Higher Valent Metal Pentadienyl Chemistry: Syntheses, Structures, and Reactions of Zr(6,6-dmch)₂X₂ Complexes (dmch = dimethylcyclohexadienyl; X = Cl, Br, I) and Related Species

Rehan Basta, Atta M. Arif, and Richard D. Ernst*

Department of Chemistry, University of Utah, 315 S. 1400 East, Salt Lake City, Utah 84112-0850

Received March 31, 2005

The zirconium(II) complex $Zr(6,6-dmch)_2(PMe_3)_2$ undergoes facile reactions with 1,2dihaloalkanes, yielding the formal oxidative addition products $Zr(6,6-dmch)_2X_2$ (X = Cl, Br, I). A similar reaction with 1-chloro-2-methoxyethane yields $Zr(6,6-dmch)_2(Cl)(OCH_3)$. Each of the complexes has been characterized analytically, spectroscopically, and structurally. A direct oxidative addition reaction occurs with CH₃Br, yielding the thermally unstable $Zr(6,6-dmch)_2(CH_3)(Br)$, which has been characterized spectroscopically and structurally. As had been observed for related $Zr(C_5H_5)(6,6-dmch)X_2$ complexes, the Zr-dmch coordination is severely skewed, with quite short Zr-C3 interactions and substantially lengthened interactions with the remaining carbon atoms of the dienyl fragment. This may be attributed to an inability of the contracted Zr(IV) orbitals to interact effectively with all the carbon atoms in the wide, electronically open dienyl ligands.

Introduction

For some time it has been apparent that η^5 -pentadienyl ligands have an overwhelming preference to bond to metals in low ($\leq +2$) oxidation states, and even complexes with metals in the +3 oxidation state have been uncommon.¹ This trend appears to result from the high delta acidities of pentadienyl ligands and their large girths, which can result in poor overlap with the contracted orbitals of metals in higher oxidation states.² The relatively few higher oxidation state species have typically incorporated strong π -donor ligands,³ which could enhance metal-ligand overlap and potentially also lead to some δ back-bonding, by reducing the positive charge on the metal center. Recently, however, it has become clear that zirconium, arguably the largest transition metal, can yield stable tetravalent pentadienyl complexes.⁴ Particularly interesting are the Zr- $(C_5H_5)(6,6-dmch)X_2$ (X = Cl, Br, I) compounds, which have been thoroughly investigated via structural, photoelectron spectroscopy, and theoretical studies.⁵ Especially notable was the observation that while lower valent half-open titanocenes and zirconocenes typically

(4) (a) Kulsomphob, V.; Arif, A. M.; Ernst, R. D. Organometallics
2002, 21, 3182. (b) Kulsomphob, V.; Harvey, B. G.; Arif, A. M.; Ernst, R. D. Inorg. Chim. Acta 2002, 334, 17, and references therein. (c) Basta, R.; Ernst, R. D.; Arif, A. M. J. Organometal. Chem. 2003, 683, 64.

(5) Rajapakshe, A.; Gruhn, N. E.; Lichtenberger, D. L.; Basta, R.;
 Arif, A. M.; Ernst, R. D. J. Am. Chem. Soc. 2004, 126, 14105.

display M–C bonds that are much shorter for the pentadienyl versus cyclopentadienyl ligands,^{1,2,4,6} exactly the opposite was found for the tetravalent species,^{4,5} revealing a dramatic reversal in bonding favorability. In addition, the M(IV) center was not able to interact effectively with all of the carbon atoms in the electronically open dienyl fragments, in accord with the earlier proposal that metal-pentadienyl overlap could suffer in higher oxidation state species.

Given the great importance of compounds of the type $M(C_5H_5)_2X_2$,⁷ and higher valent metal cyclopentadienyl compounds in general,⁸ the missing field of higher valent metal pentadienyl chemistry has long represented an apparently major lost opportunity. The general class of $Zr(C_5H_5)(6,6-dmch)X_2$ species has recently opened the door to at least some opportunities in this area, and we now report an analogous set of $Zr(6,6-dmch)_2X_2$ complexes (X = Cl, Br, I), as well as $Zr(6,6-dmch)_2(CH_3)(Br)$ and $Zr(6,6-dmch)_2(Cl)(OCH_3)$, which will allow for further extensions into the chemistry of higher valent metal pentadienyl chemistry.

Experimental Section

General Procedures. All reactions were carried out under an atmosphere of prepurified nitrogen in Schlenk apparatus. Organic solvents and reagents were obtained commercially. Reagents were used as received, while solvents were dried and deoxygenated using activated alumina under a nitrogen atmosphere. Spectroscopic data were obtained as previously described.⁹ Elemental analyses were obtained from Desert Analytics. The dihalide complexes decompose thermally prior to melting.

⁽¹⁾ Ernst, R. D. Chem. Rev. 1988, 88, 1255.

⁽²⁾ Ernst, R. D. Comments Inorg. Chem. 1999, 21, 285.

^{(3) (}a) Lentz, M. R.; Fanwick, P. E.; Rothwell, I. P. Organometallics 2003, 22, 2259. (b) Feng, S.; Klosin, J.; Kruper, W. J., Jr.; McAdon, M. H.; Neithamer, D. R.; Nickias, P. N.; Patton, J. T.; Wilson, D. R.; Abboud, K. A.; Stern, C. L. Organometallics 1999, 18, 1159. (c) Gutierrez, A.; Wilkinson, G.; Hussain-Bates, B.; Hursthouse, M. B. Polyhedron 1990, 9, 2081. (d) Gavenonis, J.; Tilley, T. D. J. Am. Chem. Soc. 2002, 124, 8536. (e) Gavenonis, J.; Tilley, T. D. Organometallics 2002, 21, 5549.

⁽⁶⁾ Meléndez, E.; Arif, A. M.; Ernst, R. D.; Ziegler, M. L. Angew. Chem. Intl. Ed. 1988, 27, 1099.

Dichlorobis(6,6-dimethylcyclohexadienyl)zirconium, Zr(6,6-dmch)₂Cl₂. To a dark black-red solution of Zr(6,6-dmch)₂(PMe₃)₂^{4c} (0.90 g, 2.0 mmol) in 30 mL of hexanes under N_2 at 0 °C was added 1,2-dichloroethane (0.31 mL, 3.9 mmol). A bright red precipitate immediately formed. The reaction mixture was allowed to stir for 1 h at room temperature. The solvent was removed in vacuo, leaving a bright red residue in a crude yield of 55-65%. The product was extracted with ca. 40 mL of toluene. The solution was filtered through a Celite pad on a coarse frit. The product was crystallized by concentration of the red filtrate in vacuo to ca. 5 mL and placement into a -30 °C freezer, affording 0.31 g (40% yield) of orange to red (depending on size) crystals.

