Successive Formation of Hydrido(germyl)platinum, Germaplatinacycle, and Germylene-Bridged Dinuclear Platinum Complexes from the Reaction of a Zerovalent Platinum Complex with α,ω-Dihydrodigermanes

Yoko Usui, Sayaka Hosotani, Aki Ogawa, Masato Nanjo, and Kunio Mochida*

Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan

Received April 25, 2005

Summary: The reaction of $Pt(\eta^2-C_2H_4)(PPh_3)_2$ (1) with $HPh_2Ge(SiMe_2)_nGePh_2H$ (2; n = 0-3) initially forms the hydrido(germyl)platinum complex cis- $Pt(H)[GePh_2-(SiMe_2)_nGePh_2H](PPh_3)_2$ (3), followed by the generation

of the cyclic bis(germyl)platinum complex Pt[GePh₂-

 $(SiMe_2)_n GePh_2](PPh_3)_2$ (4) and finally formation of a dinuclear platinum complex with bridging diphenylgermyl ligands containing a Pt-Pt bond, $[Pt(\mu-GePh_2)-(PPh_3)]_2$ (5). The structures of 4 (n = 2) and 5 were determined by X-ray crystallography.

Group 14 element compounds have attracted growing interest not only as possible synthetic tools in organic chemistry but also for their potential use as new materials.¹ In particular, considerable effort has been devoted to syntheses of group 14 element compounds binding late transition metals, as these complexes are regarded as intermediates in a number of transitionmetal-catalyzed transformations of group 14 element compounds.^{2,3} However, there has been little research on germanium compounds having a transition-metalgermanium bond, especially in comparison to the much studied silicon chemistry.² We have recently isolated divalent bis(germyl)platinum complexes stabilized by tertiary phosphines from the reaction of PtCl₂L₂ with LiGeR₃^{4a} as an intermediate in the bis-germylation of alkynes catalyzed by zerovalent Pt complexes.⁴ Useful syntheses of Pt complexes containing Pt-group 14

(a) Markay, K. M.; Nicholson, B. K. In Comprehensive Organometallic Chemistry; Wilkinson, G., Stone, F. G. A., Abel, E. W., Eds.; Pergamon: New York, 1982; Vol. 6, Chapter 43.

(3) (a) Corey, J. Y.; Braddock-Wilking, J. Chem. Rev. 1999, 99, 175–
 (2) (b) Suginome, M.; Ito, Y. Chem. Rev. 2000, 100, 3221–3256. (c)
 Ozawa, F. J. Organomet. Chem. 2000, 611, 332–342. (d) Tsuji, Y.;
 Obora, Y. J. Organomet. Chem. 2000, 611, 343–348.

element bonds proceed from salt elimination using a Pt halide and MER₃ (M = Li, K, Na, Hg; E = Si, Ge, Sn)^{2,5} or oxidative addition of R₃E–ER₃,⁶ R₃C–ER₃,⁷ H–ER₃,⁸ or X–ER₃⁹ to a zerovalent Pt complex. Herein are reported new synthetic methods for germylplatinum complexes from the treatment of zerovalent platinum centers with α, ω -dihydrodigermanes and the unexpected successive formation of a hydrido(germyl)platinum complex, germaplatinacycle complex, and dinuclear platinum complex with bridging germylene ligands.

The reaction of $Pt(\eta^2-C_2H_4)(PPh_3)_2$ (1) with HPh_2 -GeGePh₂H (2a) proceeded to form *cis*-Pt(H)(GePh_2-GePh_2H)(PPh_3)_2 (3a) in 93% yield with liberation of C_2H_4 within 10 min at room temperature in toluene. Complex 3a was isolated as a white powder and was identified from IR and NMR spectra.¹⁰

Similar treatment of **1** with HPh₂Ge(SiMe₂)GePh₂H (**2b**) immediately generated *cis*-Pt(H)[GePh₂(SiMe₂)-GePh₂H](PPh₃)₂ (**3b**) in quantitative yield by NMR in

^{*} To whom correspondence should be addressed. Tel: (+81)3-3986-0221 (ex 6471). Fax: (+81)3-5992-1029. E-mail: kunio.mochida@gakushuin.ac.jp.

