMe₃)₃ (4)

. 0	L		÷ · ·
Y(1)-N(1) Y(1)-N(3)	2.601(2) 2.563(2)	Y(1)-C(17) Y(1)-C(21) Y(1) = C(25)	2.434(3) 2.448(3)
Y(1)-N(5) N(1)-Y(1)-N(3)	2.596(2) 70.80(8)	Y(1)-C(25) C(17)-Y(1)-C(21)	2.420(4) 99.42(11)
N(1)-Y(1)-N(5) N(3)-Y(1)-N(5)	70.11(8) 70.59(8)	$\begin{array}{c} N(1){-}Y(1){-}C(25)\\ N(3){-}Y(1){-}C(25) \end{array}$	90.75(11) 89.60(11)
$\begin{array}{c} N(1){-}Y(1){-}C(17)\\ N(3){-}Y(1){-}C(17) \end{array}$	$\frac{160.68(10)}{97.10(10)}$	$\begin{array}{c} N(5){-}Y(1){-}C(25)\\ C(17){-}Y(1){-}C(25) \end{array}$	$\begin{array}{c} 155.84(11) \\ 104.51(13) \end{array}$
$\begin{array}{c} N(5){-}Y(1){-}C(17) \\ N(1){-}Y(1){-}C(21) \end{array}$	$\begin{array}{c} 91.91(10) \\ 87.94(10) \end{array}$	C(21)-Y(1)-C(25) Y(1)-C(17)-Si(1)	$\begin{array}{c} 104.31(12) \\ 136.35(16) \end{array}$
N(3)-Y(1)-C(21) N(5)-Y(1)-C(21)	154.89(10) 90.02(9)	Y(1)-C(21)-Si(2) Y(1)-C(25)-Si(3)	$125.32(16) \\ 137.0(2)$

in Sc–N distances between 1 and 3 is limited by the paucity of crystallographic data for pairs of homologous complexes $M(Me_3[9]aneN_3)(L)_n$ and $M\{HC(Me_2pz)_3\}(L)_n$. Data for just one pair of such compounds are available, namely Ti(Me_3[9]aneN_3)(N^tBu)Cl_2 (average Ti-N_{macro-cycle} = 2.377 Å)^{31} and Ti $\{HC(Me_2pz)_3\}(N^tBu)Cl_2^{32}$ (average Ti-N_{Me2pz} = 2.291 Å). In these two compounds there is also a decrease in metal–N distance on going from the Me_3[9]aneN_3 to the $HC(Me_2pz)_3$ ligand.

The average Sc-CH₂ distance in **3** (2.280 Å) is indistinguishable from that in **1** (2.279 Å), but the average Sc-CH₂-Si angle (130.8°) and range of values (122.37(11)-135.52(12)°) is somewhat less than those in **1** (average 135.7°, range 125.38(9)-142.31(10)°). A closer inspection of **3** shows that two of the SiMe₃ groups (containing Si(2) and Si(3)) are oriented "up" toward the HC(Me₂pz)₃ ligand and are partially accommodated in the clefts between pairs of Me₂pz rings. The other SiMe₃ (Si(1)) is oriented "down", and this has the smaller Sc-CH₂-Si angle (122.37(11)° subtended at C(17)), possibly indicative of reduced steric repulsion for this individual moiety (but see below).

The structure of **4** is very similar to that of **3** but features one SiMe₃ (Si(1)) oriented "up" and two "down". However, in this case the angle subtended at C(17) (136.35(16)°, associated with the "up" SiMe₃) is indistinguishable from that at C(25) for one of the "down" SiMe₃ groups, and so it is probably unsafe to advance a simple explanation of the trends in $M-CH_2-SiMe_3$ angles in the compounds reported herein. The average $Y-CH_2-SiMe_3$ angle in 4 (132.9°) is rather similar to that in 3 (130.8°) and also in Evans' 6-coordinate $Y(CH_2-SiMe_3)_3(THF)_3^{33}$ (average 134.6°) and Okuda's 7-coordinate $Y(CH_2SiMe_3)_3(12$ -crown-4)¹¹ (average 129.2°). These last two compounds (being the only two previously reported structurally authenticated tris((trimethylsilyl)methyl)yttrium complexes) have average $Y-CH_2$ distances of 2.427 and 2.417 Å, respectively, which are comparable to that of 4 (average 2.420 Å).

As for the Me₃[9] ane systems 1 and 2, the combustion analyses for crystallographically authenticated 3 and 4 were reproducibly poor (note, however, that the trichlorides 5-8 did not exhibit this problem). To gain further support for the authenticity of these compounds, the alcoholoysis reaction of 3 with ArOH (3 equiv; Ar = 2,6-C₆H₃Me₂) was carried out to form analytically pure Sc{HC(Me₂pz)₃}(OAr)₃ (9) in 81% isolated yield (eq 2).

When it was followed on an NMR tube scale (CD_2Cl_2) , the reaction was quantitative and the sole side product was SiMe₄. The room-temperature ¹H and ¹³C NMR spectra of 9 showed broad resonances for the ortho and meta groups of the Ar substituent, consistent with restricted rotation about the Sc-OAr bonds. At -20 °C the fluxional process was frozen out and the spectra were consistent with the solid-state structure, as determined by X-ray crystallography (Figure 4, with selected bond distances and angles given in Table 4) showing, for example, two o-methyl group environments for the OAr ligands at δ 2.48 ppm ("down", away from the HC(Me₂pz)₃ ligand) and 1.19 ppm ("up"). The relatively high field shift of the "up" o-Me resonance is attributed to the shielding ring-current effects of nearby Me₂pz ligands.

In the solid state, molecules of **9** lie on crystallographic 3-fold rotation axes which render all three OAr (and also Me₂pz rings) strictly equivalent. The Sc-N distance of 2.3543(19) Å is significantly shorter than the average value of 2.420 Å for Sc{HC(Me₂pz)₃}(CH₂-SiMe₃)₃ (**3**), reflecting the reduced trans influence of OAr in comparison with CH₂SiMe₃. The Sc-O distance of

⁽²⁷⁾ Blackwell, J.; Lehr, C.; Sun, Y.; Piers, W. E.; Pearce-Batchilder,
S. D.; Zaworotko, M. J.; Young, V. G., Jr. Can. J. Chem. 1997, 75, 702.
(28) Marques, N.; Sella, A.; Takats, J. Chem. Rev. 2002, 102, 2137.
(29) Long, D. P.; Bianconi, P. A. J. Am. Chem. Soc. 1996, 118, 12453.
(30) Chen, S. J.; Li, Y. Z.; Chen, X. T.; Shi, Y. J.; You, X. Z. Acta

 ⁽³¹⁾ Wilson, P. J.; Blake, A. J.; Mountford, D. P.; Schröder, M. Chem.
 (31) Wilson, P. J.; Blake, A. J.; Mountford, D. P.; Schröder, M. Chem.

⁽³²⁾ Lawrence, S. C., D.Phil. Thesis, University of Oxford, 2003.

⁽³³⁾ Evans, W. J.; Brady, J. C.; Ziller, J. W. J. Am. Chem. Soc. 2001, 123, 7711.

Figure 4. Displacement ellipsoid plot (25% probability) of Sc{MeSi(Me₂pz)₃}(OAr)₃ (**9**). H atoms and benzene molecules of crystallization are omitted for clarity. Atoms carrying the suffixes A and B are related to their counterparts by the symmetry operators -y, x - y + 1, z and -x + y - 1, -x, z, respectively.

Table 4. Selected Bond Lengths (Å) and Angles (deg) for Sc{MeSi(Me₂Pz)₃}(OAr)₃ (9)^a

Sc(1)-O(1)	1.9615(16)	Sc(1)-N(1)	2.3543(19)
$\begin{array}{l} N(1) {-} Sc(1) {-} N(1A) \\ O(1) {-} Sc(1) {-} N(1) \\ O(1) {-} Sc(1) {-} O(1A) \end{array}$	$\begin{array}{c} 75.20(7) \\ 85.92(7) \\ 103.74(6) \end{array}$	$\begin{array}{c} Sc(1){-}N(1){-}N(2)\\ Sc(1){-}N(1){-}C(1)\\ Sc(1){-}O(1){-}C(7) \end{array}$	$\begin{array}{c} 123.41(13) \\ 131.84(16) \\ 174.41(17) \end{array}$

^{*a*} Atoms carrying the suffix A are related to their counterparts by the symmetry operator -y, x - y + 1, *z*.

1.9615(16) Å is within known ranges for such linkages (range, 1.853–2.149; average 1.975 Å for eight examples).^{24,25}

We also attempted to prepare analogous tris((trimethylsilyl)methyl) compounds using the homologous silicon-capped ligand MeSi(Me₂pz)₃ in reaction with M(CH₂SiMe₃)₃(THF)₂. There have been only three reports of complexes of this ligand to date, and none from group $3.^{23,34,35}$ Surprisingly, these reactions gave rather complicated mixtures on both the preparative and NMR tube scales. However, the trichloride derivatives M{MeSi-(Me₂pz)₃}Cl₃ (M = Sc (10), Y (11)) could readily be prepared in 79 and 54% isolated yields, respectively (eq 1), and, being the first group 3 complexes of this ligand, are included here for completeness. Attempted alkylations of these compounds with LiCH₂SiMe₃ have so far been inconclusive.

Diffraction-quality crystals containing two independent molecules of **11** per asymmetric unit (together with two CH_2Cl_2 molecules of crystallization) were grown from a dichloromethane solution. There are no substantial differences between the two molecules, and the structure of one of them is shown in Figure 5. Selected

Figure 5. Displacement ellipsoid plot (25% probability) of one of the two crystallographically independent molecules of $Y\{MeSi(Me_2pz)_3\}Cl_3$ (11). H atoms and dichloromethane molecule of crystallization are omitted for clarity.