¹H NMR (benzene- d_6 , ambient): $\delta 0.59$ (s, 6H, exo CH₃), 1.32 (s, 6H, endo CH₃), 4.51 (d, 4H, J = 7.8 Hz, H_{1.5,9,13}), 5.27 (t, 2H, J = 5.7 Hz, H_{3,11}), 5.89 (t, 4H, J = 6.3 Hz, H_{2,4,10,12}). ¹³C NMR (benzene- d_6 , ambient): δ 28.0 (q, 2C, J = 125.1 Hz, exo CH₃), 31.7 (s, 2C, C_{6,14}), 34.5 (q, 2C, J = 126.6 Hz, endo CH₃), 96.5 (dt, 2C, J = 173.2, 7.8 Hz, C_{3,11}), 108.6 (d, 4C, J = 163.4Hz, $C_{1,5,9,13}$), 125.3 (dd, 4C, J = 160.8, 6.9 Hz, $C_{2,4,10,12}$). MS (EI, 23 eV) m/z (relative intensity): 91.0 (30.2), 92.0 (29.6), 93.1 (27.4), 107.1 (30.2), 108.1 (14.4), 250.9 (100.0), 251.9 (32.8), 252.9 (97.4), 253.9 (24.1), 254.9 (66.1), 256.9 (28.8), 266.9 (92.0), 267.9 (29.3), 268.9 (89.3), 269.9 (20.2), 270.9 (60.1), 272.9 (26.9), 339.0 (36.4), 341.0 (25.9), 343.0 (16.2), 359.0 (53.8), 360.0 (19.6), 360.9 (56.2), 362.0 (15.5), 363.0 (36.1), 365.0 (15.9), 374.0 (18.2), 376.0 (19.1), 378.0 (12.6). Anal. Calc for C₁₆H₂₂Cl₂Zr: C, 51.05; H, 5.89. Found: C, 51.31; H, 5.54.

Dibromobis(6,6-dimethylcyclohexadienyl)zirconium, Zr(6,6-dmch)₂Br₂. To a dark red solution of Zr(6,6dmch)₂(PMe₃)₂ (1.0 g, 2.2 mmol) in 40 mL of hexanes under N_2 at room temperature was added 1,2-dibromoethane (0.19 mL, 2.2 mmol). A bright red-orange precipitate immediately formed. The reaction mixture was allowed to stir for 1 h. The solvent was removed in vacuo, leaving a bright red residue. The product was extracted with ca. 40 mL of toluene. The solution was filtered through a Celite pad on a coarse frit. The product was crystallized by concentration of the red filtrate in vacuo to ca. 10 mL and placement into a -60 °C freezer, affording 0.43 g (42% yield) of orange-red crystals.

¹H NMR (benzene- d_6 , ambient): δ 0.58 (s, 6H, exo CH₃), 1.23 (s, 6H, endo CH₃), 4.59 (d, 4H, J = 7.8 Hz, H_{1,5,9,13}), 5.49 (t, 2H, J = 6.0 Hz, H_{3,11}), 5.97 (t, 4H, J = 6.8 Hz, H_{2,4,10,12}). ¹³C NMR (benzene- d_6 , ambient): δ 28.5 (q, 2C, J = 126.3 Hz, exo CH₃), 32.0 (s, 2C, C_{6,14}), 34.8 (q, 2C, J = 123.5 Hz, endo CH₃), 97.9 (dt, 2C, J = 173.7, 7.7 Hz, C_{3,11}), 108.5 (d, 4C, J = 163.2, $C_{1,5,9,13}$), 124.9 (dd, 4C, J = 163.4, 7.3 Hz, $C_{2,4,10,12}$). Anal. Calc for C₁₆H₂₂Br₂Zr: C, 41.30; H, 4.76. Found: C, 41.42; H, 4.62.

Diiodobis(6.6-dimethylcyclohexadienyl)zirconium, Zr-(6,6-dmch)₂I₂. To a dark red solution of Zr(6,6-dmch)₂(PMe₃)₂ (0.77 g, 1.7 mmol) in 20 mL of hexanes under N₂ at room temperature was added 1,2-diiodoethane (0.57 g, 2.0 mmol). A dark red crystalline solid precipitated out. After 15 min, the supernatant was removed via syringe. The dark red precipitate was dissolved in toluene. The concentrated solution was placed in a -60 °C freezer to yield $Zr(6,6-dmch)_2I_2$ (33% yield). Allowing the supernatant to stand at room temperature resulted in the precipitation of a mixture of red and white products. The red solid consisted of two products, the major product being additional Zr(6,6-dmch)₂I₂, while the minor product is $Zr(6,6-dmch)I_3(PMe_3)$, in addition to a white solid of an unknown composition. However, it was difficult to separate the three products from each other. An X-ray diffraction study of the other red product revealed a highly disordered molecule of the expected composition, with a fourlegged piano stool arrangement.¹⁰

¹H NMR (benzene- d_6 , ambient): $\delta 0.58$ (s, 6H, exo CH₃), 1.08 (s, 6H, endo CH₃), 4.78 (dd, 4H, J = 6.6, 1.5 Hz, H_{1,5,9,13}), 5.87 (tt, 2H, J = 5.9, 1.6 Hz, H_{3,11}), 6.06 (m, 4H, H_{2,4,10,12}). ¹³C NMR (benzene- d_6 , ambient): δ 29.4 (q, 2C, J = 126.1 Hz, exo CH₃), 32.3 (s, 2C, $C_{6,14}$), 35.3 (q, 2C, J = 126.9 Hz, endo CH₃), 99.3 (dt, 2C, J = 175.5, 7.7 Hz, C_{3,11}), 107.6 (d, 4C, J = 164.4 Hz, $C_{1,5,9,13}$), 123.4 (dd, 4C, J = 163.4, 7.3 Hz, $C_{2,4,10,12}$). Anal. Calc for C₁₆H₂₂I₂Zr: C, 34.38; H, 3.97. Found: C, 33.98; H, 3.68. Anal. Calc for C₁₁H₂₀PI₃Zr: C, 20.17; H, 3.08. Found: C, 20.18; H. 3.29.

