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Three-dimensional quantitative structure-activity relationship (3D-QSAR) methods have
been successfully applied in the field of drug design to search for a correlation between
detailed molecular structure and bioactivity. Other areas, such as the development of single-
site catalysts for homogeneous olefin polymerization, could benefit from the potential
advantages associated with the 3D-QSAR technique. Using 3D-QSAR, in particular the
comparative molecular field analysis (COMFA) method, the experimental results obtained
for polymerization activity have been successfully correlated with 3D structural descriptors
such as steric, electrostatic, LUMO, and local softness fields calculated by density functional
theory (DFT) methods. The good predictive ability of the models allows one to consider the
application of the 3D-QSAR methodology as a valuable tool in the design of better catalysts
for olefin polymerization.

1. Introduction

In the 1980s metallocene and other single-site cata-
lysts activated by methylaluminoxane compounds (MAO)
as cocatalyst were found to be highly active for the
polymerization of olefins.1 Over the last years, this
important discovery in polymer science has stimulated
the design and synthesis of new organometallic com-
plexes as potential polymerization catalysts. It is widely
recognized that the polymer growth takes place in the
cationic metallocene alkyl complex, which forms a
weakly or noninteracting ion-pair with an anionic MAO
cage.2,3 However, the role of the cocatalyst is still an
open question.

The performance of the catalytic olefin polymerization
using organometallic compounds is affected by several
experimental variables. Among other factors, the tem-
perature, solvent, nature of cocatalyst, cocatalyst/
catalyst ratio, monomer pressure, and polymerization
time are well-known to have a strong influence on the
catalytic activity as well as on the microstructure of the
formed polymers.4 By reviewing the literature, it can
be found that each author uses different polymerization
conditions, which hinder the possibility of establishing
useful relationships between catalyst structure and
catalytic performance. By keeping all the experimental
conditions constant, the observed differences in the

polymerization process could be directly attributed to
the molecular structure of the organometallic catalyst.
To establish empirical relationships between catalyst
structures and polymerization activity or molecular
weights of the produced polymers, some research groups
have carried out systematic experimental studies of the
polymerization of olefins with organometallic com-
pounds under well-controlled experimental conditions.
For the ethylene polymerization, Kaminsky’s group has
analyzed the catalytic activity and molecular weights
of the produced polymers by using 31 different un-
bridged and bridged metallocene catalysts under the
same experimental conditions.5 They have empirically
concluded that the electron-donating bisindenyl metal-
locenes showed a very high activity, while metallocenes
substituted with very bulky ligands, such as neomenthyl
or methylcyclopentadienyl, yielded lower productivity.
Furthermore, it could be inferred that metallocenes
based on a carbon bridge are less active for ethylene
polymerization than those based on a silicon bridge.
This has also been observed by us using different
catalyst structures and other experimental conditions.6
Alt et al.7 have also reported another systematic study
concerning the influence of the metallocene structure
on the catalytic performance of the ethylene polymeri-
zation process. These authors concluded that there are
many factors involved in the polymerization activity and
that qualitative trends could be appropriately inferred
through molecular modeling or systematic experiments.
Among others, the previous examples show that the
catalyst structure has a strong influence on the catalytic
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performance. Therefore, systematic experiments keep-
ing all experimental conditions but catalyst structure
are highly valuable for quantitative structure-activity
relationship studies.

The quantitative structure-activity relationship
(QSAR) approach is a rational method widely used in
medicinal chemistry for the design of new and more
efficient drugs.8 Classical QSAR methods are based on
statistical correlation of biological activities of drugs
with physicochemical properties or scalar descriptors
that encode certain structural features of the ligands.9
However, they are based on a two-dimensional descrip-
tion of the structures neglecting the three-dimensional
(3D) shape of real molecules. Therefore, different 3D-
QSAR methods have been developed. This methodology
is based on the assumption that drug molecules interact
with biological targets accommodating the 3D drug
structure in the biological receptor pocket. This accom-
modation is driven by 3D molecular interaction poten-
tials. The method attempts to identify spatial regions
in the drug that could be candidates for complementary
molecular properties that match the biomolecule binding
site. Among the 3D-QSAR methods, the comparative
molecular field analysis (CoMFA) is one of the most
frequently used. A database of molecules with known
properties, called a “training set”, is appropriately
aligned in 3D space following an alignment rule. Then,
one can calculate a field (steric, electrostatic, molecular
orbital fields, and so on) in a grid of points around each
molecule belonging to the training set that characterizes
its local shape or reactivity. Then, using the partial least
squares (PLS) method10 correlations between these
fields and a property of interest are found. This chemo-
metric tool allows the treatment of hundreds or thou-
sands of variables, the field values at each grid node,
which might be more or less correlated, by extracting a
few independent uncorrelated “latent variables”. These
“latent variables” are composed by linear combinations
of the original variables that can now be used for the
regression process. Once a correlation model between
molecular structure and activity/property is found, any
number of compounds, including those not yet synthe-
sized, could be screened on a computer. This allows one
to select the most promising precursors having a set of
desired properties. Finally, these compounds could be
synthesized and tested in the laboratory.

