Characterization of a **Rhodium(III)**–Imine–Orthometalated Imine Complex: **Reversible C–H Activation of a Coordinated Imine**

Maria B. Ezhova, Brian O. Patrick, and Brian R. James*

Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada

Received March 30, 2005

Solutions of cis-[Rh(PPh₃)₂(solv)₂]PF₆ (solv = acetone or MeOH) react at room temperature under Ar with benzophenone imine to yield cis-[Rh(PPh_3)₂(η ¹-NH=CPh₂)₂]PF₆ (3), but depending on reaction conditions, one of the imine ligands undergoes orthometalation to give $[RhH{NH=C(Ph)(o-C_6H_4)}(HN=CPh_2)(PPh_3)_2]PF_6(2)$ with trans-phosphines; this is the first recorded complex containing an imine in its η^1 -form and as an η^2 -moiety formed via orthometalation. Complexes 2 and 3 are characterized by elemental analysis, ¹H and ³¹P-¹H} NMR spectroscopy, and, in the case of **2**, an X-ray crystal structure.

Introduction

As part of our ongoing studies on hydrogenation of imines catalyzed by cationic, Rh(I)-phosphine species as precursors,¹ we reported recently on the room-temperature reaction of imines of the type RN=CR'(R''), where R and R" are alkyl or aryl groups, and R' = H or Me, with cis-[Rh(PPh₃)₂(solv)₂]PF₆ (1) and cis,trans,cis-[Rh- $(H)_2(PPh_3)_2(solv)_2]PF_6$ complexes (solv = acetone or MeOH; see Scheme S1 in the Supporting Information).² In acetone solution, when R'' = Ph (or *p*-OMe-C₆H₄), the products are species exemplified by [RhH{RN=CR'(o- C_6H_4)}(PPh_3)₂(acetone)]PF₆, in which the imine coordinates with orthometalation in an η^2 fashion via the imine-N and the ortho-C atom of the phenyl group; in MeOH solution, when R' = H, nonorthometalated species, η^1 -species of the type $[Rh(PPh_3)_2(RN=CHR'')$ -(MeOH)]PF₆ can be formed and these provide one pathway for subsequent hydrogenation of the imine by reaction with H₂.² In an extension of this work, we have now used benzophenone imine, HN=CPh₂, as the reactant imine with the Rh complexes, and from the reaction in MeOH or acetone, the initially formed product is the bis(imine) complex cis-[Rh(PPh_3)₂(η^1 -NH=CPh_2)₂]PF₆ (3), a rare type of species, but this converts partially to $RhH\{HN=C(Ph)(o-C_6H_4)\}(HN=CPh_2)(PPh_3)_2]PF_6$ (2), containing the imine in its η^1 -form and as an η^2 -moiety formed via orthometalation; this unique type of complex is readily isolated. The corresponding reaction in CH₂- Cl_2 gives solely complex **3**. The interconversion between 2 and 3 is solvent-dependent and represents a further example of reversible C-H activation within these imine systems.² The findings are summarized in Scheme 1.

More generally, the orthometalation reactionactivation of a C-H bond in the ortho-position of an aromatic ring by transition metals-continues to be an important class of reactions,^{3,4} because of potential applications in diverse areas such as catalysis,^{4,5} organic synthesis,⁶ and material science.⁷

Experimental Section

General experimental procedures and instrumentation used have been described in a recent publication.² The imine, HN= CPh₂ (an Aldrich product, pure according to GC and ¹H NMR), was used as received. The [Rh(COD)(PPh_3)2]PF6 precursor, and in situ [Rh(PPh₃)₂(solv)₂]PF₆ (1), [Rh(H)₂(PPh₃)₂(solv)₂]PF₆ (solv acetone, MeOH), and $[Rh(PPh_3)_2]_2(PF_6)_2$ species, were prepared according to literature procedures.^{8,9}

Reaction of cis-[Rh(PPh₃)₂(solv)₂]PF₆ (1) with 2 Equiv of HN=CPh₂. An acetone solution (4 mL) of [Rh(COD)(PPh₃)₂]- $PF_{6}\left(42\text{ mg},\,0.0475\text{ mmol}\right)$ was reacted with 1 atm H_{2} for 2 h to form $[Rh(H)_2(PPh_3)_2(acetone)_2]PF_6$ in situ. The H_2 and the volatile materials (solvent, cyclooctane) were removed under vacuum at ~ 40 °C overnight, and the resulting dark red residue of [Rh(PPh₃)₂]₂(PF₆)₂⁹ was then redissolved in MeOH $(\sim 2 \text{ mL})$ under Ar to form $[Rh(H)_2(PPh_3)_2(MeOH)_2]PF_6$. Imine (17.3 mg, 0.095 mmol) was then added, and the reaction was monitored by ¹H and ³¹P{¹H} NMR. After 1 h, the two species $[RhH{NH=C(Ph)(o-C_6H_4)}(\eta^1-HN=CPh_2)(PPh_3)_2]PF_6$ (2) and cis-[Rh(PPh₃)₂(η^{1} -NH=CPh₂)₂]PF₆ (3) (see below) were ob-