(Bromo)(methyl)bis(6,6-dimethylcyclohexadienyl)zirconium, Zr(6,6-dmch)₂(CH₃)(Br). A dark black-red solution of Zr(6,6-dmch)₂(PMe₃)₂ (0.27 g, 5.9 mmol) in 30 mL of hexanes was exposed to CH₃Br gas at room temperature. The color of the solution immediately changed to orange. The solvent was removed in vacuo, leaving an orange oil, which was extracted with ca. 40 mL of hexanes and filtered through a Celite pad on a coarse frit. The product was crystallized by concentration of the orange filtrate in vacuo to ca. 2 mL and placement into a -60 °C freezer. The compound decomposes on standing at room temperature, necessitating expeditious manipulations of its solutions.

¹H NMR (benzene- d_6 , ambient): δ 0.53 (s, 3H, CH₃), 0.68 $(s, 6H, exo CH_3), 1.11 (s, 6H, endo CH_3), 4.08 (dt, 2H, J = 7.2)$ 2.3 Hz, $H_{1,5, \text{ or } 9,13}$), 4.52 (dm, 2H, J = 7 Hz, $H_{1,5 \text{ or } 9,13}$), 5.39 (m, 4H), 5.76 (m, 2H).

(Chloro)(methoxy)bis(6,6-dimethylcyclohexadienyl)zirconium, Zr(6,6-dmch)₂(OMe)(Cl). To a dark red solution of Zr(6,6-dmch)₂(PMe₃)₂ (0.53 g, 1.2 mmol) in 20 mL of hexane at -78 °C was added 1-chloro-2-methoxyethane (0.12 mL, 1.3 mmol). The reaction mixture was allowed to warm to room temperature, during which time the color of the solution turned orange. The reaction mixture was stirred for 3 h, after which time the solvent was removed in vacuo. The crude orange solid was extracted with diethyl ether, and the extracts were filtered through a Celite pad on a coarse frit. The orange solution was cooled to -60 °C, yielding orange crystals (0.20 g, 48% yield).

¹H NMR (benzene- d_6 , ambient): $\delta 0.74$ (s, 6H, exo CH₃), 1.30 (s, 6H, endo CH₃), 3.66 (s, 3H, OMe), 4.35 (d, 2H, J = 8.1 Hz, $H_{1,9 \text{ or } 5,13}$, 4.42 (d, 2H, J = 8.4 Hz, $H_{1,9 \text{ or } 5,13}$), 5.32 (t, 2H, J = 1.4 Hz) 5.7 Hz, H_{3,11}), 5.75 (t, 2H, J = 6.9 Hz, H_{2,10 or 4,12}), 5.84 (t, 2H, J = 6.9 Hz, H_{2,10 or 4,12}). ¹³C NMR (benzene- d_6 , ambient): δ 28.2 $(q, 2C, J = 124.0 \text{ Hz}, \text{ exo } CH_3), 31.6 (s, 2C, C_{6,14}), 33.9 (q, 2$ J = 123.8 Hz, endo CH₃), 62.7 (q, 2C, J = 141.0 Hz, OMe), 93.2 (dt, 2C, J = 171.2, 7.7 Hz, C_{3,11}), 101.3 (d, 2C, J = 161.9Hz, H_{5,13, or 1,9}), 107.3 (d, 2C, J = 160.9 Hz, H_{5,13 or 1,9}), 124.4 $(dd, 2C, J = 159.3, 7.2 Hz, C_{4,12 \text{ or } 2,10}), 125.7 (dd, 2C, J = 159.1)$ 5.8 Hz, C_{4,12 or 2,10}). Anal. Calc for C₁₇H₂₅OClZr: C, 54.88; H, 6.77. Found: C, 54.51; H, 6.41.

X-ray Structural Studies. Single crystals of the compounds were protected from oxidation by a thin coat of Paratone oil and transferred to a cold stream on a Nonius Kappa CCD autodiffractometer. All structure solutions were obtained by a combination of direct methods, difference Fourier maps, and least-squares refinements using the SIR97 and SHELX97 programs.¹¹ In the dichloride, diiodide, and methoxy complexes, two independent molecules were present in the asymmetric unit. In the first two cases, the two forms appeared nearly identical, while for the methoxy complex, the second dmch ligand had its edge bridge located near the methoxy

^{(7) (}a) Togni, A., Halterman, R., Eds. Metallocenes: Synthesis, Reactivity, Applications; Wiley-VCH: Weinheim, New York, 1998; Vols. 1 and 2. (b) Cardin, D. J.; Lappert, M. F.; Raston, C. Chemistry of Yand Z. (b) Cardin, D. S., Eappert, M. F., Raston, C. Chemistry of Organo-Zirconium and Hafnium Compounds; Halsted Press: New York, 1986. (c) Marek, I., Ed.; *Titanium and Zirconium in Organic Synthesis*; Wiley-VCH: Weinheim, Cambridge, England, 2002.
(8) Hermann, W. A. Angew. Chem., Intl. Ed. Engl. 1988, 27, 1297.
(9) Newbound, T. D.; Stahl, L.; Ziegler, M. L.; Ernst, R. D. Orga-weither the composition of the composition of the composition of the composition of the composition.

nometallics 1990, 9, 2962.

^{(10) (}a) Basta, R.; Arif, A. M.; Ernst, R. D. Unpublished results. (b) Basta, R. Ph.D. Thesis, University of Utah, 2004.

^{(11) (}a) Altomare, A.; Burla, M. C.; Camalli, M.; Cascaramo, G.; Giacovazzo, C.; Guagliardi, A.; Moliteni, A. G. G.; Polidori, G.; Spagna, R. *SIR97* (Release 1.02). (b) Sheldrick, G. M. *SHELX97* (Release 97-2), University of Göttingen, Germany.

Table 1.	Crystallographic Data for Zr(6,6-dmch) ₂ Cl ₂ , Zr(6,6-dmch) ₂ Br ₂ , Zr(6,6-dmch) ₂ I ₂ ,
	Zr(6.6-dmch) ₂ Cl(OCH ₂), and Zr(6.6-dmch) ₂ Br(CH ₂)

