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Summary: A phosphaspiropentene is the plausible ki-
netic product from the addition of dichlorocarbene to a
phosphatriafulvene, which rearranges to a novel P-
substituted triafulvene. The calculated barrier of 18.6
kcal mol~! for this process is consistent with the tem-
perature of —40 °C at which this reaction proceeds.

Introduction

Spiro-connected cycloalkenes exhibit intriguing bond-
ing and electronic properties due to spiroconjugation.!
Although the smallest of these highly strained hydro-
carbons, spiropentene (1)?2 and spiropentadiene (2),?
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have been reported, spirenes with heteroatoms are
extremely rare. Only recently, the thermally stable
spiropentasiladiene 3 was reported. Examples with
other heteroatoms are limited to 1-oxaspiropent-4-enes,
including the parent 4,°> and 1-azaspiropent-1-ene 5,5
but none with a phosphorus atom are known other than
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the 1-aza-2-phosphaspiro[2.2]pentene 6, which may be
a transient in the formation of 1H-2-iminophosphetes.”
In contrast, P-containing spiranes carrying a transition-
metal complex, e.g. the phosphaspiropentane 7,® are
stable, which is highlighted for the extended arrays® by
a phospha[7]triangulane that consists of seven spiro-
connected three-membered rings and has a melting
point above 150 °C.10

Results and Discussion

Can a transition-metal complex likewise stabilize a
P-containing spirene? To explore this, we examine the
chemistry of 1-phosphaspiropent-4-ene. Access to this
compound can be envisioned by addition of dichlorocar-
bene, generated in situ from -BuOK/CHCl3,!! to the
exocyclic P=C bond!2 of the phosphatriafulvene complex
813 (0 °C, pentane). This reaction yielded, instead, the
novel P-substituted triafulvene 10 (95%, colorless crys-
tals) and showed no trace of phosphaspiropentene 9, not
even by 3P NMR monitoring of the reaction at —40 °C
(Scheme 1). Triafulvene 10 has distinctive resonances
at 6(3'P) 110.0 (1J(P,W) = 282.7 Hz) and 6(13C) 86.6
(1J(C,P) = 52.5 Hz), 135.2 (d, 2J(C,P) = 9 Hz), 146.0 (s),
and 147.4 (3J(C,P) = 6.4 Hz).* P—C bond rotation of
the mesityl group is hindered, causing a broad signal
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Notes

Figure 1. Displacement ellipsoid plot of 10 with ellipsoids
drawn at the 50% probability level. Hydrogen atoms and
the pentane solvent molecule are omitted for clarity.
Selected bond lengths (A), bond angles (deg), and torsion
angles (deg): W1—-P1 = 2.4987(7), Cl11-P1 = 2.0920(10),
Cl2—-C1 =1.774(3), P1-C1 = 1.782(3), P1-C5 = 1.837(3),
C1-C2 = 1.331(4), C2—C3 = 1.433(4), C2—C4 = 1.425(4),
C3—-C4 = 1.331(4); C12—C1-P1 = 115.04(15), C2—C3—C4
= 62.0(2), C3—C2—C4 = 55.49(19), C2—C4—C3 = 62.5(2);
C3—-C2—-C1-P1 = —1.4(8).

Scheme 1. Synthesis of Triafulvene 10
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at (3(1H, 293 K) 2.54 for the o-methyl groups that
narrows at higher temperatures. The single-crystal
X-ray structure (Figure 1) shows a shortened P—C1
bond (1.782(3) A) and the cyclopropene ring being nearly
coplanar with the C12—C1—P1 plane with a C3—C2—
C1-P1 torsion angle of —1.4(8)°. Normal C=C bonds
(C1-C2 = 1.331(4) A, C3—C4 = 1.331(4) A) indicate a
diminished 7 delocalization, which is confirmed by the
calculated NICS value of only —21.4, which is consider-
ably less negative than that of cyclopropene (—28.4).

Is phosphaspiropentene 9 an intermediate in the
formation of 10? Such a rearrangement does convert the
phosphirane complex 11 into 12 (Scheme 2), but at the
much higher temperature of 110 °C."» We examine both
processes using theoretical methods.

A large barrier of 71.3 kcal mol~! (B3LYP/6-31G**)
has been reported for converting the parent 11’ into 12
(H for Me, Ph; no W(CO)5) by P—C bond cleavage with
a concurrent Cl shift from C to P,16 which, of course,
does not comply with the experimental observations,!?
nor does the calculated favored H shift that would give
13. Clearly, the transition-metal group has a major
influence, which we substantiate using BP86/6-31G**-
(LANL2DZ) calculations.!”
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Flgure 2. Relative BP86/6-31G** (LANL2DZ for W)
energies (ZPE corrected, in kcal mol™?) for the conversion
of 11 into 12. Selected bond lengths (A) of 11: W1-P1 =
2.539, P1-C1 = 1.877, P1-C2 = 1.909, P1-C3 = 1.834,
Col—Cll = 1.785, Cl—C2 = 1.539. Selected bond lengths
(A) of TSantiCl-shift (TS11 — 12): W1-P1 = 2475, P1—
Cl1 = 3.508, P1-C1 = 1.782, P1-C2 = 2.751, P1-C3 =
1.806, C1— Cl1 = 2. 313, C1-C2 = 1.418. Selected bond
leng‘ths (A) of 12: W1-P1 = 2. 527, P1-CI1 = 2.133, P1—-
C1=1.832, P1-C3 = 1.846, C1— C2 = 1.356.