(5) Trzeciak, A. M.; Ziółkowski, J. J. Organomet. Chem. 2000, 597, 69

^{*} To whom correspondence should be addressed. Tel: +1-(604)-822-6645. Fax: +1-(604)-822-2847. E-mail: bri@chem.ubc.ca.

^{(1) (}a) Marcazzan, P.; Patrick, B. O.; James, B. R. Organometallics 2003, 22, 1177. (b) Marcazzan, P.; Abu-Gnim, C.; Seneviratne, K. P.; James, B. R. Inorg. Chem. 2004, 43, 4820. (c) Marcazzan, P.; Patrick, B. O.; James, B. R. Inorg. Chem. 2004, 6838.

⁽²⁾ Marcazzan, P.; Patrick, B. O.; James, B. R. Organometallics 2005, 24, 1445.

⁽³⁾ Shilov, A. E.; Shul'pin, G. B. Chem. Rev. 1997, 97, 2879.

⁽⁴⁾ Ryabov, A. D. Chem. Rev. 1990, 90, 403.

⁽⁶⁾ Ryabov, A. D. Synthesis 1985, 233.

⁽⁷⁾ For example: (a) Maestri, M.; Sandrini, D.; Balzani, V.; Maeder, U.; von Zelewsky, A. *Inorg. Chem.* **1987**, *26*, 1323. (b) Didier, P.; Ortmans, I.; Kirsch-De Mesmaeker, A.; Watts, R. J. *Inorg. Chem.* **1993**, *32*, 5239. (c) Di Bella, S.; Fragali, I.; Ledoux, I.; Diaz-Garcia, M. A.; Marks, T. J. *J. Am. Chem. Soc.* **1997**, *119*, 9550. (d) Buey, J.; Coco, S.; Marks, I. J. J. Am. Chem. Soc. 1997, 119, 5350. (d) Buley, 9, Coco, S., Diez, L.; Espinet, P.; Martin-Alvarez, J. M.; Miguel, J. A.; Garcia-Granda, S.; Tesouro, A.; Ledoux, I.; Zyss, J. Organometallics 1998, 17, 1750. (e) Aiello, I.; Crispini, A.; Ghedini, M.; La Deda, M.; Barigelletti, F. Inorg. Chim. Acta 2000, 308, 121.

⁽⁸⁾ Schrock, R. R.; Osborn, J. A. J. Am. Chem. Soc. 1971, 93, 2397.
Haines, L. M.; Singleton, E. J. Chem. Soc., Dalton Trans. 1972, 1891.
(9) Marcazzan, P.; Ezhova, M. B.; Patrick, B. O.; James, B. R. C. R. Chim. 2002, 5 (J. A. Osborn Memorial Volume).

^{*a*} $P = PPh_3$; S = solvent (acetone or MeOH).

served in a ratio of ~1:25, but after 24 h, the colorless, crystalline solid **2** precipitated from the solution. The solid was filtered off, washed with 1:15 MeOH/hexanes (1 mL), and dried in a vacuum. Yield: 38 mg (72%). ³¹P{¹H} NMR (CD₃OD): δ 45.2 (d, $J_{\rm RhP} = 117$), -143.2 (septet, PF₆⁻). ¹H NMR (CD₃OD): δ -11.98 (dt, 1H, RhH, ² $J_{\rm HP} = 9.6$, $J_{\rm RhH} = 11.6$), 6.28 (d, 1H, m-(o-C₆H₄), ³ $J_{\rm HH} = 7.1$), 6.52 (dd, 1H, m-(o-C₆H₄), ³ $J_{\rm HH} = 7.1$), 6.70 (pseudo t, 1H, p-(o-C₆H₄), ³ $J_{\rm HH} = 7.1$), 6.84 (d, 1H, o-(o-C₆H₄), ³ $J_{\rm HH} = 7.1$), 7.1–7.8 (m, ~47H, H_{arom.}+ 2NH). MS: 809 ([Rh(PPh₃)₂(HNCPh₂)]⁺, 40%), 627 ([Rh(PPh₃)₂]⁺, 100%), 287 ([RhPPh₂-H]⁺, 45%), 217 (89%), 91 (55%). IR: 3056 ($\nu_{\rm N-H}$), 2134 ($\nu_{\rm Rh-H}$), 1570 ($\nu_{\rm C=N}$). Anal. Calcd for C₆2H₅₂N₂P₃F₆Rh: C, 65.61; H, 4.62; N, 2.47. Found: C, 65.67; H, 4.73; N, 2.59.