formula fw cryst syst space group color a (Å) b (Å) c (Å) α (dog)	$\begin{array}{llllllllllllllllllllllllllllllllllll$		$\begin{array}{c} C_{19.5}H_{26}Br_2Zr\\ 511.44\\ monoclinic\\ P2_1/n\\ orange\\ 7.1237(1)\\ 21.4219(4)\\ 13.1976(2)\\ 08.8385(9) \end{array}$	$\begin{array}{c} C_{16}H_{22}I_2Zr\\ 559.36\\ orthorhombi\\ Pbca\\ red\\ 14.0924(2)\\ 14.7885(2)\\ 34.5267(6)\\ 90\end{array}$	$\begin{array}{c} C_{17}H_{25}ClOZr\\ 372.04\\ c monoclinic\\ P2_{1}/c\\ red\\ 15.3259(3)\\ 12.4301(1)\\ 17.8510(3)\\ 97.6724(7)\\ \end{array}$		$\begin{array}{c} C_{17}H_{25}BrZr\\ 400.50\\ monoclinic\\ P2_1/n\\ orange\\ 8.7645(2)\\ 13.2038(4)\\ 15.2106(5)\\ 105.208(1)\\ \end{array}$					
temp (K)	15	50(1)	150(1)	150(1)	150(1)		150(1)					
Z	8	0.450	4	16	8		4					
R(20) $R^{-2}(2\sigma)$	0.0479		0.0283	0.0274	0.0290		0.0281					
GOF	0. 1.	047	1.056	1.048	1.034		1.065					
Parameters for Zr(6,6-dmcn) ₂ Cl ₂												
Zr-C1	2.699(5)	Zr-Cl1	2.4683(15)	Zr2-C1'	2.730(6)	Zr2-Cl1'	2.4589(16)					
Zr-C2	2.498(6)	Zr-Cl2	2.4508(15)	$\overline{Zr2}-C2'$	2.540(6)	Zr2-Cl2'	2.4515(15)					
Zr-C3	2.468(6)	C1-C2	1.369(9)	Zr2-C3'	2.460(6)	C1'-C2'	1.379(9)					
Zr-C4	2.509(6)	C2-C3	1.411(9)	Zr2-C4'	2.506(6)	C2'-C3'	1.401(9)					
Zr-C5	2.686(6)	C3-C4	1.400(10)	Zr2-C5'	2.077(6)	C3'-C4'	1.395(10)					
Zr-C9	2.782(5)	C4-C5	1.356(9)	Zr2-C9'	2.737(6)	C4'-C5'	1.356(10)					
Zr-C10	2.576(5)	C9-C10	1.361(9)	Zr2-C10'	2.529(5)	C9'-C10'	1.367(10)					
Zr-C11	2.484(6)	C10-C11	1.416(10)	Zr2-C11'	2.453(6)	C10'-C11'	1.410(10)					
Zr-C12	2.523(6)	C11-C12	1.390(9)	Zr2-C12'	2.510(6)	C11'-C12'	1.408(9)					
Zr-C13	2.635(6)	C12-C13	1.347(10)	Zr2-C13	2.694(6)	C12 ⁻ -C13 ⁻	1.383(9)					
			Bond Ang	gles (deg)								
Cl1–Zr1–C	12	93.46(6)	C10-C11-C12	116.2(6)	C5'-C6'-C1'		101.1(5)					
Cl1'-Zr2-C	212'	93.76(6)	C11-C12-C13	121.4(6)	C6' - C1' - C2'		120.2(6)					
C1-C2-C3		120.4(6)	C12-C13-C14	119.5(6)	C9'-C10'-C11'		120.9(6)					
C2-C3-C4		116.8(6)	C13-C14-C9	102.7(5)	C10' - C11' - C12'		117.2(6)					
C3 - C4 - C5		120.0(6)	C14-C9-C10	120.2(6)	C11' - C12' - C13'		119.6(6)					
C4-C5-C6		120.7(6)	CT - C2' - C3'	119.8(6)	C12' - C13' - C14'		120.3(6)					
C5-C6-C1		101.3(5)	C2' - C3' - C4'	117.4(7)		3' - C14' - C9'	103.2(5)					
$C_{0} = C_{1} = C_{2}$	11	120.3(6)	C3 - C4 - C5	120.4(6)	CI	4-09-010	118.7(6)					
09-010-0	11	121.3(7)	04-05-06	120.0(6)								
		Table 3. Perti	nent Bonding Pa	arameters for	Zr(6,6-dmc	$(\mathbf{h})_{2}\mathbf{Br}_{2}$						
			Bond Dist	tances (Å)								
Zr-C1	2.744(3)	Zr-C9	2.733(3)	Zr-Br1	2.6350(3)	Zr-Br2	2.6322(4)					
Zr-C2	2.555(3)	Zr-C10	2.556(3)	C1-C2	1.360(4)	C9-C10	1.369(4)					
Zr-C3	2.471(3)	Zr-C11	2.476(3)	C2-C3	1.428(4)	C10-C11	1.431(4)					
Zr-C4	2.537(3)	Zr-C12	2.535(3)	C3-C4	1.409(4)	C11-C12	1.409(4)					
Zr-C5	2.657(3)	Zr-C13	2.624(3)	C4-C5	1.385(4)	C12-C13	1.382(4)					
Bond Angles (deg)												
Br1-Zr-Br	2	93.591(12)	$C_{5}-C_{6}-C_{1}$	103.4(2)	C11-C12-C13		120.3(3)					
C1-C2-C3		121.1(3) 1100(2)	Cb - C1 - C2	120.6(3)		12 - 013 - 014	120.0(3)					
C2 - C3 - C4		110.9(3)	C9 - C10 - C11	120.8(3) C13-		13-014-09	103.0(2) 191.6(2)					
03-04-05		120.4(3) 110 1(9)	010-011-012	117.1(3	, C	14-09-010	121.6(3)					
U4-U5-U6		119.1(2)										

ligand rather than near the chloride. All non-hydrogen atoms were successfully refined anisotropically, while most hydrogen atoms could be refined isotropically. The exceptions include the hydrogen atoms in the dichloride structure, those of a disordered toluene molecule in the dibromide structure, and one methyl group in the methyl complex. In the methoxy complex, one dmch ligand of the second independent molecule was subject to substantial librational motion and/or disorder, and as a result, one of its methyl groups had to be treated as two partial contributions, and its hydrogen atoms were also not refined isotropically. Hydrogen atoms not refined isotropically were assigned idealized parameters and allowed to ride on their respective carbon atoms. Pertinent structural data are presented in Tables 1–6, while perspective views of the molecules are presented in Figures 1–5.