An area that can benefit from the potential advan-
tages associated with the 3D-QSAR technique is the
development of single-site catalysts for homogeneous
olefin polymerization. The monomer insertion in the
growing polymer chain at the catalyst active site
resembles the macromolecule-ligand picture in drug
design. In this case the aim is to model the catalyst
structure, while in medicinal chemistry one tries to
design the drug molecule. A limited number of articles
dealing with the application of the QSAR approach to
the design of polymerization catalysts have been

published.11-13 However, none of them take into con-
sideration the 3D-QSAR approach.

The first attempt reported using 3D-QSAR CoMFA
analysis in metallocene-based catalysts for ethylene
polymerization has been recently published by us.14 In
this study, we used a set of metallocene catalysts for
determining polymerization activity and polymer mo-
lecular weight under the same experimental reaction
conditions. Descriptors obtained from DFT (density
functional theory) calculations, such as LUMO (lowest
unoccupied molecular orbital), electrostatic, steric, and
local softness fields, were used in order to describe the
structure of the catalysts. The electronic interaction was
confirmed by correlations found between activity and
LUMO (lowest unoccupied molecular orbital) as well as
between activity and local softness. The model revealed
that the experimental variance in catalytic activity is
well explained in terms of the arrangement of the
ligands around the metal center of the aromatic ligands
(i.e., Cp or Ind). Furthermore, it was found that in ansa-
type metallocene catalysts the bridges were not directly
involved in LUMO and local softness fields, but rather
in the Cp-Zr-Cp angle, promoting an electronic inter-
action between the metal center and the atoms of the
ligands to a greater or lesser extent. Polymer molecular
weight was found to correlate also with those fields, the
Cp-Zr-Cp angle being the key geometric variable.
However, steric fields were not able to explain the
variance in the molecular weight data.

In the present work we have extended the analysis
to a larger and more varied type of metallocene catalyst
systems extracted from an experimental study con-
ducted by the Kaminsky group.5 The results obtained
in this new 3D-QSAR analysis are in agreement with
the correlations found in our previous study14 with an
additional implication of the electrostatic field, not found
before. The good predictive ability of the models encour-
ages the application of the 3D-QSAR methodology as a
valuable tool for the design of better catalysts for olefin
polymerization.

2. Methods

2.1. Source of Catalysts and Polymerization Data. A
training set of 25 metallocenes was taken from the paper by
Kaminsky.5 The compounds considered along with the corre-
sponding activities are shown in Table 1. As it can be seen,
this training set covers a wide variability of metallocene
structures with different aromatic ligands, bridges, and metals.
Furthermore, this set is significantly greater than the set of
seven catalysts used in our previous paper.14

All polymerization reactions were carried out under the
same experimental conditions:5 a reactor temperature of 30
°C, an ethylene pressure of 2.5 bar, a metallocene concentra-
tion of 6.25 × 10-6 mol/L, and a molar ratio MAO(methyl
aluminoxane)/metallocene of 250.

2.2. Molecular Modeling. The active species of the catalyst
is a cationic organometallic complex with a vacant coordination
site where polymerization takes place and can interact with
the cocatalyst. Thus, the DFT calculations are based on the
cationic species rather than on the precursor metallocene itself.(8) Martin, Y. C. Quantitative Drug Design; Marcel Dekker: New

York, 1978.
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The reactivity descriptors considered in this work reflect some
characteristics of the isolated reactants. This implies that the
former are relevant only with respect to the initial interaction
between the catalyst and the other species in the reaction
medium. This type of information can be related to the
reactivity only if the reaction has an early transition state, as
it is the case with the ethylene insertion into the metal alkyl
bond of the metallocene catalyst. Furthermore, the possible
effect on the activity and molecular weight is assumed to be
the same in all cases, although the cocatalyst is not taken into
account explicitly in the present work. This assumption can
be valid as far as the same cocatalyst and the same Al/Zr ratio
are used for all polymerization reactions. For each organome-
tallic cationic species, geometry optimization at B3LYP15/
LANL2DZ16 was performed using the Gaussian98 package.17

The following 3D fields were evaluated in Cartesian grids:
electron densities, electrostatic potential, HOMO and LUMO
molecular orbitals. We also calculated electrostatic charges by
fitting the electrostatic potential to nuclear positions according
to the CHELPG18 scheme. Steric and electrostatic 3D fields
are calculated by the CoMFA method through the interaction
between each catalyst and a probe atom. The probe atom
should have specific charge and steric properties to evaluate
the interaction energy at each particular point in the grid. The
probe atom selected was a sp3 C atom with a -1 point charge.
This atom corresponds to atom C.3 in the Tripos Force Field19

which was used to calculate van der Waals (steric) interactions.
The value for the probe atom charge was selected to represent
the effect of the electrostatic nature of either the ethylene or
the anionic cocatalyst.