Table 5.	Selected	Bond	Lengths	(A)	and	Angles
(0	leg) for Y	{MeSi	$(Me_2Pz)_3$	Cl ₃	(11)	-

U		-	
Y(1)-Cl(1)	2.5527(10)		[2.5768(9)]
Y(1)-Cl(2)	2.5782(10)		[2.5775(10)]
Y(1)-Cl(3)	2.5678(10)		[2.5528(10)]
Y(1) - N(1)	2.454(3)		[2.448(3)]
Y(1)-N(3)	2.466(3)		[2.481(3)]
Y(1) - N(5)	2.488(3)		[2.447(3)]
Cl(1) - Y(1) - Cl(2)	97.68(4)		[96.64(3)]
Cl(1) - Y(1) - Cl(3)	98.13(4)		[100.67(3)]
Cl(2) - Y(1) - Cl(3)	95.93(4)		[103.16(4)]
Cl(1) - Y(1) - N(1)	163.75(7)		[168.27(7)]
Cl(2) - Y(1) - N(1)	90.32(7)		[90.74(7)]
Cl(3) - Y(1) - N(1)	95.06(7)		[86.42(7)]
Cl(1) - Y(1) - N(3)	91.67(7)		[90.71(7)]
Cl(2) - Y(1) - N(3)	166.34(7)		[167.65(7)]
Cl(3) - Y(1) - N(3)	92.56(7)		[85.11(7)]
N(1) - Y(1) - N(3)	78.26(10)		[80.52(9)]
Cl(1) - Y(1) - N(5)	87.53(7)		[92.02(7)]
Cl(2) - Y(1) - N(5)	92.10(7)		[92.36(7)]
Cl(3) - Y(1) - N(5)	169.45(7)		[158.53(7)]
N(1)-Y(1)-N(5)	78.02(9)		[78.53(9)]
N(3) - Y(1) - N(5)	78.32(10)		[77.42(9)]

bond lengths and angles for both molecules are listed in Table 5. Compound 11 possesses an approximately octahedral yttrium center with average Y-N and Y-Cl distances of 2.464 and 2.568 Å, respectively, which are within the known ranges. However, a more detailed comparison with literature data is limited by the paucity of relevant systems. Just one structure containing a six-coordinate "YN₃Cl₃" core has been reported, this being a very poor quality determination (e.g. R =0.139) of the tris(pyrazolyl)hydroborate-supported anion $[Y{HB(Me_2pz)_3}Cl_3]^-$, which has average Y-N and Y–Cl distances of 2.434 and 2.572 Å, respectively.³⁶ Only one paper describing structures of tris(pyrazolyl)silane complexes has appeared, this being for the M(0), d^6 compounds M{MeSi(Me₂pz)₃}(CO)₃ (M = Cr, Mo, W).35

Compounds with Me₃[6]aneN₃ Ligands. 1,3,5-Triazacyclohexane ligands have smaller ring sizes than their R_3 [9]aneN₃ homologues, and their coordination

⁽³⁴⁾ Vepachedu, S.; Stibrany, R. T.; Knapp, S.; Potenza, J. A.;
Schugar, H. J. Acta Crystallogr. 1995, C51, 423.
(35) Pullen, E. E.; Rabinovich, D.; Incarvito, C. D.; Concolino, T. E.;

⁽³⁵⁾ Pullen, E. E.; Rabinovich, D.; Incarvito, C. D.; Concolino, T. E.; Rheingold, A. L. *Inorg. Chem.* **2000**, *39*, 1561.

⁽³⁶⁾ Roitershtein, D.; Domingos, A.; Pereira, L. C. J.; Ascenso, J. R.; Marques, N. *Inorg. Chem.* **2003**, *42*, 7666.

chemistry in general is less extensively developed in comparison (although in general their syntheses are much more straightforward and the scope for easy variation of the N substituents potentially limitless³⁷). Recently, Köhn and co-workers have shown how R₃[6]ane-supported chromium complexes can be highly effective mimics of the Phillips-type catalysts,³⁸ and so we have chosen to target group 3 tris(alkyl) complexes of Me₃[6]aneN₃. Only one report of rare-earth complexes supported by triazacyclohexane ligands has so far appeared,³⁹ these being the recently described praseodynium species $Pr(Me_3[6]aneN_3)_2(OTf)_3$ and $[Pr_2(Et_3[6]$ $aneN_3)_2(OTf)_4(\mu-OTf)_3]^-$.

As in the previous syntheses (Scheme 1), reaction of $Me_3[6]aneN_3$ with $M(CH_2SiMe_3)_3(THF)_2$ afforded the corresponding products $M(Me_3[6]aneN_3)(CH_2SiMe_3)_3$ (M = Sc (12), Y (13)) as pale yellow solids in ca. 70-80% isolated yield. The reactions were again quantitative on the NMR tube scale in C_6D_6 . The NMR spectra suggest C_{3v} -symmetric products, and the *fac*- κ^3 coordination of the Me_3[6]aneN_3 is indicated by the presence of a pair of mutually coupled doublets for the ring methylene protons in the ¹H NMR spectra. We have not been able to obtain diffraction crystals of **12** and **13**, but their structures are supported by that of the trichloride Sc-(Me_3[6]aneN_3)Cl_3 (14), which was prepared in 66% isolated yield according to eq 3. Reaction of **14** with

 $LiCH_2SiMe_3$ (3 equiv) in C_6D_6 on an NMR tube scale afforded complete conversion to **12**. Attempts to prepare an yttrium analogue of **14** have so far been unsuccessful.

The molecular structure of **14** is shown in Figure 6, and selected bond distances and angles are listed in Table 6. The molecules lie across crystallographic mirror planes and contain an octahedral Sc center and faccoordinated Me₃[6]aneN₃ ligand. Compound 14 is analogous to Bercaw's Sc(Me₃[9]aneN₃)Cl₃, and key parameters between the two can be compared: average Sc-Cl = 2.378 (14) and 2.406 Å; average Sc-N = 2.332 (14)and 2.337 Å; average N-Sc-N = 59.5 (14) and 74.9°. The longer Sc-Cl distance in Sc(Me₃[9]aneN₃)Cl₃ is attributed to the fact that the N donors of the macrocycle lie more strictly trans to the Sc-Cl bonds (average $N-Sc-Cl_{trans} = 163.7^{\circ}$) than in 14 (average N-Sc- $Cl_{trans} = 145.5^{\circ}$) and so exert a larger trans influence. The smaller average N-Sc-N angle in 14 is because of the smaller ring size of Me₃[6]aneN₃. Analogous trends

Figure 6. Displacement ellipsoid plot (30% probability) of Sc(Me₃[6]aneN₃)Cl₃ (14). H atoms are omitted for clarity. Atoms carrying the suffix A are related to their couterparts by the symmetry operator x, $\frac{3}{2} - y$, z.

Table 6. Selected Bond Lengths (Å) and Angles(deg) for Sc(Me₃[6]aneN₃)Cl₃ (14)^a

$\begin{array}{c} Sc(1)-Cl(1)\\ Sc(1)-Cl(2) \end{array}$	2.3829(5) 2.3727(3)	$\begin{array}{c} Sc(1){-}N(1)\\ Sc(1){-}N(2) \end{array}$	$2.3306(15) \\ 2.3331(9)$
$\begin{array}{l} Cl(1) - Sc(1) - Cl(2) \\ Cl(2) - Sc(1) - Cl(2A) \\ Cl(1) - Sc(1) - N(1) \\ Cl(2) - Sc(1) - N(1) \\ Cl(1) - Sc(1) - N(2) \end{array}$	$\begin{array}{c} 105.721(14)\\ 106.67(2)\\ 147.05(4)\\ 93.56(3)\\ 92.48(3) \end{array}$	$\begin{array}{l} Cl(2) - Sc(1) - N(2)\\ Cl(2) - Sc(1) - N(2)\\ N(1) - Sc(1) - N(2)\\ N(2) - Sc(1) - N(2) \end{array}$	$\begin{array}{llllllllllllllllllllllllllllllllllll$

^{*a*} Atoms carrying the suffix A are related to their counterparts by the symmetry operator x, $\frac{3}{2} - y$, z.

are seen in the homologous pair^{40,41} Fe(Me₃[n]aneN₃)-Cl₃ (n = 6, 9): average Fe-Cl = 2.249 (n = 6) and 2.303 Å; average Fe-N = 2.254 (n = 6) and 2.246 Å; average N-Fe-N = 61.0 (n = 6) and 78.0°.

Competitive Binding Studies. Having prepared the new families of organo-group 3 complexes (i.e. the $HC(Me_2pz)_{3}$ - and $Me_3[6]aneN_3$ -supported systems), as well as the homologous compounds with $Me_3[9]aneN_3$, it was of interest to compare the experimental relative binding preferences of the $M(CH_2SiMe_3)_3$ fragments for the various ligands. Such factors may be relevant in the design of catalytic systems based on fac-N₃ ligands. We probed the binding preferences through a series of competitive NMR tube scale reactions in C_6D_6 in which each M(fac-L₃)(CH₂SiMe₃)₃ complex in Scheme 1 was treated with 1 equiv of another of the fac-L₃ donor ligands. The results for the yttrium and scandium systems are described in turn.

For the yttrium compounds **2**, **4**, and **13** the ligand binding preference is $Me_3[9]aneN_3 > HC(Me_2pz)_3 > Me_3-$ [6]aneN₃, with a ligand higher in the binding order being able to quantitatively displace a ligand from lower down the order (reaction times at room temperature were in the range 1–24 h). The binding preference of $Me_3[9]aneN_3$ over $Me_3[6]aneN_3$ may be rationalized in terms of coordination bite angle, with the larger ligand matching the metal better (Köhn has described the metal–ligand orbital directional mismatch typically associated with $R_3[6]ane systems^{38}$). It is also consistent with our previous work on the titanium imido systems

⁽³⁷⁾ For an example and leading references see: Köhn, R. D.; Haufe, M.; Kociok-Köhn, G.; Grimm, S.; Wasserscheid, P.; Keim, W. Angew. Chem., Int. Ed. **2000**, 39, 4337–4339.

⁽³⁸⁾ Köhn, R. D.; Haufe, M.; Mihan, S.; Lilge, D. Chem. Commun. **2000**, 1927.

⁽³⁹⁾ Köhn, R. D.; Pan, Z.; Kociok-Köhn, G.; Mahon, M. F. Dalton 2002, 2344.

⁽⁴⁰⁾ Köhn, R. D.; Kociok-Köhn, G. Angew. Chem., Int. Ed. 1994.
(41) Silver, G. C.; Trogler, W. C. J. Am. Chem. Soc. 1995, 117, 3983.

 $Ti(Me_3[n]aneN_3)(N^tBu)Cl_2$ (n = 6, 9),^{31,42} in which Me₃-[9]aneN₃ quantitatively displaced coordinated Me₃[6]ane N_3 . The binding preference of $Me_3[9]aneN_3$ over $HC(Me_2pz)_3$ (which both appear to have a similar match at the metal in terms of bite angle) may be attributed in general terms to the "macrocylic effect".43 This expression embraces a number of contributing factors, enthalpic and entropic, and further studies would be needed to unravel the various contributions.