Results and Discussion

Syntheses and Spectroscopy. As in the case of the $Zr(C_5H_5)(6,6\text{-dmch})(PMe_3)_2$ complex,⁵ $Zr(6,6\text{-dmch})_2$ -

(PMe₃)₂ was found to react readily with 1,2-dihaloalkanes, yielding Zr(6,6-dmch)₂X₂ complexes (Scheme 1; X = Cl, Br, I). A side product in the iodide reaction was Zr(6,6-dmch)I₃(PMe₃), presumably formed via additional halogenation as a consequence of the weakness of C-I bonds. Each of the dihalide compounds has been characterized analytically, spectroscopically, and crystallographically (vide supra). While the ¹³C NMR spectra of these species are all quite similar, the ¹H NMR data show more significant shifts. One can note consistent downfield shifts for the protons on any of the metalbound carbon atoms as the halogen becomes heavier. In contrast, the endo methyl group, downfield from the other methyl group residing above the aromatic ligand, shows an opposite trend. As opposed to their essentially colorless C_5H_5 analogues, the 6,6-dmch compounds are brightly colored, ranging from orange-red (X = Cl) to dark red (X = I). On the basis of the results obtained

Table 4. Pertinent Bonding Parameters for $Zr(6,6-dmch)_2I_2$											
Bond Distances (Å)											
Zr-C1	2.727(3)	Zr-I1	2.8838(3)	Zr2-C1'	2.751(3)	Zr2–I1'	2.8848(3)				
Zr-C2	2.550(3)	Zr-I2	2.8667(3)	Zr2-C2'	2.548(3)	Zr2-I2'	2.8667(3)				
Zr-C3	2.471(3)	C1-C2	1 366(4)	Zr2-C3'	2,454(3)	C1' - C2'	1.367(4)				
Zr = C4	2.538(3)	$C_{2}-C_{3}$	1.000(4) 1.494(4)	Zr2-C4'	2.304(0) 2.531(3)	C2' - C3'	1.007(4) 1.420(4)				
2n + 04 7n - 05	2.000(0)	$C_{2} - C_{4}$	1.424(4) 1.409(4)	7r2 - C5'	2.001(0) 2.699(2)	C2' - C4'	1.420(4) 1.406(4)				
$Z_{1} = C_{0}$	2.040(3)	04 05	1.403(4)	$Z_{12} = 0.0$	2.002(0)	03 - 04	1.400(4) 1.200(4)				
Zr = C9	2.733(3)	C4 - C5	1.380(4) 1.979(4)	Zr2 = 0.9	2.731(3)	C4 - C5	1.380(4) 1.200(4)				
Zr = C10	2.367(3)	09-010	1.373(4)	$Zr_{2} = 0.10$	2.009(3)	C9 - C10	1.300(4)				
Zr-CII	2.482(3)	010-011	1.426(4)	Zr2-C11	2.470(3)		1.434(4)				
Zr-C12	2.525(3)	C11-C12	1.402(4)	Zr2-C12'	2.533(3)	C11'-C12'	1.400(4)				
Zr-C13	2.598(3)	C12 - C13	1.380(4)	Zr2-C13'	2.630(3)	C12' - C13'	1.385(4)				
			Bond Ang	los (dog)							
I1 - 7r1 - I9		94 343(10)	C10_C11_C12	117 8(3)	C5' - C'	C6' - C1'	103 4(9)				
11 Z11 12 11' 79 19'		09.057(10)	C10 $C11$ $C12$	117.0(0) 110.7(2)			100.4(2) 100.1(2)				
11 - 212 - 12		92.907(10)	C11 - C12 - C13 C12 - C12 - C14	119.7(3)	C0 - C1 - C2 C0' - C10' - C11'		120.1(3) 191 5(9)				
C1 - C2 - C3		121.0(3) 117.4(2)	C12 - C13 - C14	120.0(3) 102.7(3)	C9 - C10 - C11		121.0(3) 110.0(2)				
$C_2 - C_3 - C_4$		117.4(3)	C13 - C14 - C9	103.7(2)	$C10^{\circ}-C11^{\circ}-C12^{\circ}$		116.8(3)				
C3-C4-C5		120.0(3)	C14-C9-C10	121.2(3)	C11' - C12' - C13'		120.4(3)				
C4-C5-C6		119.0(3)	C1'-C2'-C3'	121.0(3)	C12' - C13' - C14'		120.9(3)				
C5 - C6 - C1		103.4(2)	C2' - C3' - C4'	116.9(3)	C13'-C14'-C9'		104.1(2)				
C6 - C1 - C2		119.6(3)	C3' - C4' - C5'	120.4(3)	C14'-	-C9'-C10'	121.7(3)				
C9-C10-C11	<u>_</u>	120.3(3)	C4' - C5' - C6'	119.1(3)							
	Т	hlo 5 Doutinon	t Ronding Dovor	notona fon 7n(l	e dmah) Cl						
Table 5. Pertinent Bonding Parameters for Zr(6,6-dmch) ₂ UI(UUH ₃)											
			Bond Dist	ances (A)			/>				
Zr-C1	2.691(2)	Zr-Cl1	2.4852(5)	Zr2-C1'	2.772(2)	Zr2–Cl1′	2.4828(5)				
Zr-C2	2.547(2)	Zr-O1	1.968(2)	Zr2-C2'	2.558(2)	Zr2–O1A	2.045(2)				
Zr-C3	2.479(2)	C1-C2	1.370(3)	Zr2-C3'	2.455(3)	C1'-C2'	1.351(5)				
Zr-C4	2.555(2)	C2-C3	1.414(3)	Zr2-C4'	2.563(3)	C2'-C3'	1.377(6)				
Zr-C5	2.750(2)	C3-C4	1.427(3)	Zr2-C5'	2.774(2)	C3'-C4'	1.382(5)				
Zr-C9	2.793(2)	C4-C5	1.368(3)	Zr2-C9'	2.685(2)	C4'-C5'	1.345(5)				
Zr-C10	2.585(2)	C9-C10	1.356(4)	Zr2-C10′	2.536(2)	C9'-C10'	1.376(3)				
Zr-C11	2.482(2)	C10 - C11	1.425(4)	Zr2-C11′	2.516(2)	C10'-C11'	1.405(4)				
Zr-C12	2.528(2)	C11-C12	1.414(4)	Zr2-C12'	2.542(2)	C11' - C12'	1.419(4)				
Zr-C13	2.697(2)	C12 - C13	1.368(3)	Zr2-C13'	2.697(2)	C12' - C13'	1.380(3)				
			Bond Ang	log (dog)							
$C_{11} - 7_{r1} - 01$		07.18(4)	C10_C11_C19	116 G(0)	C5' - C	C' = C' 1'	109 7(9)				
$C_{11}^{-}Z_{11}^{-}O_{1}^{-$	٨	97.10(4) 09.75(4)	C10-C11-C12	110.0(2) 110.7(2)	$C_{0} = C_{0} = C_{1}$		102.7(2) 190.9(2)				
CII - ZrZ - OIA		90.70(4) 100 $F(0)$	C11 - C12 - C13	119.7(2) 100.2(0)	$C_{0} - C_{1} - C_{2}$		120.2(3) 100.7(9)				
C1 - C2 - C3		120.0(2) 110.0(0)	C12 - C13 - C14	120.3(2) 100 5(0)	C9 -C	0.10 - 0.11	120.7(2) 110.0(9)				
$C_2 - C_3 - C_4$		116.9(2)	013-014-09	102.0(2)	010-	C11 - C12	110.9(2)				
$C_{3}-C_{4}-C_{5}$		121.3(2)	C14 - C9 - C10	120.3(2)	010	C12 - C13	120.8(2)				
C4-C5-C6		120.3(2)	CT-C2-C3	121.3(3)	C12'-	$C13^{-}-C14^{-}$	119.5(2)				
C5-C6-C1		103.8(2)	C2' - C3' - C4'	117.0(3)	C13'-	C14' - C9'	103.0(2)				
C6-C1-C2		120.2(2)	C3' - C4' - C5'	121.2(3)	C14'-	C9' - C10'	120.0(2)				
C9-C10-C11		120.9(2)	C4' - C5' - C6'	120.6(3)							
	Т	able 6. Pertiner	nt Bonding Para	meters for Zr(6,6-dmch) ₂ B	r(CH ₃)					
			Bond Dist	ances (Å)							
Zr-C1	2.661(2)	Zr-C9	2.568(2)	Zr-Br1	2.6602(4)	Zr-C17	2.481(2)				
Zr-C2	2.511(2)	Zr-C10	2.507(2)	C1-C2	1.377(3)	C9-C10	1.392(4)				
Zr-C3	2.486(2)	Zr-C11	2.504(3)	C2-C3	1.414(3)	C10 - C11	1.396(4)				
Zr-C4	2.562(2)	Zr - C12	2.501(0) 2.578(2)	$C_{3}-C_{4}$	1.111(0) 1.416(3)	C11 - C12	1.000(1) 1.428(4)				
Zr-C5	2.734(2)	Zr-C13	2.734(2)	C4-C5	1.373(4)	C12 - C13	1.360(4)				
21 00	2.104(2)	21 010	2.104(2)	01 00	1.010(4)	012 013	1.000(4)				
		00.00(4)	Bond Ang	les (deg)	~ .	G10 G12	101 2(2)				
Br1–Zr–C17		89.08(4)	C5-C6-C1	103.0(2)	C11-	C12-C13	121.0(3)				
C1 - C2 - C3		120.2(2)	C6-C1-C2	118.7(2)	C12-	C13-C14	121.3(2)				
C2-C3-C4		117.3(2)	C9-C10-C11	119.9(2)	C13-	C14-C9	103.7(2)				
C3 - C4 - C5		120.7(2)	C10 - C11 - C12	117.6(2)	C14-	C9-C10	119.6(2)				
C4 - C5 - C6		119.0(2)									