The so-called local softness is another 3D field used to
evaluate catalyst reactivity. This field takes into consideration
the change in electron density of the cationic active species
under the influence of an incoming reagent. The local softness
was defined by Yang and Parr as20

where F is the electron density, µ is the chemical potential,
v(r) is the external potential, and r is the spatial coordinate.
Geerlings21 and Harbola et al.22 suggested that local softness
could be used as an intermolecular reactivity index. This
assumption is based on the fact that the local softness can be
expressed in terms of the global softness index weighted by
the Fukui function, according to the equation

where f(r) is the Fukui function defined by Parr and Yang as23

Due to the discontinuity of the first derivate with respect
to the number of electrons, N, in eq 3, the following three
functions have to be defined in a finite difference approxima-
tion, given as

where FNo, FNo+1, and FNo-1 are the electron density of the
system N, N + 1, and N - 1 electrons. These three indices
can be calculated for a nucleophilic, an electrophilic, and a
radical reaction, respectively. In our study, the f+ index for a
nucleophilic attack of the monomer on the cationic species of
the catalyst is of special importance, as it is assumed that the
ethylene insertion process corresponds to a nucleophilic attack
to the active cationic species. The Fukui function has been
recognized as an adequate intramolecular reactivity descriptor.

In a similar way, the global softness, S, can be calculated
using the following approximation:

where IE and EA are the ionization energy and electron
affinity, respectively.23 The global softness index is a charac-
teristic property of each molecule. Local softness was qualified
as the natural DFT concept for characterizing a reactive site.21

LUMO and local softness can be considered useful representa-
tions of the electron density in the analysis of the nucleophilic
reactions such as olefin polymerization catalyzed by metal-
locenes.
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Table 1. Experimental Values
no. catalyst activitya log activity

1 Cp2ZrCl2 60.90 4.11
2 Cp2TiCl2 34.20 3.53
3 Cp2HfCl2 4.20 1.44
4 (NmCp)2ZrCl2 12.20 2.50
5 (C5Me5)2ZrCl2 1.30 0.26
6 (C5Me4Et)2ZrCl2 18.80 2.93
7 [O(SiMe2Cp)2]ZrCl2 57.80 4.06
8 [O(SiMe2

tBuCp)2]ZrCl2 11.70 2.46
9 [En(Ind)2]ZrCl2 41.10 3.72
10 [En(Ind)2]HfCl2 2.89 1.06
11 [En(2,4,7Me3Ind)2]ZrCl2 78.00 4.36
12 [En(IndH4)2]ZrCl2 22.20 3.10
13 [Me2Si(Ind)2]ZrCl2 36.90 3.61
14 [Ph2Si(Ind)2]ZrCl2 20.20 3.01
15 [Bz2Si(Ind)2]ZrCl2 12.20 2.50
16 [Me2Si(2,4,7Me3Ind)2]ZrCl2 111.90 4.72
17 [Me2Si(IndH4)2]ZrCl2 30.20 3.41
18 [Me2Si(2Me-4,6iPr2Ind)2]ZrCl2 18.60 2.92
19 [Me2Si(2Me-4Ph-Ind)2]ZrCl2 16.60 2.81
20 [Ph2C(Ind)(Cp)]ZrCl2 3.33 1.20
21 [Me2C(Ind)(Cp)]ZrCl2 1.55 0.44
22 [Me2C(Ind)(3MeCp)]ZrCl2 2.70 0.99
23 [Ph2C(Fluo)(Cp)]ZrCl2 2.90 1.06
24 [Me2C(Fluo)(Cp)]ZrCl2 2.00 0.69
25 [Me2C(Fluo)(Cp)]HfCl2 0.89 -0.12

a Catalyst activity in kg PE (mol metallocene × h × [ethylene])-1

× 10-3.

s(r) ) (δF(r)
δµ )

v(r)
(1)

s(r) ) f(r)‚S (2)

f(r) ) (δF(r)
δN )

v(r)
(3)

f +(r) ≈ FNo+1 - FNo
(4)

f -(r) ≈ FNo
- FNo-1 (5)

f 0(r) ≈ 1/2(FNo+1 - FNo-1) (6)