If the [Rh(PPh₃)₂]₂(PF₆)₂ was dissolved in CH₂Cl₂ (2 mL) rather than MeOH, prior to reaction with the imine, only the bis(imine) complex (3) is formed; addition of hexanes (~1 mL) gave a dark red solid, which was filtered off, washed with hexanes, and dried overnight in a vacuum. Yield: 29 mg (55%).³¹P{¹H} NMR (CD₂Cl₂): δ 46.8 (d, $J_{RhP} = 167$), -143.2 (septet, PF_6^-). ¹H NMR (CD₂Cl₂): δ 6.12 (d, 4H, o-H_{PhP}, ³J_{HH} = 7.6), 7.05–7.20 (m, 15H, H_{arom.}), 7.23 (t, 4H, m-H_{PhP}, ${}^{3}J_{\rm HH}$ = 7.1), 7.35 (t, 2H, p-H_{PhC}, ${}^{3}J_{\rm HH} =$ 7.5), 7.45 (m, 15H, H_{arom}.), 7.65 (t, 4H, *m*-H_{PhC}, ${}^{3}J_{\rm HH} =$ 7.4), 7.75 (br s, 2H, NH), 7.85 (t, 2H, p-H_{PhC}, ${}^{3}J_{\text{HH}} = 7.3$), 8.20 (d, 4H, o-H_{PhC}, ${}^{3}J_{\text{HH}} = 7.1$). IR: 3275 (ν_{N-H}) , 1590 $(\nu_{C=N})$. Anal. Calcd for $C_{62}H_{52}N_2P_3F_6Rh$: C, 65.61; H, 4.62; N, 2.47. Found: C, 64.95; H, 4.90; N, 2.40. The low C analysis results from the presence of CH₂Cl₂ that could not be removed even on prolonged drying under vacuum (CH₂Cl₂ was detected at $\delta_{\rm H}$ 5.60 in an acetone- d_6 solution of **3**); inclusion of 0.15-0.20 mol of CH_2Cl_2 per mole of complex allows for analytical data in excellent agreement with the experimental values.

If the [Rh(PPh₃)₂]₂(PF₆)₂ was dissolved in acetone- d_6 to generate cis-[Rh(PPh₃)₂(acetone)₂]PF₆ and this was similarly reacted with 2 equiv of imine, close to complete formation of **3** over 1 h was followed by partial conversion to **2** (after 2 days, **3**:**2** \approx 2.5).

In Situ Reactions of *cis*-[Rh(PPh₃)₂(solv)₂]PF₆ (1) with 1 or 0.5 Equiv of HN=CPh₂. [Rh(PPh₃)₂]₂(PF₆)₂, obtained from [Rh(COD)(PPh₃)₂]PF₆ (20 mg, 0.023 mmol) as described above, was dissolved in 0.6 mL of CD₃OD, and HN=CPh₂ (4.12 mg, 0.023 mmol) was added to the solution under Ar in a glovebox; the reaction was monitored at room temperature by ¹H and ³¹P{¹H} NMR. For the corresponding reaction in acetone- d_6 , the imine addition was done in two stages (2 × 2.06 mg), each stage being monitored.

In CD₃OD after 1 h, four Rh-containing species are seen, 1-3, and a new one (4), in an approximate ratio of 6:4:2:1, as judged by intensities of the $^{31}P\{^1H\}$ signals; for 4, δ_P 43.0 (d, $J_{\rm RhP} = 116$), -143.2 (septet, PF_6^-). In acetone- d_6 , with 0.5 equiv of HN=CPh₂, just one product (4) was observed after 1 h (4:1 \approx 1), and there were trace 1H signals of the free imine. $^{31}P\text{-}$ {¹H} NMR: δ 43.6 (d, $J_{RhP} = 116$), -143.2 (septet, PF₆⁻). ¹H NMR: $\delta -11.78$ (dt, 1H, RhH, ${}^{2}J_{HP} = 9.5$, $J_{RhH} = 10.6$), 6.41 (br d, 2H, o-C₆H₄, $J_{\rm HH} \approx 6.9$), 6.67 (pseudo t, 1H, o-C₆H₄, $J_{\rm HH}$ pprox 6.6), 6.78 (pseudo t, 1H, $J_{
m HH}$ pprox 7.7), 6.88 (pseudo t, 1H, $p\text{-}\mathrm{H}_{\mathrm{PhC}},\,J_{\mathrm{HH}}\approx7.7),\,7.0-8.0~(\mathrm{m},\,33\mathrm{H},\,\mathrm{H}_{\mathrm{arom}}+1\mathrm{NH}),\,8.3~(\mathrm{d},\,2\mathrm{H},\,$ o-H_{PhC}, ${}^{2}J_{HH} = 6.8$). Species 4 is formulated as [RhH{HN= $CPh(o-C_6H_4)$ (PPh₃)₂(solv)] PF₆ containing *trans*-phosphines. Various mixtures of 1-4 (in amounts that varied with reaction time) were observed using 0.5 equiv of imine in CD₃OD, or 1.0 equiv of imine in acetone- d_6 .