The scandium systems 1, 3, and 12 show a different binding order among the N₃ donor ligands. In this case the preference is $Me_3[9]aneN_3 > Me_3[6]aneN_3 > HC(Me_2$ $pz)_3$, and again a ligand higher in the binding order is able to displace quantitatively a ligand from lower down the order. The relative positions of $Me_3[9]aneN_3$ and $Me_3[6]aneN_3$ can be rationalized as above, on the basis of ligand ring size. However, it was surprising that Me₃-[6]ane N_3 would, over the course of several hours at room temperature, quantitatively displace HC(Me₂pz)₃ from **3** to form **12**. It appears that there may be a delicate balance between bite angle and steric and (for Me₃[6]aneN₃) macrocyclic/preorganization effects for the two ligands $Me_3[6]aneN_3$ and $HC(Me_2pz)_3$ in the scandium and yttrium systems. We note in this context that Piers has reported²⁷ that the related tris(pyrazolyl)hydroborate scandium complexes are prone to fac-N3 ligand displacement (albeit with anionic alkyl reagents). Bianconi has reported that this is not apparently the case for congeneric yttrium systems.²⁹ However, Carpentier has recently reported (in contrast to Bianconi's findings) that reaction of Y{HB(Me₂pz)₃}Cl₂(THF) with a range of lithium or potassium salts (including LiCH₂SiMe₃) led essentially to the formation of $M[HB(Me_2pz)_3]$ (M = Li, K).⁴⁴ It appears that the stability of fac-N₃ donor ligands toward displacement from group 3 metals may be sensitive to a number of subtle experimental factors.

Organoscandium Complexes of Pendant Arm Functionalized Triazacyclononanes. Although pendant arm functionalized macrocycles have a rich and extensive coordination chemistry (e.g., in the areas of selective ion binding, sensors, and bioinorganic chemistry), 43,45-47 they have only recently started to be employed in organometallic and related chemistry. As mentioned above, Hessen has described catalytic and stoichiometric chemistry arising from triazacyclononane-amide group 3 complexes II (Chart 2). Recently Arnold⁴⁸ and Peters⁴⁹ have reported cyclopentadienyl-functionalized triazacyclonane ligands, and Meyer has used a series of uranium complexes of tris(hydroxybenzyl)-substituted triazacyclononanes to considerable effect in the smallmolecule binding chemistry of uranium.^{50,51} We have recently reported^{52,53} work on neutral and cationic organoaluminum and -indium complexes of phenoxy-

- (46) Chaudhuri, P.; Wieghardt, K. Prog. Inorg. Chem. 1987, 35, 329.
 (47) Costamagna, J.; Ferraudi, G.; Matsuhiro, B.; Campos-Vallette,
- M.; Canales, J.; Villagran, M.; Vargas, J.; Aguirre, M. J. Coord. Chem. Rev. 2000, 196, 125.
- (48) Giesbrecht, G. R.; Cui, C.; Shafir, A.; Schmidt, J. A. R.; Arnold, J. Organometallics 2002, 21, 3841.
- (49) Qian, B.; Henling, L. M.; Peters, J. C. Organometallics 2000, 19, 2805.

and alkoxy-functionalized triazacyclononane ligands, including compounds derived from the previously reported^{52,54} protio ligands HL¹ and HL² (Chart 1). Following Hessen's work on the triazacyclononane-amide systems II, we were interested to prepare group 3 compounds based on triazacyclononane-phenoxide ligands.

Reaction of the protio ligands HL^1 and HL^2 with Sc(CH₂SiMe₃)₃(THF)₂ in cold benzene afforded the compounds $Sc(L^1)(CH_2SiMe_3)_2$ (15) and $Sc(L^2)(CH_2 SiMe_{3}$ (16) in ca. 50–70% isolated yields (eq 4). The

corresponding reaction of HL¹ with ScPh₃(THF)₂ gave $Sc(L^1)Ph_2(17)$ in 38% isolated yield, but reaction of HL^1 with $Y(CH_2SiMe_3)_3(THF)_2$ did not give a clean product on either the preparative or NMR tube scale (C_6D_6). Use of the more sterically demanding protio ligand HL² (Nisopropyl-substituted homologue) appeared to give an yttrium congener of 16, but the data for this compound were somewhat ambiguous. Unlike the rather simple NMR spectra of C_{3v} -symmetric M(Me₃[9]aneN₃)(CH₂- $SiMe_{3}$ (1 and 2), those of 15–18 show (as expected) no molecular symmetry and are consistent with the structures proposed in eq 4, in which a deprotonated hydroxybenzyl arm is coordinated to the metal center. Furthermore, compounds 15 and 16 showed the appropriate molecular ions (correct m/z and isotope distribution pattern) in their EI mass spectra. We were unable to grow diffraction-quality crystals of the organometallic compounds. However, the protonolysis reaction of **15** with TolOH (2 equiv, Tol = p-tolyl) cleanly afforded SiMe₄ (identified in an NMR tube scale reaction) and $Sc(L^1)(OTol)_2$ (18, eq 5), which has been

⁽⁴²⁾ Wilson, P. J.; Blake, A. J.; Mountford, P.; Schröder, M. J. Organomet. Chem. 2000, 600, 71.

⁽⁴³⁾ Lindoy, L. F. The Chemistry of Macrocyclic Ligand Complexes; (ab) Linky of the Order of Grand Gyrae Light Computer, Cambridge University Press: Cambridge, U.K., 1989.
 (44) Kunrath, F. A.; Casagrande, O. L.; Toupet, L.; Carpentier, J.-

F. Polyhedron 2004, 23, 2437.
 (45) Wainwright, K. P. Coord. Chem. Rev. 1997, 166, 35.

Figure 7. Displacement ellipsoid plot (20% probability) of $Sc(L^2)(OTol)_2$ (18). H atoms and benzene molecule of crystallization are omitted for clarity.

Table 7. Selected Bond Lengths (Å) and Angles(deg) for Sc(L2)(OTol)2 (18)

Sc(1)-N(1)	2.367(5)	Sc(1) - O(1)	1.981(4)
Sc(1) - N(4)	2.411(6)	Sc(1) - O(2)	1.949(4)
Sc(1) - N(7)	2.360(5)	Sc(1) - O(3)	1.963(5)
N(1) - Sc(1) - N(4)	73.3(2)	O(1) - Sc(1) - O(2)	106.2(2)
N(1)-Sc(1)-N(7)	74.6(2)	N(1)-Sc(1)-O(3)	91.3(2)
N(4) - Sc(1) - N(7)	73.2(2)	N(4) - Sc(1) - O(3)	158.7(2)
N(1)-Sc(1)-O(1)	82.9(2)	N(7)-Sc(1)-O(3)	88.7(2)
N(4) - Sc(1) - O(1)	92.8(2)	O(1) - Sc(1) - O(3)	100.0(2)
N(7)-Sc(1)-O(1)	156.1(2)	O(2) - Sc(1) - O(3)	102.8(2)
N(1)-Sc(1)-O(2)	161.3(2)	Sc(1) - O(1) - C(17)	141.1(4)
N(4) - Sc(1) - O(2)	89.8(2)	Sc(1) - O(2) - C(26)	162.5(4)
N(7)-Sc(1)-O(2)	93.4(2)	Sc(1) - O(3) - C(33)	158.5(4)

crystallographically characterized (see below). The NMR spectra of **18** are analogous to those of **15**, except that the resonances for the two inequivalent CH_2SiMe_3 groups are replaced by resonances for two OTol ligands.

The molecular structure of **18** is illustrated in Figure 7, and selected distances and angles are listed in Table 7. Molecules of **18** possess the expected C_1 symmetry in the solid state and contain approximately octahedral scandium centers. The triazacyclononane ligand moiety is coordinated facially, and the OTol ligands are in different environments, one being trans to the macrocycle nitrogen N(1) bearing the phenoxide pendant arm of the macrocycle ligand and the other being trans to an NMe. The Sc–O bond lengths (average 1.964 Å) are within the known ranges^{24,25} and are identical within error to that in **9** (1.9615(16) Å). The Sc–N bond lengths (average 2.379 Å) are within previous ranges for tri-

azacyclononane-scandium systems^{8,46} with aryloxy or halide coligands (range 2.328–2.412, average 2.356 Å for three examples) but are clearly shorter than those in **1** (average 2.463). The angles subtended at the nonchelating aryloxide oxygen atoms are similar at 158.5(4) and 162.5(4)°, whereas the angle subtended at O(1) (part of the pendant arm) is more acute at 141.1-(4)°, due to the constraining nature of the pendant arm.

Conclusions

In this paper we have described effective synthetic routes to the first group 3 organometallic and coordination compounds containing the tris(pyrazolyl)methane and triazacyclohexane ligands. Together with the new triazacyclononane analogues M(Me₃[9]aneN₃)(CH₂SiMe₃)₃ (1 and 2) these tris((trimethylsilyl)methyl) compounds form the basis for a comprehensive study of the stoichiometric and catalytic chemistry of cationic alkyl and related complexes derived from the new classes of compound as a function of macrocycle ring size $(R_3[6]aneN_3)$ vs R₃[9]aneN₃ systems), topology (the podand-like HC- $(Me_2pz)_3$ vs macrocyclic $R_3[9]$ ane N_3), and face-capping ligand substitution in general. Such studies are underway and will be reported in due course, together with investigations of related $M(fac-L_3)R_3$ (R = alkyl) complexes of the lanthanides. The syntheses and structures of 15-18 are analogous to those of Hessen's triazacyclononane-amide systems II. Reports on the chemistry of these new complexes will also be described at a later date.

Experimental Section

General Methods and Instrumentation. All manipulations were carried out using standard Schlenk line or drybox techniques under an atmosphere of argon or of dinitrogen. Protio solvents were predried over activated 4 Å molecular sieves, purged with N₂, and dried either by refluxing over an appropriate alkali metal or alloy or (HPLC grade, nonstabilized as appropriate) by passage through a column of activated alumina.⁵⁵ Deuterio solvents were predried over activated 4 A molecular sieves and were refluxed over the appropriate drying agent, distilled, and stored under dinitrogen in Teflon valve ampules. NMR samples were prepared under dinitrogen in 5 mm Wilmad 507-PP tubes fitted with J. Young Teflon valves. ¹H, ¹³C{¹H} and ¹³C NMR spectra were recorded on Varian Mercury-VX 300 and Varian Unity Plus 500 spectrometers. ¹H and ¹³C assignments were confirmed when necessary with the use of DEPT-135, DEPT-90, and two-dimensional ¹H-¹H and ¹³C-¹H NMR experiments. ¹H and ¹³C spectra were referenced internally to residual protio solvent $(^1\!H)$ or solvent (¹³C) resonances and are reported relative to tetramethylsilane (δ 0 ppm). Chemical shifts are quoted in δ (ppm) and coupling constants in hertz. Infrared spectra were prepared as KBr pellets or as Nujol mulls between NaCl plates and were recorded on Perkin-Elmer 1600 and 1710 series FTIR spectrometers. Infrared data are quoted in wavenumbers (cm⁻¹). Mass spectra were recorded by the mass spectrometry service of the Chemistry Laboratory Oxford and elemental analyses by the analytical services of the University of Oxford Inorganic Chemistry Laboratory, by Mikroanalytisches Labor Pascher, Germany, or by the Elemental Analysis Service, London Metropolitan University.