for the $Zr(C_5H_5)(6,6\text{-dmch})X_2$ species,⁵ these colors can be ascribed to ligand-to-metal charge transfer transitions, which occur in the visible region due to the filled HOMO localized on the dmch ligand being destabilized by about 1 eV relative to that of corresponding HOMO derived from the C_5H_5 ligand.

Reactions designed to prepare mixed halide complexes, utilizing reagents such as 1-bromo-2-chloroethane, however, were found to be ineffective, perhaps due to the significant differences in C-X bond energies. It nonetheless appeared possible that a variation of this approach might succeed if one of the two substituents was more likely to coordinate to the metal center during (and perhaps prior to) the process of halogen atom abstraction. While coordination of a lone pair of a carbon-bound chlorine atom to zirconium can occur,¹² it is nonetheless far less common than coordination by an ether's oxygen atom. Therefore, a reaction of Zr(6,6dmch)₂(PMe₃)₂ with 1-chloro-2-methoxyethane was attempted, and this indeed led to the desired Zr(6,6dmch)₂Cl(OCH₃) (Scheme 1). Monitoring this reaction by NMR spectroscopy revealed that other potential metal-containing products were not formed in detectable

⁽¹²⁾ Stoebenau, E. J., III; Jordan, R. F. J. Am. Chem. Soc. 2003, 125, 3222; 2004, 126, 11170.

Figure 1. Perspective view of Zr(6,6-dmch)₂Cl₂.

Figure 2. Perspective view of Zr(6,6-dmch)₂Br₂.

quantities. One can therefore propose two possibilities. In one alternative, the ether coordination occurs first, and the oxygen atom "sticks" to the metal center long enough that the halogen abstraction can take place. Even though $O \rightarrow Zr$ coordination does not generally give rise to cleavage of a $C-OCH_3$ bond, the breakage of the $C-OCH_3$ bond in this case would be accompanied by the conversion of a C-C single bond to a double bond. A slight variation of the above process entails the metal center first initiating the halogen atom abstraction, during which the ether oxygen atom finds its way to the metal center, leading to the same net result. In either case, it is the greater ability of the oxygen donor center to "stick" to the zirconium center that is the likely

Figure 3. Perspective view of $Zr(6,6-dmch)_2I_2$.

Figure 4. Perspective view of Zr(6,6-dmch)₂(OCH₃)Cl.

key. It can therefore be expected that this approach could also be used to deliver combinations of halogens and dialkylamino groups (as well as sulfur, phosphorus, and heavier analogues) to low valent metal complexes, whether pentadienyl, cyclopentadienyl, or other ligands happen to be present. Although other routes are available to such species already, notably nucleophilic displacement of halides, the approach applied here could be advantageous in some cases.

A well-known alternative approach to related species is through direct oxidative addition. The $Zr(6,6-dmch)_2$ fragment was also found to be susceptible to this approach, as exposure of $Zr(6,6-dmch)_2(PMe_3)_2$ to CH_3 -Br vapor led to an immediate reaction, with the formation of the expected, orange $Zr(6,6-dmch)_2Br(CH_3)$ complex. Unfortunately, the compound lasts only briefly at

Figure 5. Perspective view of Zr(6,6-dmch)₂(CH₃)Br.

room temperature, but it could be characterized through ¹H NMR spectroscopy and a low-temperature X-ray diffraction study (vide infra). Interestingly, reactions of these halide complexes with methyllithium led to a bright yellow oil, presumed to be the dimethyl complex, but this could not be adequately characterized.¹⁰

Structural Studies. The structures of the dihalide complexes follow a trend exhibited by other high valent metal-pentadienyl compounds,^{4,5} in which the central (C3) dienyl carbon atom is closest to the metal center, and the others become progressively further removed, consistent with resonance form **1**. The wide nature of

the electronically open pentadienyl ligands appears to lead to poor overlap with the contracted orbitals of metals in higher (= +4) oxidation states, resulting in a significant contribution from a resonance structure with a substantially localized M–C3 interaction (1). Indeed, an inspection of the Zr–C distances in the three dihalide complexes reveals that all the Zr–C3 distances are essentially equivalent, averaging 2.469(3) Å, while the values for the subsequent, further atoms become not only larger but also less well-defined. Thus, the average Zr–C[2,4] distance is 2.536(5) Å, and that for Zr–C[1,5] is 2.695(11) Å. For the related Zr(C₅H₅)(6,6-dmch)X₂ complexes, the corresponding averages are nearly the same as the above, at 2.465, 2.54, and 2.70 Å.