In Situ Reaction of *cis,trans,cis*-[Rh(H)₂(PPh₃)₂(solv)₂]-PF₆ with 2 Equiv of HN=CPh₂. [Rh(COD)(PPh₃)₂]PF₆ (15 mg, 0.017 mmol) was used with 1 atm H₂ for the in situ preparation of the dihydride in acetone- d_6 or in CD₃OD (0.6 mL). The imine (6.17 mg, 0.034 mmol) was added to the dihydride solution in a glovebox, and the reaction mixture was then exposed to H₂ again at room temperature. The reaction progress was followed by ¹H and ³¹P{¹H} NMR spectroscopy. In the acetone- d_6 system after 1 h, 2 and 3 were present in a ratio of 1:2.3, this changing to 1:3 after 24 h. In CD₃OD after 0.5 h, only 3 was evident, but after 24 h, complex 2 had precipitated out. Neither system showed the presence of H₂-NC(H)Ph₂, the imine hydrogenation product.

Catalytic Hydrogenation of Benzophenone Imine. [Rh-(COD)(PPh₃)₂]PF₆ (5 mg, 0.0056 mmol) and the imine (20.6 mg, 0.114 mmol) were dissolved in MeOH (10 mL), and the solution was stirred under 1 atm H₂ for 24 h; GC analysis (HP-5890 instrument with an HP-17 column) revealed ~5% conversion to H₂NC(H)Ph₂. Analysis by NMR of an acetone-*d*₆ or CD₃OD solution of the residue, obtained after removing the MeOH under vacuum, showed the presence of the amine (δ_{CH} 5.20), unreacted imine, and initially just species **3**, although this slowly partially converted to **2**.

Crystallographic Analysis of Complex 2. Colorless, needle crystals of [RhH{NH=C(Ph)(o-C₆H₄)}(HN=CPh₂)-(PPh₃)₂]PF₆ (**2**) were grown by layering hexanes over a MeOH solution of the reacting mixture of **1** and 2 equiv of imine (see above). X-ray measurements were made at 173(1) K on a Rigaku/ADSC CCD area detector with graphite-monochromated Mo K α radiation (0.71069 Å). Some crystallographic

Labic II Crystanographic Data for A	Fable 1.	Crystallographic	Data	for	2
-------------------------------------	----------	------------------	------	-----	----------

formula	$C_{62}H_{52}N_2F_6P_3Rh$
fw	1134.88
cryst color, habit	colorless, needle
cryst size (mm)	0.15 imes 0.10 imes 0.05
cryst syst	orthorhombic
space group	<i>Pna</i> 2 ₁ (No. 33)
a (Å)	27.571(1)
b(A)	18.5892(7)
c (Å)	12.1020(5)
$V(Å^3)$	6202.6(4)
Ζ	4
$D_{ m calcd} ({ m g} { m cm}^{-3})$	1.215
$\mu (\mathrm{cm}^{-1})$	4.07
total no. of reflns	48 827
no. of unique reflns	10 723
$R_{\rm int}$ (Friedels not merged)	0.135
no. of variables	597
R1	$0.0.062 (I > 2.00 \sigma(I),$
	6888 obs reflns)
wR2	0.155 (all data)
GOF	0.96 (all data)

data are shown in Table 1. Data were processed using the d*TREK program¹⁰ and integrated using the CrystalClear¹¹ software package. The structure was solved by direct methods¹² and expanded using Fourier techniques.¹³ The material crystallized with lattice solvent (MeOH and/or hexanes) that could not be modeled reasonably, so the SQUEEZE function found in PLATON¹⁴ was used. All calculations were performed using the teXsan crystallographic software.¹⁵ Further details on the collection of data and the refinement of the structure are available in the Supporting Information.