Literature Preparations and Other Starting Materials. The compounds $M(CH_2SiMe_3)_3(THF)_2$ (M = Sc, Y), ¹⁹ ScPh₃-(THF)₂, ⁵⁶ Me₃[9]aneN₃, ²⁰ Me₃[6]aneN₃, ²¹ HC(Me₂pz)₃ and HC-(Rpz)₃ ($R = {}^{i}Pr$, Ph, ^tBu), ²² MeSi(Me₂pz)₃, ²³ 1-(3,5-di-*tert*-butyl-

⁽⁵⁰⁾ Castro-Rodriguez, I.; Olsen, K.; Gantzel, P.; Meyer, K. J. Am. Chem. Soc. **2003**, *125*, 4565.

⁽⁵¹⁾ Castro-Rodriguez, I.; Nakai, H.; Zakharov, L. N.; Rheingold,
A. L.; Meyer, K. Science 2004, 305, 1757.
(52) Bylikin, S. Y.; Robson, D. A.; Male, N. A. H.; Rees, L. H.;

 ⁽⁵²⁾ Bylikin, S. Y.; Kobson, D. A.; Male, N. A. H.; Rees, L. H.;
 Mountford, P.; Schröder, M. *Dalton* 2001, 170.
 (53) Robson, D. A.; Bylikin, S. Y.; Cantuel, M.; Male, N. A. H.; Rees,

⁽⁵⁾ Kobson, D. A., Bynkin, S. T., Cahuer, M., Male, N. A. H., Rees,
L. H.; Mountford, P.; Schröder, M. Dalton **2001**, 157.
(54) Halfen, J. A.; Jazdzewski, B. A.; Mahapatra, S.; Berreau, L.

⁽⁵⁴⁾ Halfen, J. A.; Jazdzewski, B. A.; Mahapatra, S.; Berreau, L. M.; Wilkinson, E. C.; Que, L., Jr.; Tolman, W. B. J. Am. Chem. Soc. 1997, 119, 8217.

⁽⁵⁵⁾ Pangborn, A. B.; Giardello, M. A.; Grubbs, R. H.; Rosen, R. K.; Timmers, F. J. Organometallics **1996**, *15*, 1518.

Organometallics, Vol. 24, No. 13, 2005 3145

2-hydroxybenzyl)-4,7-dimethyl-triazacyclononane (HL¹),⁵² and 1-(3,5-di-*tert*-butyl-2-hydroxybenzyl)-4,7-diisopropyltriazacyclononane (HL²)⁵⁴ were prepared according to published methods. All other compounds and reagents were purchased and used without further purification.

 $Sc(Me_3[9]aneN_3)(CH_2SiMe_3)_3$ (1). $Sc(CH_2SiMe_3)_3(THF)_2$ (152 mg, 0.34 mmol) was dissolved in cold (7 °C) benzene (15 mL) and stirred for the dropwise addition of a solution of Me₃-[9]aneN₃ (58 mg, 0.34 mmol) in benzene (15 mL). The mixture was warmed to room temperature and stirred for 30 min. The volatiles were removed under reduced pressure to afford 1 as a pale yellow solid. Yield: 94 mg (59%). Diffraction-quality crystals were grown from slow diffusion of pentane into a saturated toluene solution. ¹H NMR (C₆D₆, 500.0 MHz, 293 K): 2.32 (9 H, s, NMe), 2.26 (6 H, m, NCH₂), 1.56 (6 H, m, $NCH_2),~0.42~(27~H,~s,~SiMe_3),~-0.23~(6~H,~s,~ScCH_2).~^{13}C\{^1H\}$ NMR (C₆D₆, 125.7 MHz, 293 K): 53.6 (NCH₂CH₂N), 48.1 (NMe), 2.5 (SiMe₃); CH₂SiMe₃ not observed. IR (KBr pellet): 2940 (s), 2894 (s), 2860 (s), 2822 (m), 1494 (m), 1464 (s), 1424 (w), 1384 (w), 1366 (m), 1300 (m), 1246 (s), 1234 (s), 1206 (w), $\,$ 1154 (w), 1126 (w), 1080 (m), 1068 (m), 1008 (s), 876 (s), 852 (s), 818 (s), 774 (w), 748 (m), 720 (m), 666 (m), 604 (w), 578 (w), 450 (m), 420 (w), 402 (w) $cm^{-1}.\ FI\text{-}HRMS$ for [Sc- $(Me_3[9]aneN_3)(CH_2SiMe_3)_2]^+$: found (calcd for $C_{17}H_{43}N_3ScSi_2$) m/z 390.2561 (390.2555). Anal. Found (calcd for $C_{21}H_{54}N_3$ -ScSi₃): C, 50.3 (52.8); H, 11.2 (11.4); N, 8.5 (8.8).

Y(Me₃[9]aneN₃)(CH₂SiMe₃)₃ (2). Y(CH₂SiMe₃)₃(THF)₂ (290 mg, 0.587 mmol) was dissolved in cold (7 °C) benzene (15 mL) and stirred for the dropwise addition of a solution of $Me_3[9]$ ane N_3 (101 mg, 0.587 mmol) in benzene (15 mL). The mixture was allowed to warm to room temperature and stirred for 30 min. The volatiles were removed under reduced pressure to afford 2 as a white solid. Yield: 207 mg (68%). ¹H NMR (C₆D₆, 500.0 MHz, 293 K): 2.30 (9 H, s, NMe), 2.20 (6 H, m, NCH₂), 1.56 (6 H, m, NCH₂), 0.41 (27 H, s, SiMe₃), -0.67 (6 H, d, YCH₂, $J_{\rm HY} = 2.6$ Hz) ppm. ¹³C{¹H} NMR (C₆D₆, 125.7 MHz, 293 K): 54.4 (NCH₂), 47.8 (NMe), 35.3 (YCH₂, $J_{CY} = 36$ Hz), 4.9 (SiMe₃) ppm. IR (KBr pellet): 2822 (s), 1492 (m), 1464 (s), 1366 (m), 1302 (w), 1246 (m), 1234 (m), 1208 (w), 1154 (w), 1128 (w), 1068 (m), 1008 (s), 858 (s), 818 (m), 744 (m), 716 (m), 668 (m), 572 (w), 572 (w), 424 (w), 408 (w) cm⁻¹. Anal. Found (calcd for C₂₁H₅₄N₃Si₃Y): C, 40.4 (48.3); H, 8.4 (10.4); N, 8.5 (8.1).

Sc{HC(Me₂pz)₃}(CH₂SiMe₃)₃ (3). To a yellow solution of Sc(CH₂SiMe₃)₃(THF)₂ (0.100 g, 0.24 mmol) in benzene (10 mL) was added a solution of HC(Me₂pz)₃ (0.070 g, 0.24 mmol) in benzene (5 mL) to give an orange solution. After the mixture was stirred at room temperature for 4 h, the volatiles were removed under reduced pressure to give an orange solid, which was washed with benzene $(2 \times 10 \text{ mL})$ to afford 3 as a pale orange solid. Yield: 0.09 g (65%). Diffraction-quality crystals were grown from a toluene-pentane mixture. ¹H NMR (C₆D₆, 500.0 MHz, 298 K): 7.03 (1H, s, HC(Me₂pz)₃), 5.21 (3H, s, 4-N₂C₃Me₂H), 2.66 (9H, s, 5-N₂C₃Me₂H), 1.35 (9H, s, 3-N₂C₃Me₂H), 0.60 (6H, s, ScCH₂), 0.27 (27H, s, SiMe₃) ppm. ¹³C{¹H} NMR (C₆D₆, 500.0 MHz, 298 K): 154.2 (5-N₂C₃Me₂H), 137.7 (3-N₂C₃Me₂H), 107.8 (4-N₂C₃Me₂H), 67.5 (HC(Me₂pz)₃), 38.2 (ScCH₂), 16.3 (5-N₂C₃Me₂H), 10.2 (3-N₂C₃Me₂H), 4.8 (SiMe₃) ppm. IR (NaCl plates, Nujol): 1562 (w), 1412 (w), 1321 (w), 1261 (s), 1093 (s), 1021 (s), 863 (w), 863 (w), 801 (s), 701 (w) cm⁻¹. Anal. Found (calcd for $C_{28}H_{55}N_6ScSi_3$): C, 50.3 (55.6); H, 7.7 (9.2); N, 13.7 (13.9).

 $Y{HC(Me_2pz)_3}(CH_2SiMe_3)_3$ (4). To a colorless solution of $Y(CH_2SiMe_3)_3(THF)_2$ (0.370 g, 0.74 mmol) in benzene (10 mL) was added a solution of $HC(Me_2pz)_3$ (0.220 g, 0.74 mmol) in benzene (10 mL). The resulting dark brown solution was allowed to stir at room temperature for 1 h. The volume of the solution was reduced to 10 mL and hexane (30 mL) was added resulting in the formation of a brown precipitate which

was filtered. The resulting solid was re-extracted into benzene (10 mL) and addition of hexane (20 mL) afforded **4** as a light brown solid. Yield: 0.28 g (58%). Diffraction-quality crystals were grown from a saturated toluene solution. ¹H NMR (C₆D₆, 500.0 MHz, 298 K): 6.99 (1H, s, $HC(Me_2pz)_3$), 5.18 (3H, s, $4\text{-N}_2C_3Me_2H$), 2.61 (9H, s, $3\text{-N}_2C_3Me_2H$), 1.32 (9H, s, $5\text{-N}_2C_3Me_2H$), 0.33 (27H, s, SiMe₃), -0.02 (6H, d, $J_{HY} = 2.8$ Hz, CH_2SiMe_3). ¹³C{¹H} NMR (CD₂Cl₂, 125.7 MHz, 298 K): 154.3 ($3\text{-N}_2C_3Me_2H$), 138.5 ($5\text{-N}_2C_3Me_2H$), 107.6 ($3\text{-N}_2C_3Me_2H$), 67.9 (HC(Me₂pz)₃), 32.4 (YCH₂, $J_{CY} = 33$ Hz), 15.7 ($3\text{-N}_2C_3Me_2H$), 10.2 ($5\text{-N}_2C_3Me_2H$), 5.0 (SiMe₃). IR (NaCl plates, Nujol): 2360 (m), 2342 (w), 1959 (w), 1618 (w), 1562 (w), 1459 (m), 1413 (w), 1261 (s), 1093 (s), 1020 (s), 863 (w), 800 (s), 705 (w), 669 (w) cm⁻¹. Anal. Found (calcd for C₂₈H₅₅N₆Si₃Y): C, 49.9 (51.8); H, 7.9 (8.5); N, 12.3 (13.0).