S ) (δN
δµ )v(r)

≈ 1
IE - EA

(7)
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2.3. COMFA Details. All the reported 3D-QSAR analyses
were done with the CoMFA module24 implemented in the Sybyl
package.25

2.3.1. Alignment Rule. It is essential in 3D-QSAR to align
all structures in a common framework in order to make
possible the comparison between all cationic active species of
the tested catalysts.26 In this study the catalyst molecules were
aligned in such a way that the active site presented similar
orientations. Zirconium atom, cyclopentadienyl centroids Cp1

and Cp2, and the alkyl carbon atom C3 attached to the metal
were used for the molecular alignment, as represented in
Figure 1a. The resulting alignment is shown in Figure 1b along
with the cubic region used to calculate the molecular fields.
Several grid spacings were used, but the best results are
obtained with a lattice of 1.0 Å spacing. This value represents
a compromise in the sense that a higher precision in the
evaluation of the 3D field represented by a finer grid increases
the so-called “brown noise” due to the sensitivity of the
statistical technique applied to generate the models.27

2.3.2. PLS Analysis. The method used in 3D-QSAR analy-
sis to handle thousands of descriptors to fit a few dependent
variables is partial least squares (PLS).28 Classical methods
such as multiple linear regression (MLR), which yield the
unique solution, cannot be used for such a situation with many
more intercorrelated 3D descriptors than compounds. PLS
calculates a few “latent variables” (LV) as linear combinations
of the independent variable set.

where LVi are the latent variables, xj are the independent
variable set, and bi,j are the linear combinations coefficients.

These latent variables are used in the PLS equation:

where Y is a dependent variable and a1 to am are regression
coefficients fitted by the PLS procedure. The calculations of
the LVs and the regression step are carried out simultaneously

in an iterative procedure. The properties of the LVs calculated
in this way are as follows.

(1) The first latent variable explains maximum variance in
the independent set; successive latent variables explain suc-
cessively smaller amounts of variance.

(2) The latent variables conform to 1 with the provision that
they are maximally correlated with the dependent variable.

(3) The latent variables are orthogonal to one another.
Finally the QSAR equation relating Y with the 3D descrip-

tors xj can be obtained by merging eqs 8 and 9.

This equation has two properties that are usually exploited
in the drug design arena: modeling power and explanatory
power. With the former the activity of any new catalyst can
be predicted by introducing their associated descriptor values
in the QSAR equation once the structure has been ap-
propriately aligned. With the latter the molecular details that
have more influence on the activity can be explained by looking
at their coefficients in the QSAR equation. Due to the large
number of descriptors used and their spatial nature, 3D
graphical representations are essential to analyze the results.

PLS analyses were performed for different combinations of
field descriptors. PLS calculations with the combined field were
performed using the so-called autoscaling, where each field is
scaled to have unit variance. The software calculates the
standard deviation (SD) of each field and divides each value
by the corresponding SD. The effect is to give each variable
the same prior importance in the analysis. Leave one out
(LOO)29 cross-validated PLS analysis was initially performed
to determine both the robustness of the statistical models and
the optimal number of components or LVs. This can be
achieved by examining the predictive residual sum of squares
(PRESS) and the cross-validated regression coefficient (q2) as
guidelines. The q2 statistic is defined as

where Yobs,I and Ypred,I are respectively the actual and predicted
dependent variables and SSD is the sum of the squared
deviations of each dependent variable from the mean of all
dependent variables. It has been estimated by some authors30

that a q2 value greater than 0.3 has a 95% confidence limit.
The usual practice in drug design is to consider valid a model
with a q2 greater than 0.5, i.e., halfway between perfect
predictions (q2 ) 1.0) and no model at all (q2 ) 0.0). The
optimum number of components was determined by minimiz-
ing PRESS while maximizing q2 values. Whenever the increase
in q2 with an additional component was less than 5%, the
model with fewer components was selected. Addition of more
components improves the fitting statistics but has two disad-
vantages: on one hand, it complicates the model and on the
other hand its predictive ability is lost. Finally, subsequent
non-cross-validated PLS analysis was carried out for the
optimum number of components to obtain a final model.

The CoMFA results are graphically represented as 3D maps,
and for the sake of clarity only one catalyst of the set has been
depicted in the corresponding figures.

3. Results

Different classes of scalar structural descriptors
(analysis of accessible surface, electrostatic charges,

(24) Cramer, R. D., III; Patterson, D. E.; Bunce, J. D. J. Am. Chem.
Soc. 1988, 110, 5959.