The average Zr–X distances show marked increases from X = Cl to X = I (2.457(4), 2.634(3), 2.876(5) Å), although the increases exceed expectations based on the halogen covalent radii (0.99, 1.14, 1.33 Å).¹³ A similar observation has been made for $Zr(C_5H_5)_2X_2$ complexes.¹⁴ For the $Zr(C_5H_5)(6,6$ -dmch)X₂ complexes, the respective average Zr–X distances were 2.456(1), 2.620(10), and 2.858(4) Å. The X–Zr–X angles in each complex average very close to 93.6°, whereas the values in the $Zr(C_5H_5)_2X_2$ complexes are ca. 96.2°, 97°, and 96.2°, respectively, for X = F, Cl, and I.

Also of interest are some parameters related to the ligand orientations. In the open metallocenes themselves, the relative twists (conformation angles) between the ligands appear to reflect significant electronic differences in the bonding as a function of the metal center and/or its charge.^{1,2,15} With the additional halide ligands in these complexes, there would seem to be less importance associated with the degree of twist between the dienyl ligands. Even though electronically there may be little importance to such differences, the dichloride complex adopts an arrangement somewhat different from that in the dibromide and diiodide complexes. In particular, in the latter complexes the C1-C2 and C9-C10 vectors are nearly aligned, but not so in the dichloride complex. Most likely the smaller size of chlorine allows for the adoption of a different conformation. This may also lead to some other differences between the dichloride and other dihalide structures. Thus, the angles between the dienyl ligand planes are 124.7° , 128.1° , and 127.7° , respectively, for the X = Cl, Br, and I compounds. For comparison, the values in the $Zr(C_5H_5)(6,6-dmch)X_2$ complexes are 125.5°, 125.5°, and 125.3°, while the values for the $Zr(C_5H_5)_2X_2$ complexes are 127.8°, 129°, and 126.3°, respectively for $X = F^{14}$, Cl,¹⁶ and I.¹⁴ Additionally, there is only a slight difference in fold angles (angle between the dienvl ligand plane and the C1, C5, C6 plane), being 39.9°, 36.9°, and 36.9°. The significant fold angles reflect a major difference between these and related boratabenzene complexes, for which the boron center does not experience

⁽¹³⁾ Wells, A. F. *Structural Inorganic Chemistry*; Clarendon Press: Oxford, 1945.

⁽¹⁴⁾ Bush, M. A.; Sim, G. A. J. Chem. Soc. (A) 1971, 2225.

^{(15) (}a) Kulsomphob, V.; Tomaszewski, R.; Yap, G. P. A.; Liable-Sands, L. M.; Rheingold, A. L.; Ernst, R. D. J. Chem. Soc., Dalton Trans **1999**, 3995. (b) LeSuer, R.; Basta, R.; Arif, A. M.; Geiger, W. E.; Ernst, R. D. Organometallics 2003, 22, 1487.
(16) (a) Corey, J. Y.; Zhu, X. H.; Brammer, L.; Rath, N. P. Acta

^{(16) (}a) Corey, J. Y.; Zhu, X. H.; Brammer, L.; Rath, N. P. Acta Crystallogr. **1995**, C51, 565. (b) Repo, T.; Klinga, M.; Mutikainen, I.; Su, Y.; Leskela, M.; Polamo, M. Acta Chem. Scand. **1996**, 50, 1116.

a notable deviation from the "dienyl" plane, thereby establishing the presence of η^6 coordination.¹⁷

The structure of Zr(6,6-dmch)₂(OCH₃)Cl also follows the general pattern expected for higher valent metal pentadienyl complexes. Thus, for the two independent molecules, the average Zr-C[1,5], Zr-C[2,4], and Zr-C[3] distances are 2.732, 2.552, and 2.483 Å, respectively. That these distances are consistently longer than those in the X = Cl, Br, and I species can be attributed to the potential of the methoxy ligand to serve as a fiveelectron donor, as has been established already for related titanium complexes.¹⁸ In particular, the average Zr-O-C angle of 153.2(1)° is significantly larger than the ideal value of 133° estimated for three-electron donation.¹⁹ Of course, for this complex to reach the 18electron configuration, the alkoxy ligand only needs to serve as a three-electron donor. However, the same could be said for either of the 6,6-dmch ligands, given the possibility of the alkoxide serving as a five-electron donor.²⁰ Hence, one expects that partial coordination of the alkoxide ligand's second lone pair is occurring in competition with the dmch \rightarrow Zr interactions. Had this been a "half-open" Zr(C5H5)(6,6-dmch)(OCH3)Cl complex instead, one would expect even more dramatic lengthening of the Zr-dmch coordination, as the competition with the alkoxy ligand should tend to involve the one dmch ligand more than the aromatic C₅H₅ ligand. Interestingly, the average Zr-Cl distance of 2.484(1) Å is longer than the value of 2.457(4) Å in the dichloride complex. While chloride is not often considered a strong π donor,²¹ it is nonetheless possible that the presence of the methoxy ligand does lead to loss of some π donation for the chloride ligand. It is notable that the O-Zr-Cl angles average 98.0°, significantly larger than the values of ca. 93.6° for the dihalide complexes. The average C[1]-C[2] and C[2]-C[3] distances, 1.364 and 1.408 Å, are similar to those in the dihalide compounds. The average angle between the dmch ligand planes is 126.2°, while the average fold angle is 38.1°.

The structure of $Zr(6,6-dmch)_2(CH_3)Br$ has, overall, the longest average Zr-C[3] distance, 2.495 Å, while the Zr-C[2,4] and Zr-C[1,5] distances are more in line with the other structures, at 2.540 and 2.674 Å. However, closer inspection reveals that the distances for one of the dmch ligands are consistently shorter than those of the other. The solid state conformation is unique among those reported here, in that the bridges of the two dmch ligands are both directed away from the additional ligands (CH₃, Br). The angle between the two dienyl ligand planes is 134.3°, while the average fold angle is 38.9°. The average C[1]–C[2] and C[2]–C[3] distances, 1.376 and 1.414 Å, are again consistent with a resonance hybrid involving substantial σ -bond character between the metal center and the central carbon atom of the dienyl ligand (1).