Sc{HC(Me₂pz)₃}Cl₃ (5). A suspension of ScCl₃ (0.057 g, 0.38 mmol) in THF (10 mL) was refluxed for 10 min to give a colorless solution, which was cooled. To this was added a yellow solution of $HC(Me_2pz)_3$ (0.110 g, 0.38 mmol) in THF (10 mL), and the mixture was stirred at room temperature for 4 h. The resultant white solid was filtered away from the colorless solution and dried to afford 5. Yield: 0.14 g (77%). ¹H NMR (CD₂Cl₂, 500.0 MHz, 298 K): 7.91 (1H, s, HC(Me₂pz)₃), 6.09 (3H, s, 4-N₂C₃Me₂H), 2.72 (9H, s, 5-N₂C₃Me₂H), 2.54 (9H, s, 3-N₂C₃Me₂H). ¹³C{¹H} NMR (CD₂Cl₂, 125.5 MHz, 298 K): 158.6 (5-N₂C₃Me₂H), 142.2 (3-N₂C₃Me₂H), 111.0 (4-N₂C₃Me₂H), 70.2 (HC(Me₂pz)₃) 17.5 (5-N₂C₃ Me_2 H), 13.3 (3-N₂C₃ Me_2 H). IR (NaCl plates, Nujol): 1619 (w), 1563 (m), 1413 (w), 1305 (w), 1261 (m), 1065 (m), 1044 (m), 910 (w), 862 (w), 706 (w), 407 (w) cm⁻¹. Anal. Found (calcd for $C_{16}H_{22}N_6ScCl_3\cdot 1.1THF$): C, 46.2 (46.3); N, 15.7 (15.9); H, 6.4 (5.9). EI⁺ MS: m/z 413 [M -Cl]⁺, 60%.

 $Y{HC(Me_2pz)_3}Cl_3$ (6). To a suspension of YCl_3 (0.048 g, 0.25 mmol) in THF (10 mL) was added a solution of HC(Me₂ pz_{3} (0.080 g, 0.25 mmol) in THF (10 mL) at room temperature. The mixture was stirred at room temperature for 16 h, resulting in a white precipitate and yellow supernatant. Filtration afforded $[YCl_3{HC(Me_2pz)_3}]$ as a white solid. Yield: 0.09 g (74%). ¹H NMR (CD₂Cl₂, 500.0 MHz, 298 K): 7.91 (1H, s, $HC(Me_2pz)_3)$, 6.08 (3H, s, 4-N₂C₃Me₂H), 2.65 (9H, s, 3-N₂C₃Me₂H), 2.52 (9H, s, 5-N₂C₃Me₂H). ¹³C{¹H} NMR (CD₂-Cl₂, 125.7 MHz, 298 K): 156.1 (3-N₂C₃Me₂H), 140.9 (5-N₂C₃- Me_2H), 108.7 (4-N₂C₃Me₂H), 67.9 (HC(Me_2pz)₃), 14.0 (3-N₂C₃Me₂H), 10.5 (5-N₂C₃Me₂H). IR (NaCl plates, Nujol): 1562 (m), 1413 (m), 1304 (m), 1261 (m), 1064 (m), 1042 (m), 905 (m), 861 (m), 801 (m), 706 (m) cm⁻¹. Anal. Found (calcd for C₁₆H₂₂Cl₃N₆Y·1.1THF): C, 42.7 (42.8); N, 14.8 (14.7); H, 5.7 (5.4). EI⁺ MS: m/z 456 [M - Cl - H]⁺, 70%; 457 [M - Cl]⁺, 50%

 $Sc{HC(^{i}Prpz)_{3}}Cl_{3}$ (7). A suspension of $ScCl_{3}(THF)_{3}$ (0.100 g, 0.272 mmol) in THF (20 mL) was refluxed for 30 min to give a colorless solution, which was then cooled. To this was added a 0.15 M solution of HC(ⁱPrpz)₃ (0.272 mmol) in benzene. The reaction mixture was stirred at room temperature for ca. 12 h, during which time a white precipitate formed. The reaction volume was then reduced to ca. 10 mL, and pentane (10 mL) was added. The precipitate was isolated and dried to afford 7 as a white solid. Yield: 0.085 g (64%). $^1\mathrm{H}$ NMR (C₅D₅N, 300.0 MHz, 298 K): 9.122 (1H, s, *H*C(3-ⁱPrpz)₃), 7.915 $(3H, d, {}^{3}J = 2.6 \text{ Hz}, \text{HC}(\text{NCHCHC}({}^{i}\text{Pr})\text{N})_{3}), 6.275 (3H, d, {}^{3}J =$ 2.4 Hz, HC(NCHCHC(ⁱPr)N)₃), 2.95 (3H, sept., ${}^{3}J = 3.1$ Hz, Me₂CH), 1.18 (18H, d, ${}^{3}J$ = 7.0 Hz, HCMe₂). 13 C NMR (C₅D₅N, 75 MHz, 298 K): 161.2 (HC(NCHCHC(ⁱPr)N)₃), 130.9 (HC- $(NCHCHC(^{i}Pr)N)_{3}),\,104.79\;(HC(NCHCHC(^{i}Pr)N)_{3}),\,84.04\;(HC(3-1))_{3}),\,84.04\;$ ⁱPrpz)₃), 28.53 (Me₂CH), 22.91 (Me₂CH). IR (NaCl plates, Nujol): 1529 (w), 1461 (m), 1377 (m), 1243 (m), 1018.8 (m), 856 (w), 801 (m) cm⁻¹. Anal. Found (calcd for $C_{19}H_{28}N_6Cl_3Sc$): C, 46.6 (46.4); N, 17.1 (17.1); H, 5.8 (5.7).

 $Y{HC({}^{i}Prpz)_{3}}Cl_{3}$ (8). A suspension of $YCl_{3}(THF)_{3}$ (0.500 g, 1.22 mmol) in THF (50 mL) was refluxed for 30 min to give a colorless solution, which was then cooled. To this was added

⁽⁵⁶⁾ Putzer, M. A.; Bartholomew, G. P. Z. Anorg. Allg. Chem. 1999, 625, 1777.

a 0.15 M solution of HC(ⁱPrpz)₃ in benzene (1.22 mmol), and the resulting mixture was stirred at 40 °C for 4 days to give a white precipitate. The reaction mixture was reduced in volume to ca. 20 mL, and pentane (25 mL) was added. The white precipitate was isolated by filtration and dried to afford 8 as a white solid. Yield: 0.490 g (75%). ¹H NMR (C₅D₅N, 500.0 MHz, 298 K): 9.10 (1H, s, $HC(3-iPrpz)_3$), 7.91 (3H, d, $^3J = 2.3$ Hz, $HC(NCHCHC(^{i}Pr)N)_{3})$, 6.27 (3H, d, $^{3}J = 2.7$ Hz, HC- $(NCHCHC(^{i}Pr)N)_{3})$, 2.93 (1H, sept, $^{3}J = 3.1$ Hz, Me₂CH), 1.40 $(18H, d, {}^{3}J = 6.7 \text{ Hz}, \text{HC}Me_2)$. ${}^{13}C$ NMR $(C_5D_5N, 75 \text{ MHz}, 298)$ K): 160.3 (HC(NCHCHC(ⁱPr)N)₃), 130.0 (HC(NCHCHC(ⁱ-Pr)N)₃), 103.9 (HC(NCHCHC(ⁱPr)N)₃), 83.2 (HC(3-ⁱPrpz)₃), 27.7 (Me₂CH), 22.0 (Me₂CH). IR (NaCl plates, Nujol): 1530 (m), 1460 (m), 1331 (w), 1240 (m), 1198 (w), 1083 (m), 1018 (m), 853 (w) cm⁻¹. Anal. Found (calcd for C₁₉H₂₈N₆Cl₃Y): C, 42.7 (42.6); N, 15.7 (15.7); H, 5.7 (5.3).

Sc{HC(Me₂pz)₃}(OAr)₃ (9). To a pale orange solution of 3 (0.110 g, 0.18 mmol) in THF (10 mL) was added a solution of 2,6-dimethylphenol (0.060 g, 0.53 mmol) in THF (10 mL) at room temperature. The mixture was stirred at room temperature for 2 h, and the volume was reduced to 5 mL. Pentane (15 mL) was added and a white solid formed. Filtration afforded **9** as a white solid. Yield: 0.10 g (81%). ¹H NMR (CD₂-Cl₂, 500.0 MHz, 253 K): 7.88 (1H, s, HC(Me₂pz)₃), 6.83 (2H, d, ${}^{3}J = 7.1$ Hz, m-OC₆ H_{3} Me₂ "down"), 6.63 (2H, d, ${}^{3}J = 7.1$ Hz, m-OC₆ H_3 Me₂ "up"), 6.34 (1H, apparent t, apparent 3J = 7.1 Hz, p-OC₆H₃Me₂), 5.87 (3H, s, 4-N₂C₃Me₂H), 2.54 (9H, s, 5-N₂C₃Me₂H), 2.48 (9H, s, OC₆H₃Me₂ "down"), 1.88 (9H, s, 3-N₂C₃Me₂H), 1.19 (9H, s, OC₆H₃Me₂ "up"). ¹³C{¹H} NMR (CD₂-Cl₂, 125.7 MHz, 253 K): 162.5 (ipso-OC₆H₃Me₂), 155.1 (3-N₂C₃-Me₂H), 138.4 (5-N₂C₃Me₂H), 127.6 (o-OC₆H₃Me₂ "down"), 127.4 (o-OC₆H₃Me₂ "up"), 114.9 (p-OC₆H₃Me₂), 108.1 (4-N₂C₃Me₂H), 67.2 ($HC(Me_2pz)_3$), 18.4 ($OC_6H_3Me_2$ "down"), 16.3 ($OC_6H_3Me_2$ "up"), 12.9 (3-N₂C₃Me₂H), 11.0 (5-N₂C₃Me₂H). IR (NaCl plates, Nujol): 2852 (s), 2316 (w), 1590 (m), 1563 (m), 1378 (m), 1304 (m), 1260 (s), 1238 (w), 1092 (m), 1042 (w), 867 (w), 800 (m) cm^{-1} . Anal. Found (calcd for $C_{40}H_{49}N_6O_3Sc$): C, 68.0 (68.0); N, 11.8 (11.9); H, 6.9 (7.0). FI⁺ MS: m/z 706 [M]⁺, 10%.