Results and Discussion

An equilibrium between the bis(imine) species, *cis*-[Rh(PPh₃)₂(η^{1} -NH=CPh₂)₂]PF₆ (**3**), and mono(imine)orthometalated imine species, [RhH{NH=C(Ph)(*o*-C₆H₄)}-(η^{1} -HN=CPh₂)(PPh₃)₂]PF₆ (**2**), is evident from the methods used for their syntheses. First, it is worth noting that the hydrogenation of the [Rh(COD)(PPh₃)₂]-PF₆ precursor to give [Rh(H)₂(PPh₃)₂(solv)₂]PF₆ is much more rapidly achieved in acetone rather than in MeOH solution, and the subsquent dark red residue isolated is [Rh(PPh₃)₂]₂(PF₆)₂, the cation being in fact [(PPh₃)-Rh(μ -PhPPh₂)₂Rh(PPh₃)]^{2+;9} this dimer exists as such in CH₂Cl₂, but in MeOH or acetone is converted to *cis*-[Rh(PPh₃)₂(solv)₂]PF₆ (**1**).^{8,9}

Reaction of 1 with 2 equiv of benzophenone imine in MeOH or in acetone at room temperature gives rapid, in situ formation of a 25:1 mixture of 3 and 2; in MeOH, 2 eventually precipitates out as a colorless, crystalline solid in 72% yield, while in acetone the system slowly equilibriates to a 5:2 mixture of 3:2. Similarly, if 2 is dissolved in acetone or MeOH, it converts over 2 days to the 5:2 ratio of 3:2 (after 1 h, the ratio was 1:2). Thus, the bis(imine) complex 3 is first formed and then is converted slowly and partially to the orthometalatedimine(imine) species **2**, with a $K_{3/2}$ equilibrium constant of ~2.5 at ~20 °C in acetone or MeOH (see Scheme 1). We have noted recently reversible orthometalation of the imine PhCH₂N=C(H)Ph at a corresponding Rh center in MeOH, but this system involved a monoimine-(methanol) species.² In this current work, in CH₂Cl₂, only **3** is formed, and this suggests that the weak intermolecular interactions involving the hydrido ligand of **2** with H atoms of the phenyl groups of the *trans*-PPh₃ ligands (see below) perhaps assist in stabilizing the orthometalated form in the polar solvents. Complex **3** was readily isolated in 55% yield from the CH₂Cl₂ solution.

Complexes 2 and 3 are well characterized by elemental analyses, NMR data, and, in the case of 2, X-ray crystallography. The ORTEP for the cation of 2 is shown in Figure 1, and selected bond lengths and angles are given in Table 2. The structure shows an η^2 -N-imine moiety coordinated via the imine-N atom and orthometalated-C atom (C_{ortho}), which thus exists as a fivemembered metallocycle, this being essentially coplanar with the hydride and the η^1 -N atom of a second imine. The hydride is trans to the orthometalated imine-N atom, and the C_{ortho} atom is trans to the η^1 -imine-N atom. The N-Rh-C angle (79.3°) of the metallocycle and the C_{ortho} -Rh-H angle (102°) are similar to those of other related cyclometalated Rh-imine systems^{2,16,17} and to the corresponding angles of the same orthometalated benzophenone in several Os(II)-PⁱPr₃ species.¹⁸ The distorted octahedral structure shows *trans*-PPh₃ ligands that are bent slightly toward the hydride and orthometalated-C atom, as indicated by the C-Rh-P (87.6° and 88.1°), H-Rh-P (92° and 83°), and P1-Rh-P2 (172°) angles, and two weak interactions between the hydride on Rh and protons of the phenyl group on the P atom (H1-H11 = 2.264 Å, H1-H26 = 2.094 Å).Similar bending of the PPh3 ligands and weak interactions with a Rh-hydride have been noted in related complexes containing cyclometalated imine¹⁶ and cyclometalated azobenzene moieties.¹⁷

The bond lengths at the Rh are unexceptional,^{16,17} and the C=N bond length in the η^2 -imine (1.314 Å) is close to others reported for benzophenone imine orthometalated at Os(II) centers (1.305, 1.291, 1.26 Å).¹⁸ The C= N bond length of the η^1 -imine (1.288 Å) is the same as that found in [Rh{PPh_2(CH_2)_2PPh_2}(\eta^1-imine)_2]⁺ for a cyclic imine,¹⁹ the only other structurally characterized Rh(I)- η^1 -imine complex of which we are aware, although such moieties are known with Rh(I)-tridentate, pincertype imine systems.²⁰ Complex **2** is the first reported to contain an imine in its η^1 -form and as an η^2 -moiety formed via orthometalation. Further, we are unaware of any X-ray structural data on other metal-monohy-

 $^{(10)\,}d^{*}{\rm TREK}:$ Area Detector Software, version 4.13; Molecular Structure Corporation: The Woodlands, TX, 1996–1998.