The Br–Zr–CH₃ angle of 89.08(4)° is the smallest in the observed structures. Given that the greatest angle was observed for the Zr(6,6-dmch)₂(OCH₃)Cl complex, there seems to be a correlation between these angles and the π -donor abilities of the additional ligands. The Zr–CH₃ and Zr–Br distances, at face value, are 2.481(2) and 2.6602(4) Å. The Zr–C distance appears long compared to values in related complexes,²² and there is reason to believe it is subject to a systematic error arising from a ca. 91:9 disorder between the CH₃ and Br positions. Taking this into account,²³ one could estimate corrected Zr–CH₃ and Zr–Br distances of 2.374 and 2.665 Å. The "corrected" Zr–CH₃ distance appears more in line with expectations.

Conclusions

The halogen transfer reactions between 1,2-dihaloalkanes and $Zr(6,6-dmch)_2(PMe_3)_2$ provide effective routes to $Zr(6,6-dmch)_2X_2$ complexes and potentially to $Zr(6,6-dmch)X_3$ species as well. Although the reported yields could likely be optimized significantly, the approach does suffer from the loss of some of the 6,6-dmch anions in the original syntheses of the Zr(II) starting materials. Now that it is clear that these Zr(IV) 6,6dmch complexes are stable, it would seem possible to develop alternative routes involving the selective, direct incorporation of the 6,6-dmch ligand into Zr(IV) complexes using ZrX_4 starting materials.

The Zr(IV) complexes reported in this study continue a significant structural trend observed previously, in that a single, short Zr–C interaction is present for each pentadienyl ligand, involving the central carbon atom. Apparently, the substantial contraction of the Zr(IV)orbitals leads then to successively poorer interactions with the rest of the carbon atoms. The higher oxidation state also would greatly diminish the δ back-bonding interaction, which can be important in the lower valent compounds.^{1,2} The 6,6-dmch ligand, by virtue of its shorter C1--C5 separation and enhanced donor abilities,²⁴ thus appears to be the ideal pentadienyl ligand for higher valent complexes. In the related half-open zirconocene analogues, much longer M-C distances were found for the pentadienyl ligand as compared to cyclopentadienyl, whereas for the Zr(II) complexes, just the opposite was observed, reflecting a dramatic reversal in bonding preference. At any rate, the availability of

^{(17) (}a) Bazan, G. C.; Cotter, W. D.; Komon, Z. J. A.; Lee, R. A.; Lachicotte, R. J. J. Am. Chem. Soc. 2000, 122, 1371. (b) Lee, B. Y.; Bazan, G. C. J. Organomet. Chem. 2002, 642, 275. (c) Ashe, A. J., III; Al-Ahmad, S.; Fang, X.; Kampf, J. W. Organometallics 2001, 20, 468. (d) Ashe, A. J., III; Kampf, J. W.; Schiesher, M. W. Organometallics 2003, 22, 203. (e) Herberich, G. E.; Englert, U.; Ganter, B.; Pons, M. Eur. J. Inorg. Chem. 2000, 979. (f) Herberich, G. E.; Greiss, G. Chem. Ber. 1972, 105, 3413. (g) Herberich, G. E.; Ohst, H. Adv. Organomet. Chem. 1986, 25, 199.

^{(18) (}a) Tomaszewski, R.; Arif, A. M.; Ernst, R. D. J. Chem. Soc., Dalton Trans. 1999, 1883. (b) Dobado, J. A.; Molina, J. M.; Uggla, R.; Sundberg, M. R. Inorg. Chem. 2000, 39, 2831. (c) Basta, R.; Arif, A. M.; Ernst, R. D. Organometallics, in press.

⁽¹⁹⁾ Huffman, J. C.; Moloy, K. G.; Marsella, J. A.; Caulton, K. G. J. Am. Chem. Soc. **1980**, *102*, 3009.

⁽²⁰⁾ Notably, while the first π -donor interaction would be expected to enhance the metal-pentadienyl bonding by making the metal center more electron rich, the second interaction would necessarily compete with the metal-dienyl bonding to avoid a 20-electron configuration. (21) Lichtenberger, D. L.; Gruhn, N. E.; Renshaw, S. K. J. Mol. Struct. **1997**, 405, 79.

^{(22) (}a) Randall, C. R.; Silver, M. E.; Ibers, J. A. Inorg. Chim. Acta 1987, 128, 39. (b) Larson, E. J.; Van Dort, P. C.; Lakanen, J. R.; O'Neill, D. W.; Pederson, L. M.; McCandless, J. J.; Silver, M. E.; Russo, S. O.; Huffman, J. C. Organometallics 1988, 7, 1183. (c) Hyla-Kryspin, I.; Gleiter, R.; Krüger, C.; Zwettler, R.; Erker, G. Organometallics 1990, 9, 517. (d) Takahashi, T.; Xi, Z.; Fischer, R.; Huo, S.; Xi, C.; Nakajima, K. J. Am. Chem. Soc. 1997, 119, 4561.

⁽²³⁾ The observed distances were approximated as averages of the actual (presumably, "corrected") distances, weighted linearly with the relative electron densities expected for the 91:9 atomic ratios.

 ^{(24) (}a) DiMauro, P. T.; Wolczanski, P. T.; Parkanyi, L.; Petach, H.
 H. Organometallics 1990, 9, 1097.

Higher Valent Metal Pentadienyl Chemistry

higher valent metal pentadienyl compounds finally provides for an opportunity to explore this heretofore "missing" area of chemistry, particularly analogues of the ubiquitous $M(C_5H_5)_2X_2$ complexes. Already it has become clear that the chemistry of the higher valent complexes, especially coupling reactions with unsaturated organic molecules,^{10,25} differs dramatically from that exhibited by the much more common low valent compounds. The chemistry of these new complexes thus offers substantial potential for further study. **Acknowledgment** is made to the Donors of the American Chemical Society Petroleum Research Fund and the University of Utah for partial support of this work.

Supporting Information Available: Positional coordinates, anisotropic thermal parameters, and additional bonding parameters for Zr(6,6-dmch)₂Cl₂, Zr(6,6-dmch)₂Br₂, Zr(6,6-dmch)₂I₂, Zr(6,6-dmch)₂Cl(OCH₃), and Zr(6,6-dmch)₂Br(CH₃). This material is available free of charge via the Internet at http://pubs.acs.org.

OM058017J

⁽²⁵⁾ Ernst, R. D.; Basta, R.; Arif, A. M. Z. Kristallogr.-New Cryst. Struct. 2004, 219, 403.