Sc{MeSi(Me₂pz)₃}Cl₃ (10). To a slurry of ScCl₃(THF)₃ (0.100 g, 0.277 mmol, 1.0 equiv) in toluene (10 mL), a solution of MeSi(Me₂pz)₃ (0.089 g, 0.277 mmol, 1.0 equiv) in toluene (10 mL) was added. The reaction mixture was stirred at room temperature for ca. 15 h, during which time a white precipitate was formed. The white solid was isolated by filtration, washed with toluene, and dried to give 10 as a white solid. Yield: 106 mg (79%). ¹H NMR (CD₂Cl₂, 300 MHz, 298 K): 6.11 (3H, s, 4-N₂C₃Me₂H), 2.85 (9H, s, 3- N₂C₃Me₂H), 2.44 (9H, s, 5-N₂C₃Me₂H), 1.65 (3H, s, MeSi(Me₂pz)₃). ¹³C{¹H} NMR (CD₂-Cl₂, 75 MHz, 298 K): 161.98 (3-N₂C₃Me₂H), 149.36 (5-N₂C₃-Me₂H), 113.00 (4-N₂C₃Me₂H), 16.89 (3-N₂C₃Me₂H), 14.70 (5-N₂C₃Me₂H), 1.30 (MeSi(Me₂pz)₃). IR (NaCl plates, Nujol): 3135 (w), 3098 (w), 1602 (w), 1567 (s), 1451 (s), 1276 (m), 1295 (s), 1035 (s), 985 (m), 803 (s), 739 (m) cm⁻¹. Anal. Found for $C_{16}H_{24}$ -Cl₃N₆ScSi·0.9C₇H₈: C, 47.5 (47.6); N, 14.7 (14.9); H, 5.6 (5.6).

Y{**MeSi(Me₂pz)₃**}**Cl₃ (11).** To a slurry of YCl₃(THF)₃ (0.100 g, 0.243 mmol, 1.0 equiv) in toluene (10 mL) was added a solution of MeSi(Me₂pz)₃ (0.080 g, 0.243 mmol, 1.0 equiv) in toluene (10 mL). The reaction mixture was stirred at room temperature for ca. 15 h, during which time a white precipitate was formed. The white solid was isolated by filtration, washed with toluene, and dried. A residual impurity was removed by sublimation to leave **11** as a white solid. Yield: 68 mg (54%). ¹H NMR (CD₂Cl₂, 300 MHz, 298 K): 6.03 (3H, s, 4-N₂C₃Me₂H), 2.68 (9H, s, 3- N₂C₃Me₂H), 2.34 (9H, s, 5-N₂C₃Me₂H), 1.53 (3H, s, *MeSi*(Me₂pz)₃). ¹³C{¹H} NMR (CD₂Cl₂, 75 MHz, 298 K): 161.46 (3-N₂C₃Me₂H), 150.39 (5-N₂C₃Me₂H), 112.68 (4-N₂C₃Me₂H), 15.93 (3-N₂C₃Me₂H), 14.76 (5-N₂C₃Me₂H), 1.59 (MeSi-(Me₂pz)₃). IR (NaCl plates, Nujol): 3277 (w), 1564 (m), 1457 (s), 1377 (m), 1323 (w), 1263 (s), 1147 (s), 983 (w), 799 (s), 729

(w) cm⁻¹. Anal. Found (calcd for $C_{16}H_{24}N_6SiCl_3Y \cdot CH_2Cl_2$): C, 33.3 (33.5); N, 13.6 (13.8); H, 4.3 (4.3). EI⁺ MS: m/z 523 [M]⁺, 1%.

Sc(Me₃[6]aneN₃)(CH₂SiMe₃)₃ (12). To a solution of Sc- $(CH_2SiMe_3)_3(THF)_2$ (400 mg, 0.887 mmol) in cold (0 °C) toluene (20 mL) was added dropwise a solution of Me₃(6)aneN₃ (125 μ L, 0.887 mmol) in toluene (10 mL). The reaction mixture was stirred at for 3 h at 0 °C, after which time the volatiles were removed under reduced pressure to afford 12 as a pale yellow solid. Yield: 313 mg (80%). ¹H NMR (C₆D₆, 300.0 MHz, 293 K): 3.32 (3 H, d, J = 9.0 Hz, NCH₂), 1.82 (3 H, d, J = 8.8 Hz, NCH₂), 1.61 (9 H, s, NCH₃), 0.45 (27 H, s, SiMe₃), -0.21 (6 H, s, CH₂SiMe₃). ¹³C{¹H} NMR: (C₆D₆, 75.0 MHz, 293 K): 76.6 (NCH₂), 38.5 (NCH₃), 4.5 (SiMe₃) (CH₂SiMe₃ not observed). IR (NaCl plates, Nujol): 1468 (m), 1268 (s), 1235 (s), 1169 (m), 1117 (s), 1015 (m), 940 (m), 864 (s), 745 (m), 670 (m) cm⁻¹ EI-MS: m/z 348 (100%) [M - CH2SiMe3]⁺, 261 (40%) [M - 2 CH₂SiMe₃]⁺. Anal. Found (calcd for C₁₈H₄₈N₃ScSi₃): C, 49.5 (49.6); H, 11.1 (11.1); N, 9.6 (9.6).

Y(Me₃[6]aneN₃)(CH₂SiMe₃)₃ (13). To a solution of YCH₂-SiMe₃)₃(THF)₂ (150 mg, 0.303 mmol) in cold (0 °C) toluene (20 mL) was added dropwise a solution of Me₃(6)aneN₃ (42 μ L, 0.303 mmol) in toluene (10 mL). The reaction mixture was stirred at for 3 h at 0 °C, after which time the volatiles were removed under reduced pressure to afford 13 as a pale yellow solid. Yield: 100 mg (68%). ¹H NMR (C₆D₆, 300.0 MHz, 293 K): 3.28 (3 H, d, ${}^{2}J$ = 9.5 Hz, NCH₂), 1.77 (3 H, d, ${}^{2}J$ = 8.2 Hz, NCH₂), 1.59 (9 H, s, NCH₃), 0.46 (27 H, s, SiMe₃), -0.62 (6 H, d, $J_{\rm HY} = 2.6$ Hz, CH_2SiMe_3). ¹³C{¹H} NMR: (C₆D₆, 75.0 MHz, 293 K): 76.5 (NCH₂), 38.6 (NCH₃), 36.2 (CH₂SiMe₃, J_{CY} = 34.7 Hz), 4.8 (SiMe₃) ppm. IR (NaCl plates, Nujol): 1456 (m), 1113 (m), 939 (w), 859 (s), 667 (m) cm⁻¹. EI-MS: m/z 392.1 (27%) [M - CH₂SiMe₃]⁺, 304 (25%) [M - 2CH₂SiMe₃]⁺. Anal. Found (calcd for C₁₈H₄₈N₃Si₃Y): C, 45.0 (45.0); H, 10.0 (10.1); N, 8.6 (8.8).

Sc(Me₃[6]aneN₃)Cl₃ (14). To a solution of ScCl₃(THF)₃ (125 mg, 0.395 mmol) in MeCN (5 mL) was added Me₃[6]aneN₃ (47.7 μL, 0.395 mmol). The reaction mixture was stirred at room temperature for 3 h. Pentane (10 mL) was added and the resulting solid isolated by filtration to afford 14 as a white solid. Yield: 64 mg (66%). Diffraction-quality crystals were grown from a saturated dichloromethane solution. ¹H NMR (CD₂Cl₂, 300 MHz, 293 K): 4.23 (3 H, d, ²J = 8.8 Hz, NCH₂), 3.52 (3 H, s, ²J = 7.6 Hz, NCH₂), 2.57 (9 H, s, NCH₃) ppm. ¹³C{¹H} NMR (CD₂Cl₂, 75 MHz, 293 K): 76.98 (NCH₂), 39.58 (NCH₃) ppm. IR (NaCl plates, Nujol): 1113 (s), 1181 (m), 936 (m) cm⁻¹. EI-MS: *m/z* 244 (35%) [M - Cl]⁺, 209 (3%) [M - 2 Cl]⁺, 129 (30%). Anal. Found (calcd for C₆H₁₅Cl₃N₃Sc): C, 25.7 (25.7); H, 5.4 (5.4); N, 14.6 (14.9).

 $Sc(L^1)(CH_2SiMe_3)_2$ (15). To a solution of $Sc(CH_2SiMe_3)_3$ -(THF)₂ (280 mg, 0.62 mmol) in cold (7 °C) benzene (20 mL) was added dropwise a solution of HL¹ (232 mg, 0.62 mmol) in cold benzene. The solution was warmed to room temperature and stirred for a further 1 h. The volatiles were removed under reduced pressure to afford 15 as a pale yellow solid. Yield: 252 mg (68%). ¹H NMR (C₆D₆, 500.0 MHz, 293 K): 7.60 (1H, d, ⁴J = 1.9 Hz, $4 \cdot C_6 H_2^{t} Bu_2$), 7.00 (1H, d, ${}^4J = 1.9$ Hz, $6 \cdot C_6 H_2^{t} Bu_2$), 4.49 (1H, d, ${}^{2}J = 12.2$ HzCH₂Ar), 3.15 (1H, td, ${}^{2}J = 10.8$ Hz, ${}^{3}J = 5.6$ Hz, NCH₂CH₂N), 3.05 (1H, td, ${}^{2}J = 10.8$ Hz, ${}^{3}J = 5.6$ Hz, NCH₂CH₂N), 2.87 (1H, d, *J* = 12.2 Hz, CH₂Ar), 2.50 (3H, s, NMe), 2.14-1.22 (9H, overlapping m, NCH₂CH₂N), 2.10 (3H, s, NMe), 1.80 (9H, s, CMe₃), 1.35 (9H, s, CMe₃), 0.89 (1H, d, J = 12.4 Hz, NCH₂CH₂N), 0.46 (9H, s, SiMe₃), 0.34 (9H, s, $SiMe_3$, -0.20 (1H, d, J = 11.5 Hz, $ScCH_2$), -0.29 (1H, d, J =11.5 Hz, ScCH₂), -0.36 (1H, d, J = 11.5 Hz, ScCH₂), -0.50 $(1H, d, J = 11.5 \text{ Hz}, \text{ScCH}_2)$. ¹³C{¹H} NMR: (C₆D₆, 125.7 MHz, 293 K): 161.5 (2- $C_6H_2^{t}Bu_2$), 137.4 (3- or 5- $C_6H_2^{t}Bu_2$), 136.2 (5or $3-C_6H_2^{t}Bu_2$), 125.4 ($6-C_6H_2^{t}Bu_2$), 124.5 ($4-C_6H_2^{t}Bu_2$), 124.1 (1-C₆H₂^tBu₂), 64.3 (NCH₂Ar), 58.8 (NCH₂CH₂N), 57.6 (NCH₂- CH_2N), 55.8 (NCH₂CH₂N), 52.5 (NCH₂CH₂N), 52.3 (NCH₂-CH2N), 50.3 (NMe), 49.7 (NMe), 49.1 (NCH2CH2N), 35.6