(25) SYBYL, Molecular Modeling System; Tripos Inc.: 1699 S.
Hanley Rd., St. Louis, MO 63144.

(26) Martin, Y. C.; Kim, K. H.; Liu, C. T. In Advances in Quantitative
Structure-Property Relationships; Charton, M., Eds.; JAI Press:
Greenwich, CT, 1996; Vol. 1, pp 1-52.

(27) Rännar, S.; Lindgren, F.; Geladi, P.; Wold, S. J. Chemom. 1994,
8, 111.

(28) Wold, S.; Ruhe, A.; Wold, H.; Dunn, W. J. SIAM J. Sci. Stat.
Comput. 1984, 5, 735.

(29) Cramer, R. D., III; Bunce, J. D.; Patterson, D. E.; Frank, I. E.
Quant. Struct.-Act. Relat. 1988, 7, 18.

Figure 1. (a) Points used for the alignment rule. (b)
Alignment of the training set molecules and cubic region
used to calculate the 3D fields.

LV1 ) b1,1x1 + b1,2x2 +...b1,nxn

LV2 ) b2,1x1 + b2,2x2 + ... b2,nxn (8)

LVq ) bq,1x1 + bq,2x2 + ... bq,nxn

Y ) a1LV1 + a2LV2 + ... amLVm (9)

Y ) (a1b1,1 + a2b2,1 + ... ambm,1)x1 + ... (a1b1,n + a2b2,n +
... ambm,n)xn (10)

PRESS ) ∑
i)1

N

(Yobs,i - Ypred,i)
2 (11)

q2 ) 1 - PRESS/SSD (12)

5098 Organometallics, Vol. 24, No. 21, 2005 Cruz et al.



dipolar moment, and so on) were examined prior to the
use of the 3D-QSAR methodology. No correlation was
found between any combination of the scalar descriptors
considered and the polymerization activity.

The region of points around each molecule where the
structural descriptors are calculated is an essential
component of the 3D-QSAR work. As was mentioned
above, the best results were obtained with a grid spacing
of 1.0 Å, which represents a compromise between the
statistical noise introduced by the amount of variables
considered and the fine details of the calculated field.

Table 2 shows the statistics obtained with the differ-
ent fields considered in this work. Models built with any
combination of fields give slightly poorer results than
those models composed by any of the fields alone. This
could be due to the different nature of the fields
considered even though they are independently scaled
to have the same variance.

It is generally assumed in the 3D-QSAR area that a
cross-validated correlation coefficient (q2) greater than
0.5 can be associated with reliable models. As can be
seen in Table 1, the four models considered in this work
give statistic values near or above 0.5. Thus they can
be considered useful models with good predictive and
modeling power.

The results obtained with each model are presented
in the next subsections.

3.1. Steric Field. The model including the steric field
descriptor, although still significant, gives the less reli-
able statistics of the set of models, with a q2 value of
0.434 for three components (see Table 2). The final
model including the whole training set gives an r2 coef-
ficient of 0.907 with a standard error of estimate (SEE)
of 9.5 × 103 kg PE (mol metallocene × h × [ethylene])-1.

One shortcoming that could be anticipated with this
descriptor is the conformational variability associated
with some compounds in the training set. It is a difficult
task to decide which conformations should be included
in the final alignment. Although several recommenda-
tions can be followed for the selection procedure, we
have decided to take the calculated lowest energy
conformation to represent each compound.

The PLS analysis gives information about the QSAR
equation and its characteristics in terms of 3D fields.
To this respect, it is generally accepted that the most
informative field is that resulting from the product of
the standard deviation at each grid point and the
coefficient obtained for the same point in the QSAR
equation.

The standard deviation (stdev) times the QSAR
coefficient (â) field gives a rough location where struc-
ture-activity relationship statements can be inferred,
discriminating areas where the local descriptor is
important from those that have no significance.31 Figure
2 shows isosurfaces for the stdev × â field contoured at
0.1 (dark gray, positive values) and -0.1 (light gray,

negative values) onto the most active molecule of the
set. The positive values indicate where an increase of
steric field corresponds to an increase in activity. Two
main areas of positive steric influence can be observed,
one near substituent positions in the aromatic ligands,
indicating that addition of some bulky substituent will
enhance activity. This could be interpreted in terms of
the catalyst-cocatalyst interaction. A possible inter-
pretation could be that bulky substituents in those
positions would prevent the approach of the anionic
cocatalyst species to the metal, so that an easier
complexation and insertion of the ethylene monomer is
facilitated. On the other hand, negative values are
associated with locations where it is necessary to release
steric impediment to increase activity. The light gray
isosurfaces in Figure 2 correspond to those areas with
a negative influence of the steric field on polymerization
activity. These regions are located in the proximity of
the active site, where monomer coordination will take
place. Summing up the above results, one could conclude
that the design of new catalysts should take into account
the incorporation of bulky substituents in the aromatic
ligands while leaving enough space at the active site
area for the olefin approach.