⁽¹⁾ Reviews on group 14 element compounds: (a) Lesbre, M.; Mazerolles, P.; Satgé, J. In *The Organic Compounds of Germanium*; Seyferth, D., Ed.; Wiley: London, 1971. (b) *Comprehensive Organometallic Chemistry*; Wilkinson, G., Stone, F. G. A., Abel, E. W., Eds.; Pergamon: New York, 1982; Vol. 2. (c) *The Chemistry of Organic Germanium, Tin and Lead Compounds*; Patai, S., Rappoport, Z., Eds.; Wiley: Chichester, U.K., 1995. (d) *The Chemistry of Organic Silicon Compounds*; Patai, S., Rappoport, Z., Apeloig, Y., Eds.; Wiley: Chichester, U.K., 1998. (e) Brook, M. A. *Silicon in Organic, Organometallic, and Polymer Chemistry*; Wiley: New York, 2000.

^{(4) (}a) Mochida, K.; Wada, T.; Suzuki, K.; Hatanaka, W.; Nishiyama,
Y.; Nanjo, M.; Sekine, A.; Ohashi, Y.; Sakamoto, M.; Yamamoto, A.
Bull. Chem. Soc. Jpn. 2001, 74, 123-137. (b) Mochida, K.; Hodota, C.;
Yamashita, H.; Tanaka, M. Chem. Lett. 1992, 1635-1638. (c) Mochida,
K.; Hirakue, K.; Suzuki, K. Bull. Chem. Soc. Jpn. 2003, 76, 1023-1028.

^{(5) (}a) Glockling, F.; Hooton, K. A. J. Chem. Soc. A 1967, 1066–1075.
(b) Chatt, J.; Eaborn, C.; Ibekwe, S. D.; Kapoor, P. N. J. Chem. Soc. A 1970, 1343–1351.
(c) Chang, L. S.; Johnson, M. P.; Fink, M. Organometallics 1989, 8, 1369–1371.
(d) Ozawa, F.; Kamite, J. Organometallics 1998, 17, 5630–5639.

^{(6) (}a) Yamashita, H.; Kobayashi, T.; Hayashi, T.; Tanaka, M. Chem. Lett. **1990**, 1447–1450. (b) Yamashita, H.; Tanaka, M.; Goto, M. Organometallics **1992**, *11*, 3227–3232. (c) Ozawa, F.; Sugawara, M.; Hayashi, T. Organometallics **1994**, *13*, 3237–3243. (d) Suginome, M.; Oike, H.; Shuff, P. H.; Ito, Y. J. Organomet. Chem. **1996**, *521*, 405– 408. (e) Sagawa, T.; Sakamoto, Y.; Tanaka, R.; Katayama, H.; Ozawa, F. Organometallics **2003**, *22*, 4433–4445. (f) Sagawa, T.; Tanaka, R.; Ozawa, F. Bull. Chem. Soc. Jpn. **2004**, *77*, 1287–1295.

^{(7) (}a) Gilges, H.; Kickelbick, G.; Schubert, U. J. Organomet. Chem. **1997**, 548, 57–63. (b) Gilges, H.; Schubert, U. Organometallics **1998**, 17, 4760–4761.