 $\begin{array}{l} Table 8. X-ray \ Data \ Collection \ and \ Processing \ Parameters \ for \ Sc(Me_3[9]aneN_3)(CH_2SiMe_3)_3 \ (1), \\ Sc\{HC(Me_2Pz)_3\}(CH_2SiMe_3)_3\cdot 2C_7H_8 \ (3\cdot 2C_7H_8), \ Y\{HC(Me_2Pz)_3\}(CH_2SiMe_3)_3 \ (4), \ Sc\{HC(Me_2Pz)_3\}(OAr)_3\cdot 4C_6H_6 \ (9\cdot 4C_6H_6), \ Y\{MeSi(Me_2Pz)_3\}Cl_3\cdot CH_2Cl_2 \ (11\cdot CH_2Cl_2), \ and \ Sc(Me_3[6]aneN_3)Cl_3 \ (14) \ and \ Sc(L^2)(OTol)_2\cdot C_6H_6 \ (18\cdot C_6H_6) \end{array}$

				-0/			
	1	$3.2C_{7}H_{8}$	4	$9.4C_6H_6$	$11 \cdot CH_2Cl_2$	14	$18 \cdot \mathbf{C}_6 \mathbf{H}_6$
empirical formula	$C_{21}H_{54}N_3Sc-Si_3\cdot 2C_{17}H_8$	$C_{28}H_{55}N_6ScSi_3$	$\mathrm{C}_{28}\mathrm{H}_{55}\mathrm{N}_{6}\mathrm{Si}_{3}\mathrm{Y}$	${}^{ m C_{40}H_{49}N_6O_3-}_{ m Sc\cdot 4C_6H_6}$	$C_{16}H_{24}Cl_3N_6$ - SiY·CH ₂ Cl ₂	${ m C_6H_{15}Cl_3-} onumber { m N_3Sc}$	$C_{37}H_{54}N_3O_3-Sc \cdot C_6H_6$
fw	477.89	789.28	648.95	1019.29	608.69	280.52	711.93
temp/K	150	150	150	150	150	150	150
wavelength/Å	0.71073	0.710~73	0.710~73	0.71073	0.710~73	0.710~73	0.71073
space group	$P2_1/c$	$P2_1/c$	$P\bar{1}$	P31c	$P2_1/n$	$P2_1/m$	$P2_1/c$
a/Å	19.2407(2)	12.4871(2)	11.0526(2)	14.7505(6)	10.0211(1)	7.5676(2)	13.3324(5)
b/Å	18.5432(2)	16.0885(2)	11.6252(2)	14.7505(6)	30.7707(3)	12.1539(4)	14.1401(7)
c/Å	18.6490(2)	24.0879(3)	17.1350(3)	15.4170(4)	16.9809(2)	7.8780(2)	21.400(1)
α/deg	90	90	81.8126(9)	90	90	90	90
β/deg	115.6548(5)	101.2652(4)	85.5181(8)	90	95.1016(3)	118.5146(14)	90.670(3)
γ/deg	90	90	71.3772(7)	120	90	90	90
V/Å ³	5997.74(11)	4745.99(11)	2063.86(6)	2905.0(2)	5215.42(10)	636.69(3)	4034.0(9)
Z	8	4	2	2	8	2	4
d(calcd)/Mg m ⁻³	1.058	1.105	1.044	1.165	1.550	1.463	1.17
abs coeff/mm ^{-1} R indices ^{a}	0.377	0.264	1.522	0.18	2.812	1.172	0.22
R1	0.0349	0.0452	0.0489	0.0507	0.0373	0.0271	0.0658
wR2	0.0418	0.0536	0.0529	0.0557	0.0428	0.0379	0.0636

^{*a*} R indices with $I > n\sigma(I)$; n = 3 except for $18 \cdot C_6H_6$, where n = 2. $R1 = \sum ||F_0| - |F_c|/\sum |F_0|$; $wR2 = \{\sum w(|F_0| - |F_c|)^2 / \sum (w|F_0|^2)\}^{1/2}$.

 $\begin{array}{l} ({\rm CMe_3}),\, 34.2\, ({\rm CMe_3}),\, 32.1\, ({\rm CMe_3}),\, 30.8\, ({\rm CMe_3}),\, 4.7\, ({\rm SiMe_3}),\, 4.4 \\ ({\rm SiMe_3}),\, 1.4\, ({\rm SeCH_2}). \ {\rm IR}\, ({\rm KBr}\ plates,\ {\rm Nujol}): \ 1605\, ({\rm s}),\, 1317 \\ ({\rm m}),\, 1286\, ({\rm s}),\, 1261\, ({\rm m}),\, 1235\, ({\rm s}),\, 1104\, ({\rm s}),\, 1017\, ({\rm m}),\, 879\, ({\rm s}), \\ 813\, ({\rm m}),\, 773\, ({\rm m}),\, 749\, ({\rm m}),\, 723\, ({\rm m}),\, 667\, ({\rm w}),\, 548\, ({\rm w}),\, 475\, ({\rm w}) \\ {\rm cm^{-1}}. \ {\rm EI-HRMS}\, \ {\rm for}\, \ [{\rm Se}({\rm L}^1)({\rm CH_2SiMe_3})]^+: \ {\rm found}\, \, ({\rm calcd}\, \ {\rm for}\, \\ {\rm C}_{27}{\rm H}_{51}{\rm N}_3{\rm OScSi})\, m/z\,\, 506.3348\, (506.3361). \ {\rm Anal.}\ {\rm Found}\, \, ({\rm calcd}\, \ {\rm for}\, {\rm C}_{31}{\rm H}_{62}{\rm N}_3{\rm OScSi_2}): \ {\rm C},\, 60.0\, (62.7);\, {\rm H},\, 9.3\, (10.5);\, {\rm N},\, 6.2\, (7.1). \end{array}$

Sc(L²)(CH₂SiMe₃)₂ (16). To a stirred solution of Sc(CH₂-SiMe₃)₃(THF)₂ (119 mg, 0.29 mmol) in cold (7 °C) benzene (15 mL) was added a solution of HL² (123 mg, 0.29 mmol) in cold benzene (15 mL). The solution was warmed to room temperature and stirred for 30 min. The volatiles were removed under reduced pressure to afford 16 as a pale yellow solid. Yield: 96 mg (51%). ¹H NMR (C₆D₆, 500.0 MHz, 293 K): 7.6 (1H, d, J = 2.4 Hz, $4 - C_6 H_2^{t} Bu_2$), 7.0 (1H, d, J = 2.2 Hz, $6 - C_6 H_2^{t} Bu_2$), 4.7 $(1H, d, J = 12.7 \text{ HzNC}H_2\text{Ar}), 3.78 (1H, app sept, J = 5.6 \text{ Hz})$ $CHMe_2$), 3.33 (1H, app sept, J = 6.5 Hz, $CHMe_2$), 3.14 (1H, m, NCH₂CH₂N), 2.90 (1H, d, J = 12.7 Hz, NCH₂Ar), 2.48 (2H, m, NCH₂CH₂N), 2.14-1.34 (9H, overlapping m, NCH₂CH₂N), 1.86 (9H, s, CMe₃), 1.40 (3H, d, J = 6.4 Hz, CHMe₂), 1.37 (9H, s, CMe₃), 0.72 (3H, d, J = 6.6 Hz, CHMe₂), 0.57 (3H, d, J =6.3 Hz, CHMe₂), 0.48 (9H, s, SiMe₃), 0.40 (3H, d, J = 6.4 Hz, CHMe₂), 0.24 (9H, s, SiMe₃), -0.01 (1H, d, ${}^{2}J = 11.2$ Hz, $ScCH_2$, -0.09 (1H, d, ${}^{2}J = 11.2$ Hz, $ScCH_2$), -0.19 (1H, d, ${}^{2}J$ = 11.2 Hz, ScCH₂), -0.30 (1H, d, ${}^{2}J = 11.2$ Hz, ScCH₂). ${}^{13}C$ -{¹H} NMR (C₆D₆, 125.7 MHz, 293 K): 160.1 (2-C₆H₂^tBu₂), 137.4 (3- $C_6H_2^{t}Bu_2$), 136.4 (5- $C_6H_2^{t}Bu_2$), 124.6 (6- $C_6H_2^{t}Bu_2$), 124.5 (4-C₆H₂^tBu₂), 123.9 (1-C₆H₂^tBu₂), 65.8 (NCH₂Ar), 56.0 (CHMe₂), 55.1 (CHMe₂), 54.6 (NCH₂CH₂N), 54.2 (NCH₂CH₂N), 51.7 (NCH₂CH₂N), 43.1 (NCH₂CH₂N), 42.8 (NCH₂CH₂N), 35.8 (CMe₃), 34.2 (CMe₃), 32.1 (CMe₃), 31.4 (CMe₃), 23.4 (CHMe₂), 21.2 (CHMe2), 14.1 (CHMe2), 13.9 (CHMe2), 4.8 (SiMe3), 4.3 $(SiMe_3)$ ppm (not observed: $2 \times ScCH_2$). IR (KBr pellet): 2948 (s), 2900 (s), 2866 (m), 2818 (w), 1604 (w), 1478 (s), 1440 (m), 1414 (m), 1384 (m), 1362 (m), 1312 (s), 1286 (m), 1264 (w), 1236 (m), 1204 (w), 1160 (w), 1148 (w), 1134 (w), 1118 (w), 1080 (w), 1062 (w), 1016 (w), 968 (w), 948 (w), 900 (m), 876 (s), 844 (s), 812 (m), 748 (m), 730 (m), 666 (m), 646 (w), 598 (w), 586 (w), 546 (m), 466 (w), 452 (w), 404 (w) cm⁻¹, EI-MS: *m*/*z* 649 (50%) [M]⁺. Anal. Found (calcd for C₃₅H₇₀N₃OScSi₂): C, 63.3 (64.7); H, 10.9 (10.9); N, 6.5 (6.5).