3.2. Electrostatic Field. The electrostatic field
exerted by a molecule outside its van der Waals radius
is supposed to be a principal descriptor of intermolecular
interaction in 3D-QSAR.32 The electrostatic nature of
the catalyst active species can play an important role
in the case of ethylene polymerization with metallocene
catalysts, where several molecules (monomer, solvent,
or cocatalyst) can interact through electrostatic forces
with the metallocene compound.

The PLS regression model obtained with this field
gives a good cross-validated q2 coefficient of 0.563 with
three components and a standard error of prediction of
19.1 × 103 kg PE (mol metallocene × h × [ethylene])-1.
The final regression model with three components gives
a correlation coefficient r2 of 0.899 with a standard error

(30) Clark, M.; Cramer, R. D., III. Quant. Struct.-Act. Relat. 1993,
12, 137.

(31) Cramer, R. D., III; DePriest, S. A.; Patterson, D. E.; Hecht, P.
In 3D QSAR in Drug Design: Theory, Methods and Applications;
Kubinyi, H., Ed.; Kluwer-ESCOM: Dordrecht, 2000; pp 443-485.

(32) Wade, R. C. In 3D QSAR in Drug Design: Theory, Methods and
Applications; Kubinyi, H., Ed.; Kluwer/ESCOM: Dordrecht, 2000; pp
486-505.

Table 2. PLS Statistics
3D field q2/no comp. SEPa r2 SEEa

steric 0.434/3 20.3 0.907 9.5
electrostatic 0.563/3 19.1 0.899 8.1
local softness 0.489/4 14.8 0.966 7.7
LUMO 0.533/5 11.4 0.973 5.6
a In kg PE (mol metallocene × h × [ethylene])-1 × 10-3. SEP:

standard error of prediction. SEE: standard error of estimate.

Figure 2. Standard deviation times coefficient CoMFA
maps for the steric field. Equatorial view corresponds to
the plane containing the metal atom and the methyl group
representing the growing chain. Axial view corresponds to
an axis through the centroid of the aromatic ligands.
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of estimate of 8.1 × 103 kg PE (mol metallocene × h ×
[ethylene])-1 (see Table 2).

Figure 3 shows the stdev × â field derived after the
PLS regression model of the polymerization activity
versus electrostatic potential. Again, the dark gray
areas correspond to those regions where addition of
positive charge will enhance activity. The light gray
represents areas where an increase in negative charge
will also contribute to improve polymerization activity.
It could be observed that most of the regions with
beneficial positive charge lie around the C atoms of the
aromatic ligands. The negative areas are positioned in
the vicinity of the aromatic ring substituents. These
areas correspond to the most external surface of the
catalyst above the active site. These observations sug-
gest that electron-withdrawing or negatively charged
substituents in the aromatic rings would be able to
facilitate the ion-pair separation, making more room for
the ethylene coordination to the metal center. This
might result in an improvement of the catalyst activity,
as mentioned in the previous section on steric field.

The correlation of the electrostatic field with the
activity was not observed in our previous report.14 This
can be explained by the absence of catalyst structures
containing substituents on the aromatic ligands in the
training set considered in the first work.

3.3. LUMO Field. Taking into consideration the
frontier molecular orbital theory, the LUMO corre-
sponds to molecular regions where the addition of
electronic density is energetically more favorable. Olefin
polymerization is considered to be a nucleophilic reac-
tion, so that the incoming ethylene monomer will attack
the catalyst species through the most favorable area for
electron addition. Thus, the LUMO of the cationic
species can be considered a suitable field descriptor of
the polymerization activity.

The PLS regression model obtained with this field
gives a good cross-validated q2 coefficient of 0.533 with
five components and a standard error of prediction of
11.4 × 103 kg PE (mol metallocene × h × [ethylene])-1.
The final regression model with five components gives
a correlation coefficient r2 of 0.973 with a standard error
of estimate of 5.6 × 103 kg PE (mol metallocene × h ×
[ethylene])-1 (see Table 2).