^{(8) (}a) Chatt, J.; Eaborn, C. J. Chem. Soc. A 1970, 881–884. (b) Eaborn, C.; Tune, D. J.; Walton, D. R. M. J. Chem. Soc., Dalton Trans. 1973, 2255–2264. (c) Holmes-Smith, R. D.; Stobart, S. R.; Cameron, T. S.; Jochem, K. J. Chem. Soc., Chem. Commun. 1981, 937–939. (d) Grundy, S. L.; Holmes-Smith, R. D.; Stobart, S. R.; Williams, M. A. Inorg. Chem. 1991, 30, 3333–3337. (e) Sakaki, S.; Ieki, M. J. Am. Chem. Soc. 1993, 115, 2373–2381. (f) Latif, L. A.; Eaborn, C.; Pidcock, A. P.; Weng, N. S. J. Organomet. Chem. 1994, 474, 217–221. (g) Koizumi, T.; Osakada, K.; Yamamoto, T. Organometallics 1997, 16, 6014–6016. (h) Chan, D.; Duckett, S. B.; Heath, S. L.; Khazal, I. G.; Perutz, R. N.; Sabo-Etienne, S.; Timmins, P. L. Organometallics 2004, 23, 5744–5756.

 ^{(9) (}a) Yamashita, H.; Hayashi, T.; Kobayashi, T.; Tanaka, M.; Goto,
 (9) (a) Yamashita, H.; Hayashi, T.; Kobayashi, T.; Tanaka, M.; Goto,
 M. J. Am. Chem. Soc. 1988, 110, 4417-4418. (b) Yamashita, H.;
 Kobayashi, T.; Tanaka, M.; Samuels, J. A.; Streib, W. E. Organometallics 1992, 11, 2330-2333.

tatics **1992**, 17, 2330–2333. (10) **3a**: ¹H NMR (300.4 MHz, toluene- d_8) δ –3.17 (dd, ² $J_{H-P(trans)}$ = 180.2 Hz, ² $J_{H-P(cis)}$ = 36.0 Hz, ¹ J_{H-Pt} = 869.6 Hz, 1H, PtH), 5.70 (s, ³ J_{H-Pt} = 50.8 Hz, 1H, GeH), 6.8–7.6 (m, 50H, GeC₆H₅, PC₆H₅); ³IP-{¹H} NMR (121.5 MHz, toluene- d_8) δ 30.9 (d, ² J_{P-P} = 10 Hz, ¹ J_{P-Pt} = 2411 Hz), 33.3 (d, ² J_{P-P} = 10 Hz, ¹ J_{P-Pt} = 2276 Hz); IR (KBr) 2089, 1967 cm⁻¹.

Figure 1. ORTEP view of 5. Selected bond lengths (Å) and angles (deg): Pt1-Pt2 = 2.7211(6), Pt1-Ge1 = 2.3901-(13), Pt1-Ge2 = 2.4974(12), Pt1-P1 = 2.221(3); Ge1-Pt1-Ge2 = 112.38(4), P1-Pt1-Ge1 = 106.12(7), P1-Pt1-Ge2 = 141.34(8), Ge1-Pt1-Pt2 = 58.07(3), Ge2-Pt1-Pt2 = 54.31(3).

toluene- d_8 or dichloromethane- d_2 .¹¹ The NMR signals for the hydride complex **3b** gradually decreased, and the

formation of the germaplatinacycle Pt[GePh₂(SiMe₂)-

 $GePh_2](PPh_3)_2$ (4a) was then revealed with the liberation of H_2 at room temperature over 3 h.¹² Complex 4a was gradually transformed to the complex 5 in dichloromethane- d_2 , which shows one singlet peak at 14.9 ppm with large Pt satellites (3674 Hz) in the ${}^{31}P{}^{1}H$ NMR spectrum, with an equimolar amount of triphenvlphosphine oxide (28.1 ppm).¹³ Yellow single crystals of 5 were grown from cold dichloromethane/hexane solution from the resulting mixture of 1 and 2b, and the structure was confirmed by X-ray crystallography. The final product in this reaction in dichloromethane was found to be a dinuclear platinum complex with bridging germylene ligands, $[Pt(\mu-GePh_2)(PPh_3)]_2$ (5), as shown in Figure 1.¹⁴ The distance between two platinum atoms is 2.7211 Å, which suggests a direct Pt-Pt bond. There are two very different Pt-Ge distances (2.3901 and 2.4974 Å), P-Pt-Ge angles (106.12 and 141.34°), and Ge-Pt-Pt angles (58.07 and 54.31°) in complex 5, respectively. The packing of crystals has an influence on the asymmetric structure of 5. Dinuclear complexes having Pt-Pt bonds with bridging HSiR₂ ligands [(R₃P)- $Pt(\mu - \eta^2 - HSiR_2)]_2$ show large Pt satellites of about 3500 Hz in $^{31}P\{^{1}H\}$ NMR, which is consistent with the result of the ${}^{31}P{}^{1}H$ NMR study for 5 (${}^{1}J_{P-Pt} = 3674 \text{ Hz}$). ${}^{15a-g}$ There are no hydride peaks at -50 °C in CD_2Cl_2 in the ¹H NMR spectrum, and a Pt-H resonance was not observed in the IR spectrum for 5. The reaction of 1 with **2a**,**b** in dichloromethane finally produced **5**, while **5** was