⁽¹¹⁾ CrystalClear 1.3.5 SP2; Molecular Structure Corporation: The Woodlands, TX, 2003.

⁽¹²⁾ SIR97: Altomare, A.; Burla, M. C.; Cammalli, G.; Cascarano, M.; Giacovazzo, C.; Guagliardi, A.; Moliterni, A. G. G.; Poidori, G.; Spagna, A. J. Appl. Cryst. **1999**, 32, 115.

⁽¹³⁾ DIRDIF94: Beurskens, P. T.; Admiraal, G.; Beurskens, G.; Bosman, W. P.; de Gelder, R.; Israel, R.; Smits J. M. M. The DIRDIF-94 program system. Technical Report of the Crystallography Laboratory; University of Nijmegen: The Netherlands, 1994.

⁽¹⁴⁾ *PLATON*: Spek, A. L. A Multipurpose Crystallographic Tool; Utrecht University: Utrecht, The Netherlands, 2001.

⁽¹⁵⁾ *teXsan*: Crystal Structure Analysis Package; Molecular Structure Corporation: The Woodlands, TX, 1985 and 1992.

^{(16) (}a) Ezhova, M. B.; Patrick, B. O.; James, B. R.; Ford, M. E.;
Waller, F. J. *Russ. Chem. Bull. Int. Ed.* **2003**, *52*, 2707. (b) Ezhova, M. B.;
Sereviratne, K.; Patrick, B. O.; James, B. R.; Ford, M. E.; Waller, F. J. *Inorg. Chem.* **2005**, *44*, 1482.

⁽¹⁷⁾ Huang, L.-Y.; Aulwurm, U. R.; Heinemann, F. W.; Knoch, F.; Kisch, H. Chem. Eur. J. **1998**, 4, 1641.

^{(18) (}a) Esteruelas, M. A.; Lahoz, F. J.; López, A. M.; Oñate, E.; Oro,
L. A. Organometallics 1995, 14, 2496. (b) Barea, G.; Esteruelas, M.
A.; Lledós, A.; López, A.; Oñate, E.; Tolosa, J. I. Organometallics 1998, 17, 4065. (c) Esteruelas, M. A.; Gutiérrez-Puebla, E.; López, A. M.;
Oñate, E.; Tolosa, J. I. Organometallics 2000, 19, 275.

 ⁽¹⁹⁾ Becalski, A. G.; Cullen, W. R.; Fryzuk, M. D.; James, B. R.;
 Kang, G. J.; Rettig, S. J. Inorg. Chem. 1991, 30, 5002.

Figure 1. ORTEP diagram for the cation of $[RhH{NH=C(Ph)(o-C_6H_4)}(HN=CPh_2)(PPh_3)_2]PF_6$ (2), with 50% probability ellipsoids.

Table 2. Selected Bond Angles (deg) and Distances(Å) for the Cation of Complex 2

angle		bond		
P1-Rh1-P2	172.09(8)	Rh1–P1	2.3509(19)	
C37-Rh1-H1	102(2)	Rh1–P2	2.3387(19)	
N2-Rh1-C37	176.8(3)	Rh1-N1	2.178(7)	
N1-Rh1-C37	79.3(3)	Rh1-N2	2.131(6)	
N2-Rh1-H1	81(2)	Rh1-H1	1.46(6)	
N1-Rh1-H1	176(3)	C37-Rh1	2.020(7)	
N2-Rh1-N1	97.6(2)	N1-C43	1.314(9)	
C37-Rh1-P1	87.62(19)	N2-C50	1.288(9)	
C37-Rh1-P2	88.1(2)			
H1-Rh1-P1	92(3)			
H1-Rh1-P2	83(3)			

drido- η^1 -imine complexes, which in any case are quite rare.²¹

The H atoms attached to the imine N atoms were not located, but there was crystallographic evidence for their presence (see Supporting Information), and the geometries of the coordinated η^{1-} and η^{2-} imines (as well as ¹H NMR data, see below) unequivocally establish their presence. The nonlocation of such H atoms by X-ray analysis is not unusual.^{18a,c}