The stdev × â field derived after the PLS regression
model of the polymerization activity versus LUMO field

is shown in Figure 4. The observations are very similar
to those reported in our previous work for a different
set of metallocene catalysts. In that work it was
explained what the shape of the LUMO orbital was and
how the different parts of the molecule contribute to the
formation of the orbital. It has also been observed in
the present work that increasing the contribution to the
LUMO from atomic orbitals belonging to atoms of the
aromatic ligands will enhance the catalytic activity. The
light gray areas around some aromatic ligand atoms
observed in Figure 4 are indicative that a contribution
from these atoms to the negative phase of the LUMO
will enhance activity. Those areas correspond precisely
to the location of the negative phase of the LUMO
orbital, as can be seen in Figure 4b. On the other hand,
the dark gray areas are indicative of where an increase
of the LUMO positive phase will be beneficial for the
polymerization activity. These regions are located in the
vicinity of the metal center, which correspond to the
positive phase of the LUMO orbital.

3.4. Local Softness Field. The concept of local
softness has been related with the localization of reac-
tive sites in a molecule where nucleophilic, electrophilic,
or radical attack can take place.20-23 The ethylene
insertion into the metal-alkyl bond of the metallocene
active species is considered as a nucleophilic reaction.
Then, the field of interest should be the nucleophilic
local softness, calculated as described in the computa-
tional methods section.

The PLS regression model obtained with this field
gives a good cross-validated q2 coefficient of 0.489 with
four components and a standard error of prediction of
14.8 × 103 kg PE (mol metallocene × h × [ethylene])-1.
The final regression model with four components gives

Figure 3. Standard deviation times coefficient CoMFA
maps for the electrostatic field. Equatorial view corre-
sponds to the plane containing the metal atom and the
methyl group representing the growing chain. Axial view
corresponds to an axis through the centroid of the aromatic
ligands.

Figure 4. (a) Standard deviation times coefficient CoMFA
maps for the LUMO field. (b) Three-dimensional shape of
the LUMO field. Equatorial view corresponds to the plane
containing the metal atom and the methyl group repre-
senting the growing chain. Axial view corresponds to an
axis through the centroid of the aromatic ligands.
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a correlation coefficient r2 of 0.966 with a standard error
of estimate of 7.7 × 103 kg PE (mol metallocene × h ×
[ethylene])-1 (see Table 2).

The stdev × â field obtained for the final model is
shown in Figure 5. The dark gray area corresponds to
the region where an increase in local softness will
enhance activity. It can be observed that this isosurface
connects the metal-methyl bond with the aromatic
cyclopentadienyl ligand. This is indicative of the impor-
tant contribution of the aromatic ligand to the increase
of the softness of the metal-alkyl bond where the
insertion of the olefin occurs. This observation was also
discussed in our previous work, so that it can be
confirmed with the new training set considered in the
present paper. The sensitivity of the active site to a
nucleophilic ethylene insertion is increased in the case
of indenyl with respect to the Cp ligands, resulting in
higher polymerization activity.

3.5. Combined Field. The models obtained with
different combinations of fields give slightly poorer
results than those obtained with each field alone, as
mentioned above. However an attempt was made to
build a model including all the fields considered in this
work just to give an idea of the relative contribution of
each field to the overall activity data.

When all fields are considered, the resulting model
gives a q2 coefficient of 0.401 with five components and
a standard error of prediction of 25.7 × 103 kg PE (mol
metallocene × h × [ethylene])-1. The final regression
model with five components gives a correlation coef-
ficient r2 of 0.95 with a standard error of estimate of
11.3 × 103 kg PE (mol metallocene × h × [ethylene])-1.
The relative contribution of each field was 23% steric,
17% electrostatic, 25% LUMO, and 35% local softness.
This result shows a slight preponderance of electronic
effects (about 60%) over steric or electrostatic interac-
tions (about 40%) in the olefin insertion process. Figure
6 shows a plot of predicted versus experimental activity
values for this model. As can be seen, a good correlation
is obtained between both sets. It is worthwhile to
mention that there is no catalyst markedly outside of
the diagonal line.

This result shows a comparable importance of the
contributions related to the catalyst structure used to
explain the variance in the ethylene polymerization
activity. The steric and electrostatic field descriptors are

assumed to model mainly the ion-pair interaction
between the catalyst and the cocatalyst. On the other
hand, the LUMO and local softness fields try to model
the electron transfer nature of the ethylene complex-
ation and insertion processes. The global effect is that
electron transfer seems to have more influence that the
catalyst/cocatalyst intermolecular interaction.

3.6. Predictive Performance. In addition to the
ability of the 3D-QSAR models to reveal important
information about structural characteristics of the met-
allocene active species that influence the polymerization
activity, it is possible to use such models to predict the
activity of a different set of metallocene catalysts. A new
compound can be easily tested as long as it is conve-
niently aligned with the training set structures and
their 3D descriptors calculated.