Figure 2. ORTEP drawing of 4b. Selected bond lengths (Å) and angles (deg): Pt1-Ge1 = 2.4979(13), Pt1-Ge1 = 2.4985(13), Pt1-P1 = 2.290(3), Pt1-Pt2 = 2.336(3); Ge1-Pt1-Ge2 = 83.47(4), Ge1-Pt1-P1 = 88.52(8), Ge1-Pt1-P2 = 174.43(9), Ge2-Pt1-P1 = 171.76(8), Ge2-Pt1-P2 = 91.02(8), P1-Pt1-P2 = 97.01(11).

not generated in toluene or benzene. A dinuclear Pt complex containing a direct Ge–Ge bond did not form, while dinuclear silylene complexes are normally stabilized by a direct Si–Si bond or Si–H bridging.¹⁵

The reaction of 1 with HPh₂Ge(SiMe₂)₂GePh₂H (**2c**) yielded the corresponding germaplatinacycle complex

 $Pt[GePh_2(SiMe_2)_2GePh_2](PPh_3)_2$ (**4b**) in 83% yield after 4 h in benzene.¹⁶ Complex **4b** was characterized by NMR, and the structure was determined by X-ray crystallography, as shown in Figure 2.^{17,18} The sum of the bond angles around Pt was 360.0°, which suggests

⁽¹²⁾ **4a**: ¹H NMR (300.4 MHz, toluene- d_8) δ 0.33 (s, 6H, SiCH₃), 6.6–7.2 (m, 50H, GeC₆H₅, PC₆H₅); ³¹P{¹H} NMR (121.5 MHz, toluene- d_8) δ 24.9 (s, ¹J_{P-Pt} = 2047 Hz).

^{(13) 5: &}lt;sup>1</sup>H NMR (300.4 MHz, dichloromethane- d_2) δ 6.8–7.5 (m, GeC₆H₅, PC₆H₅); ³¹P{¹H} NMR (121.5 MHz, dichloromethane- d_2) δ 14.9 (s, ¹J_{P-Pt} = 3674 Hz). (14) Crystallographic data for 5: C₆₀H₅₀Ge₂P₂Pt₂, M_r = 1368.30,

⁽¹⁴⁾ Crystallographic data for 5: $C_{60}H_{50}Ge_2P_2Pt_2$, $M_r = 1368.30$, triclinic, P1, a = 9.4802(13) Å, b = 11.8928(17) Å, c = 23.244(4) Å, $a = 80.341(9)^\circ$, $\beta = 80.978(11)^\circ$, $\gamma = 73.924(10)^\circ$, V = 2465.6(6) Å³, Z = 2, $D_{calcd} = 1.843$ g cm⁻³, F(000) = 1320, $\mu = 6.945$ mm⁻¹, R1 = 0.0736 ($I > 2\sigma(I)$), wR2 = 0.1864 (all data), GOF = 0.943.