 $Sc(L^1)Ph_2$ (17). To a stirred solution of $ScPh_3(THF)_2$ (115 mg, 0.27 mmol) in cold (7 °C) benzene (15 mL) was added a solution of HL^{2e} (102 mg, 0.27 mmol) in cold benzene (15 mL). The solution was warmed to room temperature and stirred for 30 min. The volatiles were removed under reduced pressure

to afford 17 as a white solid. Yield: 62 mg (38%). ¹H NMR $(C_6D_6, 500.0 \text{ MHz}, 293 \text{ K}): 8.44 (2 \text{ H}, d, J = 7.3 \text{ Hz}, 2-C_6H_5),$ 8.15 (2 H, d, J = 7.3 Hz, 2-C₆H₅), 7.63 (1 H, s, 4-C₆H₂^tBu₂), 7.49 (2 H, t, J = 7.3 Hz, 3-C₆H₅), 7.35 (1 H, t, J = 7.3 Hz, 4-C₆H₅), 7.29 (2 H, t, J = 7.3 Hz, 3-C₆H₅), 7.16 (1 H, t, J = 7.3Hz, 4-C₆H₅), 6.92 (1 H, s, 6-C₆H₂^tBu₂), 4.53 (1 H, d, J = 12.2Hz, NCH₂Ar), 3.36 (1 H, m, NCH₂CH₂N), 3.27 (1 H, m, NCH₂-CH₂N), 2.68 (3 H, s, NMe), 2.55 (1 H, d, J = 12.2 Hz, NCH₂-Ar), 2.20-1.20 (9 H, overlapping m, NCH₂CH₂N), 2.00 (3 H, s, NMe), 1.87 (9 H, s, CMe₃), 1.39 (9 H, s, CMe₃), 0.93 (1 H, m, NCH₂CH₂N). ¹³C{¹H} NMR (C₆D₆, 75.5 MHz, 293 K): 161.3 $(2-C_6H_2{}^tBu_2)$, 138.6 $(2-C_6H_5)$, 138.0 $(2-C_6H_5)$, 137.9 (3- or $5-C_6H_2^{t}Bu_2$), 136.5 (5- or $3-C_6H_2^{t}Bu_2$), 126.6 ($3-C_6H_5$), 126.5 (3- $C_{6}H_{5}),\,125.5\,(4\text{-}C_{6}H_{5}),\,125.4\,(4\text{-}C_{6}H_{5}),\,125.0\,(6\text{-}C_{6}H_{2}{}^{t}Bu_{2}),\,124.5$ (4-C₆H₂^tBu₂), 124.3 (1-C₆H₂^tBu₂), 64.6 (NCH₂Ar), 58.9 (NCH₂-CH₂N), 57.5 (NCH₂CH₂N), 56.0 (NCH₂CH₂N), 53.0 (NMe), 52.4 $(NMe), 49.9 (NCH_2CH_2N), 49.5 (NCH_2CH_2N), 35.7 (CMe_3), 34.2$ (CMe₃), 32.2 (CMe₃), 30.6 (CMe₃) ppm (not observed: 2 \times 1-C₆H₅). IR (KBr pellet, cm⁻¹): 3038 (w), 2952 (s), 2902 (s), 2864 (s), 2826 (w), 1724 (w), 1700 (w), 1602 (w), 1476 (s), 1438 (m), 1412 (m), 1384 (m), 1362 (m), 1314 (s), 1284 (s), 1262 (m), 1240 (m), 1202 (w), 1168 (w), 1136 (w), 1104 (w), 1105 (m), 1006 (m), 992 (m), 878 (w), 840 (m), 810 (w), 800 (w), 772 (w), 722 (w), 706 (m), 680 (m), 634 (w), 610 (w), 546 (m), 504 (w), 490 (w), 472 (w), 440 (w), 422 (w), 408 (w) $\rm cm^{-1}.$ Anal. Found (calcd for C₃₅H₅₀N₃OSc·0.4C₆H₆): C, 74.4 (74.3); H, 8.9 (8.7); N. 7.2 (7.0).

 $Sc(L^1)(OTol)_2$ (18). To a stirred solution of $Sc(L^1)(CH_2-$ SiMe₃)₂ (15; 90 mg, 0.14 mmol) in cold (7 °C) benzene (20 mL) was added dropwise TolOH (20 mg, 0.28 mmol) in cold benzene (20 mL). The solution was warmed to room temperature and stirred for 1 h before removing the volatiles under reduced pressure to afford 18 as a white powder. Yield: 40 mg (49%). Diffraction-quality crystals were grown from a saturated benzene solution at room temperature. ¹H NMR (C₆D₆, 500.0 MHz, 293 K): 7.59 (1 H, d, J = 2.4 Hz, $4 \cdot C_6 H_2^{t} Bu_2$), 7.14 (2 H, m, C₆ H_4 Me), 7.08 (2 H, d, J = 6.3 Hz, C₆ H_4 Me), 6.98-6.92 (5 H, overlapping m, $6-C_6H_2^{t}Bu_2$, C_6H_4Me), 4.55 (1 H, d, J = 12.7Hz, CH_2Ar), 3.34 (1 H, td, ${}^{2}J = 12.7$ Hz, ${}^{3}J = 5.4$ Hz, NCH_2 -CH₂N), 2.95 (1 H, td, ${}^{2}J = 12.7$ Hz, ${}^{3}J = 5.4$ Hz, NCH₂CH₂N), 2.87 (1 H, d, J = 12.7, CH₂Ar), 2.50 (3 H, s, NMe), 2.26 (3 H, s, C₆H₄Me), 2.25 (3 H, s, C₆H₄Me), 2.24–1.24 (9 H, m, NCH₂-CH₂N), 2.15 (3 H, s, NMe), 1.77 (9 H, s, CMe₃), 1.40 (9 H, s, CMe₃), 1.05 (1 H, d, J = 10.3 Hz, NCH₂CH₂N). ¹³C{¹H} NMR (C₆D₆, 125.7 MHz, 293 K): 163.3 (1-C₆H₄Me), 163.0 (1-C₆H₄-Me), 161.4 (2- $C_6H_2^tBu_2$), 137.1 (3- or 5- $C_6H_2^tBu_2$), 136.5 (5- or 3-C₆H₂^tBu₂), 130.2 (4-C₆H₄Me), 128.2 (4-C₆H₄Me), 125.4 (4-C₆H₂^tBu₂), 125.0 (C₆H₄Me), 124.7 (6-C₆H₂^tBu₂), 124.4 (C₆H₄Me), 123.7 (1-C₆H₂^tBu₂), 119.5 (C₆H₄Me), 119.3 (C₆H₄Me), 64.3 (NCH₂Ar), 57.8 (NCH₂CH₂N), 56.1 (NCH₂CH₂N), 56.0 (NCH₂-CH₂N), 52.6 (NCH₂CH₂N), 51.5 (NCH₂CH₂N), 48.7 (NCH₂-CH₂N), 48.5 (NMe), 48.1 (NMe), 35.6 (CMe₃), 34.2 (CMe₃), 32.2 (CMe₃), 30.6 (CMe₃), 20.9 (C₆H₄Me), 20.8 (C₆H₄Me). IR (KBr plates, Nujol): 1606 (s), 1504 (s), 1414 (m), 1350 (w), 1286 (s), 1260 (m), 1204 (w), 1164 (m), 1770 (m), 746 (m), 722 (m), 544 (s), 516 (w), 470 (w), 422 (w), 404 (w) cm⁻¹. EI-HRMS for [Sc(L²)(OTol)]⁺: found (calcd for C₃₀H₄₇N₃O₂Sc) *m/z* 526.3204 (526.3227). A satisfactory combustion analysis was not obtained, even from the single crystals.

Crystal Structure Determinations of Sc(Me₃[9]aneN₃)- $(CH_2SiMe_3)_3$ (1), $Sc{HC(Me_2pz)_3}(CH_2SiMe_3)_3 \cdot 2C_7H_8$ (3) $2C_7H_8$, $Y{HC(Me_2pz)_3}(CH_2SiMe_3)_3$ (4), $Sc{HC(Me_2pz)_3}$ - $(OAr)_{3} \cdot 4C_{6}H_{6}$ (9.4C₆H₆), Y{HC(Me₂pz)₃}Cl₃·CH₂Cl₂ (11. CH₂Cl₂), Sc(Me₃[6]aneN₃)Cl₃ (14), and Sc(L²)(OTol)₂·C₆H₆ (18.C₆H₆). Crystal data collection and processing parameters are given in Table 8. Crystals were mounted on a glass fiber using perfluoropolyether oil and cooled rapidly to 150 K in a stream of cold N2 using an Oxford Cryosystems CRYOS-TREAM unit. Diffraction data were measured using an Enraf-Nonius KappaCCD diffractometer. Intensity data were processed using the DENZO-SMN package.57 The structures were solved using the direct-methods program SIR92,58 which located all non-hydrogen atoms. Subsequent full-matrix leastsquares refinement was carried out using the CRYSTALS program suite.⁵⁹ Coordinates and anisotropic thermal param-

(57) Otwinowski, Z.; Minor, W. Processing of X-ray Diffraction Data Collected in Oscillation Mode; Methods in Enzymology; Academic Press: New York, 1997.

 (59) Watkin, D. J.; Prout, C. K.; Carruthers, J. R.; Betteridge, P.
 W.; Cooper, R. I. CRYSTALS, issue 11; Chemical Crystallography Laboratory, Oxford, U.K., 2001, 2001. eters of all non-hydrogen atoms were refined. Hydrogen atoms were positioned geometrically, except for the CH_2SiMe_3 atoms of **1** and **3**, which were located from Fourier difference syntheses and positionally and isotropically refined.

Additional Comments on the Crystal Structures. Crystals of 1 have two crystallographically independent molecules in the asymmetric unit which adopt very similar geometries. One of the trimethylsilyl groups (that of Si(3)) of 4 was disordered, and this was modeled as being due to the presence of two conformers related by rotation about the Si(3)-C(25) bond; coordinates, anisotropic displacement parameters, and site occupancies of the disordered carbon atoms were refined, subject to restraint of the Si-C bond lengths to 1.90(2) Å and of the C-Si-C angles to 109.5(2)°; similarly, restraints were applied to the displacement parameters of the C atoms and those of Si(3). Moleclues of 14 are located on crystallographic mirror planes. Crystals of 18. C6H6 were weak diffractors, and despite an extended data collection time (36 h), a data to parameter ratio of only ca. 7:1 (threshold $I > 2\sigma(I)$) was achieved; the C₆H₆ molecule of crystallization was disordered and was refined in a rigid-body approximation.

Full listings of atomic coordinates, bond lengths and angles, and displacement parameters have been deposited at the Cambridge Crystallographic Data Center. See Notice to Authors, Issue No. 1.

Acknowledgment. We thank the EPSRC and Leverhulme Trust for support. S.C.L. is the recipient of a European Scatcherd Scholarship. C.S.T. thanks St. Edmund Hall, Oxford, for a Graduate Scholarship.

Supporting Information Available: X-ray crystallographic files in CIF format for the seven structure determinations. This material is available free of charge via the Internet at http://pubs.acs.org.

OM050209R

⁽⁵⁸⁾ Altomare, A.; Cascarano, G.; Giacovazzo, G.; Guagliardi, A.; Burla, M. C.; Polidori, G.; Camalli, M. J. Appl. Crystallogr. **1994**, 27, 435.