The set of compounds considered in our previous work
was selected as the test set in this case, which is used
to check the predictive performance of the models
derived with the Kaminsky training set. The CoMFA
model used for the predictions was that corresponding
to the LUMO field, which gives the best result in terms
of standard error of prediction and r2 correlation coef-
ficient. Table 3 shows the formulas and experimental
and predicted polymerization activities obtained for the
test set compounds. Those catalysts that were already
considered in the training set were not tabulated. It
should be mentioned that the experimental activities
measured at our laboratory were obtained under condi-
tions different from those reported by Kaminsky. For
this reason, the predicted activity values have been
normalized so that the activity corresponding to the
least active catalyst is unity.

Figure 5. Standard deviation times coefficient CoMFA
maps for the local softness field. Equatorial view corre-
sponds to the plane containing the metal atom and the
methyl group representing the growing chain. Axial view
corresponds to an axis through the centroid of the aromatic
ligands. Figure 6. Experimental vs predicted activity plot. All

values are given in log units.

Table 3. Actual vs Predicted Activities for the
Test Set

catalyst
experimental

activitya
predicted
activityb

[(Me2Si)(H2C)(Cp)2]ZrCl2 4.0 ( 0.9 3.6 (26.5)
[En(Cp)2]ZrCl2 2.0 ( 0.9 1.2 (8.9)
[Me2Si(Cp)2]ZrCl2 1.0 ( 0.9 1.0 (7.4)
a Catalyst activity in kg PE (mol metallocene × h × [ethylene])-1

× 10-3. b Normalized activity. Values predicted by the model in
parentheses in kg PE (mol metallocene × h × [ethylene])-1 × 10-3.

Metallocene Catalyst Activity Organometallics, Vol. 24, No. 21, 2005 5101



An acceptable performance of the predictions can be
observed despite the different polymerization conditions
used in both sets.

4. Conclusions

The present paper is the second contribution to
explore the use of the 3D-QSAR methodologies to
analyze the polymerization activity in terms of struc-
tural descriptors of the metallocene catalyst. The orga-
nometallic nature of the system together with the bond-
breaking and -forming characteristics of the olefin
insertion reaction demands the usage of an adequate
quantum mechanical treatment. The DFT framework
provides the set of descriptors that characterize the
catalyst structure. The hypothesis that the structure of
the catalysts is the main factor that influences the
polymerization activity validates the usage of quantita-
tive structure-activity relationship (QSAR) methodolo-
gies to search those correlations. The localized nature
of the active site where polymerization takes place and
the relative rigidity of the metallocene structures make
these systems suitable for the application of 3D-QSAR
tools. The combination of DFT calculations and 3D-
QSAR statistical tools applied to the study of a metal-
locene catalyst system is to our knowledge innovative
in the scientific literature.

The selection of the methyl cationic active species as
the structural framework responsible for the changes
in polymerization activity seems to be reasonable in
view of the acceptable PLS cross-validated statistics.
However different active species as the â-agostic cationic
ones should be taken into account in future studies. The
models found for the steric and electrostatic fields can
be interpreted in terms of catalyst/cocatalyst ion-pair
interactions. Steric hindrance in specific positions and
charge distribution around the aromatic ligands are
correlated with an increase in activity. This could be
explained by a weakening of the catalyst/cocatalyst
interaction, which results in more room for the ethylene
insertion reaction.

The models formed by electronic-based descriptors
such as LUMO and local softness enhance the influence
on the polymerization activity of the electron density
redistribution at the metal active site due to the
aromatic ligands.

The results obtained in the present work reinforce
those presented in our previous paper. An additional
correlation between experimental activity and electro-
static field is reported here and was absent in our
previous study.14 This could be due to the fact that the
training set used in the first 3D-QSAR study did not
contain any catalyst with substituents on the aromatic
ring. The presence of such substituents is essential to
explain the influence of electrostatic interactions on the
polymerization activity.

The predictive performance of the model was assessed
by the prediction of activities for the set of metallocene
catalysts considered in our previous work.14 The results
were satisfactory despite that the experimental condi-
tions were different in the training and the test sets.

Several issues remain to be investigated in order to
improve the application of 3D-QSAR to the study of
olefin polymerization catalyzed by metallocenes. The
usage of auto- and cross-covariance (ACC)33 transforms
could partially solve the alignment problem. This ar-
rangement of raw data also provides new data that take
into account neighbor effects, i.e., the required continu-
ity between grid nodes. On the other hand, the informa-
tion given by DFT-derived descriptors should be used
as complete as possible. This can be achieved by
employing finer 3D grids with the subsequent increase
in the number of variables entering the PLS analysis.
To handle adequately this problem, it would be neces-
sary to take into account any suitable variable selection
method, such as GOLPE34 (generating optimal linear
PLS estimations).
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