⁽¹⁵⁾ Dinuclear Pt complexes with bridging Si and H ligands having a Pt-Pt bond: (a) Auburn, M.; Ciriano, M.; Howard, J. A. K.; Murray, M.; Pugh, N. J.; Spencer, J. L.; Stone, F. G. A.; Woodward, P. J. Chem. Soc., Dalton Trans. **1980**, 659–666. (b) Levchinsky, Y.; Rath, N. P.; Braddock-Wilking, J. Organometallics **1999**, *18*, 2583–2586. (c) Sanow, L. M.; Chai, M.; McConnville, D. B.; Galat, K. J.; Simons, R. S.; Rinaldi, P. L.; Youngs, W. J.; Tessier, C. A. Organometallics **2000**, *19*, 192–205. (d) Braddock-Wilking, J.; Levchinsky, Y.; Rath, N. P. Organometallics **2001**, *20*, 474–480. (f) Tanabe, M.; Yamada, T.; Osakada, K. Organometallics **2003**, *22*, 2190–2192. (g) Braddock-Wilking, J.; Corey, J. Y.; Trankler, K. A.; Dill, K. M.; French, L. M.; Rath, N. P. Organometallics **2004**, *23*, 4576–4584. Dinuclear Pt complexes with bridging Si ligands having a Si-Si bond: (h) Zarate, E. A.; Tessier-Youngs, C. A.; Youngs, W. J. J. Am. Chem. Soc. **1988**, *577–578*. (j) Heyn, R. H.; Tilley, T. D. J. Am. Chem. Soc. **1989**, 577–578. (j) Heyn, R. H.; Tilley, T. D. J. Am. Chem. Soc. **1989**, *577–578*. (j) Heyn, R. H.; Tilley, T. D. J. Am. Chem. Soc. **1989**, *577–578*. (j) Heyn, R. H.; Tilley, T. D. J. Am. Chem. Soc. **1989**, *577–578*. (j) Heyn, R. H.; Tilley, T. D. J. Am. Chem. Soc. **1989**, *577–578*. (j) Heyn, R. H.; Tilley, T. D. J. Am. Chem. Soc. **1989**, *577–578*. (j) Heyn, R. H.; Tilley, T. D. J. Am. Chem. Soc. **1989**, *577–578*. (j) Heyn, R. H.; Tilley, T. D. J. Am. Chem. Soc. **1989**, *577–578*. (j) Heyn, R. H.; Tilley, T. D. J. Am. Chem. Soc. **1989**, *577–578*. (j) Heyn, R. H.; Tilley, T. D. J. Am. Chem. Soc. **1989**, *577–578*. (j) Heyn, R. H.; Tilley, T. D. J. Am. Chem. Soc. **1989**, *577–578*. (j) Heyn, R. H.; Tilley, T. D. J. Am. Chem. Soc. **1989**, *577–578*. (j) Heyn, R. H.; Tilley, T. D. J. Am. Chem. Soc. **1989**, *577–578*. (j) Heyn, R. H.; Tilley, T. D. J. Am. Chem. Soc. **1989**, *577–578*. (j) Heyn, R. H.; Tilley, T. D. J. Am. Chem. Soc. **1989**, *577–578*. (j) Heyn, R. H.; Tilley, T. D. J. Am. Chem. Soc.

⁽¹⁶⁾ **4b**: ¹H NMR (300.4 MHz, toluene- d_8) δ 0.22 (s, 12H, SiCH₃), 6.7–7.7 (m, 50H, GeC₆H₅, PC₆H₅); ³¹P{¹H} NMR (121.5 MHz, toluene- d_8) δ 27.4 (s, ¹J_{P-Pt} = 2081 Hz).

⁽¹⁷⁾ Crystallographic data for **4b**: C₇₀H₆₇Ge₂P₂PtSi₂, M_r = 1366.63, monoclinic, Cc, a = 22.344(2) Å, b = 12.8430(14) Å, c = 22.869(2) Å, $\beta = 111.360(6)^\circ$, V = 6111.8(11) Å³, Z = 4, $D_{calcd} = 1.485$ g cm⁻³, F(000) = 2748, $\mu = 3.393$ mm⁻¹, R1 = 0.0393 ($I > 2\sigma(I)$), wR2 = 0.1148 (all data), GOF = 1.051.