The solid state IR spectrum of **2** shows bands assignable to $\nu_{C=N}$, ν_{Rh-H} , and ν_{N-H} (but see below), while the

highest mass fragment in the LSIMS mass spectrum corresponded to [Rh(PPh₃)₂(HNCPh₂)]⁺. The room-temperature ³¹P{¹H} NMR spectrum of **2** (in CD₃OD) consists of a doublet (δ 45.2, $J_{RhP} = 117$ Hz), the J value being indicative of mutually *trans*-phosphines.^{2,8,9,16} The high-field hydride ¹H NMR resonance (a doublet of triplets at δ -11.98, $J_{\rm RhH}$ = 11.6, ${}^2J_{\rm HP}$ = 9.6) is consistent with a trans-Rh(PPh₃)₂-hydrido moiety.² The ¹H signals of the orthometalated-Ph ring (seen as two doublets, a doublet of doublets, and a pseudo-triplet) are shifted upfield compared with the broad signal at δ 7.1– 7.8 for the other 45 aromatic protons, and such shifts have been noted previously in related Rh and Ir imine systems.^{2,16,22} The imine-NH proton signals must be buried under the broad signal of the 45 aromatic protons, where it is impossible to quantify the integration for the 2 NH protons (for **3**, $\delta_{\text{NH}} = 7.75$, see below).

The NMR spectroscopic data for complex **3** are consistent with the formulation cis-[Rh(PPh₃)₂(η^{1} -NH= CPh₂)₂]PF₆, this being present as a single isomer with equivalent phosphines and equivalent imines. The $J_{\rm RhP}$ value for the ³¹P{¹H} NMR doublet in CD₂Cl₂ is 167 Hz, the same as that reported for a crystallographically characterized [Rh{PPh₂(CH₂)₂PPh₂}(η^{1} -imine)₂]⁺ complex that necessarily has cis-phosphorus atoms.¹⁹

Assignment of the ¹H NMR signals was aided by an ¹H–¹H COSY experiment that revealed correlations between (a) the doublet at δ 6.12 with the triplets at δ 7.23 and 7.35, and (b) the doublet at δ 8.20 and the triplets at δ 7.65 and 7.85; each of these correlation sets corresponds to 10 protons and is thus assigned to phenyl

^{(20) (}a) Haarman, H. F.; Ernsting, J. M.; Kranenburg, M.; Kooijman, H.; Veldman, N.; Spek, A. L.; van Leeuwen, P. W. N. M.; Vrieze, K. *Organometallics* **1997**, *16*, 887. (b) Haarman, H. F.; Kaagman, J.-W. F.; Smeets, W. J. J.; Spek, A. L.; Vrieze, K. *Inorg. Chim. Acta* **1998**, *270*, 34. (c) Gaunt, J. A.; Gibson, V. C.; Haynes, A.; Spitzmesser, S. K.; White, A. J. P.; Williams, D. J. *Organometallics* **2004**, *23*, 1015.

^{(21) (}a) Bohanna, C.; Esteruelas, M. A.; López, A. M.; Óro, L. A. J. Organomet. Chem. 1996, 526, 73. (b) Albéniz, M. J.; Buil, M. L.; Esteruelas, M. A.; López, A. M. J. Organomet. Chem. 1997, 545-546, 495. (c) Barea, G.; Esteruelas, M. A.; Lledós, A.; López, A. M.; Tolosa, J. I. Inorg. Chem. 1998, 37, 5033. (d) Aime, S.; Diana, E.; Gobetto, R.; Milanesio, M.; Valls, E.; Viterbo, D. Organometallics 2002, 21, 50.

⁽²²⁾ Marcazzan, P.; Patrick, B. O.; James, B. R. Russ. Chem. Bull. Int, Ed. 2003, 52, 2715.

groups labeled as either exo and endo on the imine C atoms (see Scheme 1). The phenyl groups of coordinated $NH=CPh_2$ are mutually orthogonal, as seen in the structures of **2** (Figure 1) and an Os complex;^{21d} in **3**, as defined, the two *exo* phenyls will be closer to a PPh₃ ligand of the square planar complex, and the set of ¹H signals at the higher field is tentatively attributed to the exo-phenyl protons. The noncorrelated broad ¹H signal at δ 7.75 is assigned to the imine-NH protons; this value (and that for 2) is some 1.0-3.7 ppm at higher field than those reported for η^1 -NH=CPh₂ complexes (or an orthometalated derivative) of Os(II) and Ru(II).^{18,21} This observation, together with the $\nu_{\rm N-H}$ value for 2 $(3056 \text{ vs } 3120-3386 \text{ cm}^{-1} \text{ for the Os and Ru com-})$ plexes^{18,21}), suggests there might be interactions between the NH protons and those of the phenyl groups at the P atom, although the $\nu_{\rm N-H}$ value for 3 (3275 cm⁻¹) is normal; unfortunately, the NH protons of 2 were not located crystallographically, and so there is no evidence for such interactions in the solid state.