⁽¹⁸⁾ Synthesis of a platinacyclosilane by the oxidative addition of 1,4-dihydrotetrasilane to $Pt(\eta^2-C_2H_4)L_2$: (a) Lemanski, M. F.; Schram, E. P. *Inorg. Chem.* **1976**, *15*, 1489–1492. Synthesis of the germaplati-

nacycle complex $Pt[GeMe_2(CMe_2)_nGeMe_2]L_2$ (n = 0-2) from the reaction of $Pt(\eta^2-C_2H_4)L_2$ with $HGeMe_2(CH_2)_nGeMe_2H$: (b) Barrau, J.; Rima, G.; Cassano, V.; Satgé, J. Inorg. Chim. Acta **1992**, 198–200, 461–467.

Communications

that **4b** contains a square-planar structure. The ¹H and ³¹P NMR study for this reaction revealed the formation of cis-Pt(H)[GePh₂(SiMe₂)₂GePh₂](PPh₃)₂ (**3c**) as an intermediate before the stepwise generation of 4b.¹⁹ Complex 4b quantitatively converted to the dinuclear complex 5 in 1 day at ambient temperature in dichloromethane- d_2 in vacuo or under Ar, while the clear yellow toluene- d_8 or benzene- d_6 solution of **4b** changed to a dark red oil with decomposition at room temperature after 3 days, without the generation of 5. The dinuclear complex 5 easily forms in chlorinated solvents such as CH₂Cl₂, CHCl₃, and (CH₂Cl)₂, from the reaction of 1 with 2 and from isolated complexes 3a and 4b. Broad peaks appeared between -0.5 and 0.6 ppm in the ¹H NMR spectrum as the formation of **5** proceeded. Although 5 was generated quantitatively from 4b in CD_2Cl_2 after 20 h, the addition of an equimolar amount of PPh₃ reduced the formation of 5 to 51% yield.

Moreover, the treatment of 1 with HPh₂Ge(SiMe₂)₃-GePh₂H (2d) smoothly generated cis-Pt(H)[GePh₂-(SiMe₂)₃GePh₂H](PPh₃)₂ (3d) within 10 min at room temperature in dichloromethane- d_2 and then directly converted to complex 5.20

A series of reactions of $Pt(\eta^2-C_2H_4)(PPh_3)_2$ (1) with $HPh_2Ge(SiMe_2)_nGePh_2H(2; n = 0-3)$ successively formed hydrido(germyl)platinum complexes, cis-Pt(H)[GePh₂- $(SiMe_2)_n GePh_2H](PPh_3)_2$ (3), germaplatinacycle complexes, Pt[GePh₂(SiMe₂)_nGePh₂](PPh₃)₂ (4), and a di-

nuclear platinum complex with bridging germylene ligands, $[Pt(\mu-GePh_2)(PPh_3)]_2$ (5), as shown in Scheme 1. The corresponding three-membered germaplatina-

cycle Pt(GePh₂GePh₂)(PPh₃)₂ or digermene-coordinated platinum complex $Pt[\eta^2-(GePh_2=GePh_2)](PPh_3)_2$, as an equilibrium complex of the three-membered platina-

cycle, and six-membered platinacycle Pt[GePh₂-

 $(SiMe_2)_3GePh_2](PPh_3)_2$ in reactions of 1 with 2a,d, respectively, were not detected by ¹H and ³¹P NMR monitoring, though they were generated in the same stepwise course.^{18,21} The proposed mechanism for the formation of 5 from 4 involves the initial liberation of 1 equiv of PPh₃ followed by the dissociation of Pt-Ge and