On reacting cis-[Rh(PPh₃)₂(solv)₂]PF₆(1) with 1 equiv of benzophenone imine in MeOH or acetone at room temperature under Ar, a new species believed to be $[RhH{NH=C(Ph)(o-C_6H_4)}(PPh_3)_2(solv)]PF_6(4)$ was observed along with 2 and 3 and unreacted 1 (see Scheme 1). With use of just 0.5 equiv of the imine in acetone solution, 4 was the only product observed after 1 h and was formed in situ in $\sim 50\%$ yield, the maximum possible: the ³¹P{¹H} doublet with $J_{RhP} = 116$ Hz (again revealing *trans*-PPh₃ ligands), combined with the ¹H signals (high-field doublet of triplets and upfield-shifted resonances of aromatic protons attributable to a cyclometalated imine), is consistent with the above formulation, which is a possible precursor to 2 by displacement of the acetone by an η^1 -imine (Scheme 1). The NMR data are very similar to those for the analogous, isolated $[MH{RN=CR'(o-C_6H_4)}(PPh_3)_2(acetone)]PF_6$ species (M = Rh or Ir; R and $R' = alkyl \text{ or } aryl).^{2,22}$

Scheme 1 summarizes the essential chemistry incorporating production of 2-4 from 1, although 2 was isolated using $[Rh(PPh_3)_2]_2(PF_6)_2$ as precursor. The mono- η^1 -imine(solvento) species (5) was not observed, but these have been detected in MeOH solutions of a corresponding Rh system with the imine, PhCH₂N=CH-(Ph), and were formed from the corresponding hydrido-(orthometalated imine) species.² In the present HN= CPh₂ system, **5** in acetone must be relatively rapidly converted into the hydrido-orthometalated species 4. Our earlier paper recognized the reversible orthometalation process within 1:1 imine/Rh systems,² while the findings here establish similar behavior in 2:1 imine/

Rh systems, although the processes are solvent-dependent. More generally, formation of five-membered cyclometalated Rh(III)-hydrido complexes from a range of Rh(I) precursors is usually thermodynamically favored.^{3,4,23} The Rh(I)-bis(imine) complex (**3**) may be stabilized somewhat by the presence of the second strongly π -accepting HN=CPh₂ ligand.

The in situ reaction of *cis,trans,cis*-[Rh(H)₂(PPh₃)₂- $(solv)_2$]PF₆ (solv = CD₃OD or acetone- d_6) with 2 equiv of $HN=CPh_2$ under H_2 gave findings qualitatively similar to those found for the corresponding reaction with cis-[Rh(PPh₃)₂(solv)₂]PF₆ (1), in terms of formation of the equilibrium mixture of **2** and **3**. No H₂NC(H)Ph₂, the hydrogenation product, was seen, and neither 2 or **3** reacts with H_2 ; for the latter system presumably the strongly electron-deficient imine impedes possible oxidative addition to Rh(I). Under catalytic conditions in MeOH (imine: Rh = 20) at ambient temperature and 1 atm H₂, only $\sim 5\%$ conversion to the amine was seen after 24 h. Under corresponding catalytic conditions, we have shown previously that the imine PhCH₂N=C(H)-Ph can be hydrogenated rapidly via a cis-[Rh(PPh₃)₂-(PhCH₂N=CHPh)(L)]PF₆ intermediate, where L is MeOH (a species akin to 5) or PhCH₂NH₂ (formed by hydrolysis of the imine by adventitious water).^{1,2} There was no evidence in the current work for such hydrolysis of the imine (to give NH₃ and acetone), and the slow catalytic hydrogenation likely results from the bulky phenyl substituents. Of note, benzophenone imine has been hydrogenated using $[Rh(COD)(PPh_3)_2]PF_6$ as catalyst precursor with 14 atm H₂ at 100 °C, but which specific solvent was used from a list of THF, MeOH, or CH₂Cl₂ cannot be ascertained from the report.²⁴ Formation of a species such as 2 must now be considered as a possible intermediate in catalyzed reactions of any imine that contains a phenyl substituent on the imine-carbon atom.

Acknowledgment. We thank the Natural Sciences and Engineering Research Council of Canada (NSERC) for funding.

Supporting Information Available: Scheme S1 and some details on the crystallographic refinement data for the structure of **2**; the X-ray data are also available in CIF format. This material is available free of charge via the Internet at http://pubs.acs.org.

OM050240T

⁽²³⁾ Omae, I. Organometallic Intramolecular Coordination Compounds; Elsevier Science Pub. Co.: New York, 1986.
(24) Herrera, V.; Munoz, B.; Landaeta, V.; Canudas, N. J. Mol.

⁽²⁴⁾ Herrera, V.; Munoz, B.; Landaeta, V.; Canudas, N. J. Mol. Catal. (A) **2001**, 174, 141.