Scheme 1. Reaction of $Pt(\eta^2-C_2H_4)(PPh_3)_2$ with HPh₂Ge(SiMe₂)_nGePh₂H

Ge-Si bonds for the generation of Ge-Si doubly bonded

species or divalent species such as $[Ph_2Ge(SiMe_2)_{n-1}SiMe_2]$, [:GePh₂], and/or [:SiMe₂], which convert to polymers without observation.^{1b} This successive reaction is considered to involve these bond cleavages probably via generation of the putative germylene complex [LPt= GePh₂], which dimerizes to form complex 5. Triphenylphosphine oxide is simultaneously generated with the formation of 5 in quantitative yield from reactions of 1 with 2a-d even when using dried solvent in a sealed NMR tube in vacuo. Further investigations of a detailed mechanism for the formation of 5 and reactivities of novel germylplatinum complexes 3-5 are underway, including the limitation of this reaction as a synthetic method for group 14 element compounds binding group 10 metals.

Acknowledgment. This work was supported by a Grant-in-Aid for Scientific Research on Priority Areas (No. 16033256, Reaction Control of Dynamic Complexes) from the Ministry of Education, Culture, Sports, Science and Technology of Japan. M.N. thanks the Ministry of Education, Science, Sports and Culture of Japan for a Grant-in Aid for Scientific Research (Grant No. 16750040).

Supporting Information Available: CIF files giving crystal data for 5 and 4b. This material is available free of charge via the Internet at http://pubs.acs.org.

OM0503287

^{(19) 3}c: ¹H NMR (300.4 MHz, toluene- d_8) δ –3.16 (dd, ² $J_{\rm H-P(trans)}$

⁽¹⁹⁾ **3C**: ¹H NMR (300.4 MHZ, toluene- d_8) δ -3.16 (dd, ²J_H-P(trans) = 165.2 Hz, ³J_H-P(cis) = 24.0 Hz, ¹J_H-Pt = 862.1 Hz, 1H, PtH), 0.22 (s, 6H, SiCH₃), 0.34 (s, 6H, SiCH₃), 5.29 (s, 1H, GeH), 7.2-7.7 (m, 50H, GeC₆H₅, PC₆H₅); ³¹P{¹H} NMR (121.5 MHz, toluene- d_8) δ 31.3 (d, ²J_P-P = 10 Hz, ¹J_P-Pt = 2160 Hz), 31.6 (d, ²J_P-P = 10 Hz, ¹J_P-Pt = 2429 Hz). (20) **3d**: ¹H NMR (300.4 MHz, toluene- d_8) δ -3.12 (dd, ²J_H-P(trans) = 164.6 Hz, ²J_H-P(cis) = 22.6 Hz, ¹J_H-Pt = 864.3 Hz, 1H, PtH), 0.08 (s, 6H, SiCH₃), 0.13 (s, 6H, SiCH₃), 0.19 (s, 6H, SiCH₃), 5.18 (s, 1H, GeH), 7.1-7.7 (m, 50H, GeC₆H₅, PC₆H₅); ³¹P{¹H} NMR (121.5 MHz, toluene-d₄) δ 31 (d ²L_P, z = 10 Hz d_8) δ 31.4 (d, ${}^2J_{P-P} = 10$ Hz, ${}^1J_{P-Pt} = 2143$ Hz), 31.8 (d, ${}^2J_{P-P} = 10$ Hz, ${}^{1}J_{\rm P-Pt} = 2442$ Hz).

⁽²¹⁾ Synthesis of a η^2 -disilene Pt complex by the reaction of Pt(η^2 -C₂H₄)L₂ with disilene: (a) Pham, E. K.; West, R. J. Am. Chem. Soc. **1989**, 111, 7667–7668. Oxidative addition of digermirane to a zerovalent palladium complex: (b) Tsumuraya, T.; Ando, W. Organometallics 1989, 8, 2286–2288. Isolation of a platinum η^2 -disilene complex: (c) Hashimoto, H.; Sekiguchi, Y.; Iwamoto, T.; Kabuto, C.; Kira, M. Organometallics 2002, 21, 454-456.