Adding the singlet phosphinidene PhP=W(CO); to
1-chloro-2-methylpropene gives 11, likely by a barrier-
free non-least-motion trajectory,'® with less exother-
micity (23.0 kcal mol~1) than for the parent ethylene
(35.9 kcal mol™1),!° due to the reduced nucleophilicity
of 1-chloro-2-methylpropene. Converting structure 11 in
a single step to the 20.9 kcal mol~! more stable vinyl-
chlorophosphine 12, in which the chloride anti to the
P—W(CO);5 group migrates to phosphorus, requires a
24.0 kcal mol™! barrier to be overcome (Figure 2).
Converting phosphirane 11 into vinylphosphine 13, by
migrating H instead of Cl, has only a marginal exother-
micity (3.2 kcal mol~!) and a higher barrier (AE* = 39.1
keal mol 1), suggesting this to be a less likely process,
which concurs with the experimental observations. The
barrier for rearranging 11 into 12 is comparable to the
dissociation energy to regenerate PhP=W(CO)s; and
1-chloro-2-methylpropene (23.0 kcal mol 1), which clari-
fies the modest isolated yields for 11 (11%) and 12
(39%).1%

In contrast, the analogous phosphirane 14 does not
rearrange thermally and a Pd(PPhs)s-catalyzed reaction
is needed (85 °C) to afford vinylchlorophosphine 15
(Scheme 3).15 BP86/6-31G**(LANL2DZ) calculations
reveal that converting structure 14 to the 18.6 kcal
mol~! more stable vinylchlorophosphine 15, in which the
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Scheme 3. Rearrangement of Phosphirane 14
Ph_W(CO)s Ph, W(Co)s

C
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chloride anti to the P—W(CO); group migrates to
phosphorus,? is more demanding than the rearrange-
ment of 11 and requires a 31.5 kcal mol~! barrier to be
overcome. This barrier is much higher than the dis-
sociation energy needed to regenerate Ph-P=W(CO);
and 1,1-dichloroethene (23.2 keal mol™1), explaining why
this reaction does not proceed thermally.

Extending the calculations to the addition of CCly to
phosphatriafulvene 8" (H for t{Bu, Ph for mesityl; labeled
") indicates a large exothermicity (52.3 kcal mol~1) for
the formation of phosphaspiropentene 9. We note that
the addition of PhP=W(CO); to 3,3-dichlorotriafulvene,
which would also give 9", is less exothermic (22.9 kcal
mol~1), because metal complexation reduces the reactiv-
ity of phosphinidenes.2! Without the W(CO)s group,
1PPh (A;) adds to 3,3-dichlorotriafulvene with a reaction
energy of —71.7 kcal mol 1.

The single-step conversion of the W(CO)s-complexed
phosphaspiropentene 9" into chlorophosphine 10" oc-
curs more easily (AE* = 18.6 kcal mol™!, AE = —24.7
kcal mol~!; Figure 3)?2 than the analogous 14 — 15
rearrangement (AE* = 31.5 kcal mol™1), and is favored
by 4.6 kcal mol~! over the dissociation into PhP=W(CO)5
and 3,3-dichlorotriafulvene. The higher reactivity of 9"
compared to that of 11 can be rationalized by the
destabilization of the phospirene ring upon spiro fusion.
Both the phosphorus?® and the electron-withdrawing
chloro substituents activate phosphirene 14 (NICS =
—34.8) compared to the parent cyclopropene?* (NICS =
—42.8); additional spiro fusion in 9" further reduces the
o aromaticity (NICS = —26.9). This effect is also
reflected by the elongated distal and proximal P—C
bonds® (P1-C1 = 1.927 A, P1-C2 = 1.866 A) as
compared to the correspondlng bond lengths of 14 (P1—
C1 = 1.897 A, P1-C2 = 1.847 A) and phosphaspiro-
pentane 78 (experimental: P1-C1 = 1.855 A, P1-C2
=1.794 A).

Conclusions

Phosphaspiropentene 9 is the plausible kinetic prod-
uct that results from addition of dichlorocarbene to
phosphatriafulvene 8. The calculated barrier of 18.6 kcal
mol~! for rearrangement to the more stable P-substi-
tuted triafulvene 10 is consistent with the temperature
of —40 °C at which the reaction proceeds. Currently, we
are testing other carbenes to obtain the, as yet, elusive
phosphaspiropentenes.
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Notes

Flgure 3. Relative BP86/6-31G** (LANL2DZ for W)
energies (ZPE corrected, in kcal mol~?) for the conversion
of 9" into 10". Selected bond lengths (A) of 9": W1-P1 =
2.520, P1-C1 = 1.927, P1-C2 = 1.866, P1-C5 = 1.834,
C1-Cl1 = 1.789, C1-Cl12 = 1.791, C1-C2 = 1.498, C2—
C3=1.489, C2— Ca=1. 491, C3— C4 = 1.312. Selected bond
lengths (A) of TS9"-10": W1—P1 = 2.497, P1-Cl1 = 3.525,
P1-C1=1.810,P1-C2 = 2.536, P1— C5 = 1.826, C1— 11
= 2.239, Cl—Cl2 =1.783, Cl—C2 =1.416, C2—C3 =1.426,
C2—C4 = 1.420, C3—C4 = 1.344. Selected bond lengths (A)
of 10": W1-P1=2.517, P1-Cl1 = 2.141, P1-C1 = 1.814,
P1-C5=1.854,C1— Cl2—1771 Cil- C2—1350 C2—-C3
= 1.442, C2-C4 = 1.438, C3—-C4 = 1.335.

Experimental Section

Computations. All density functional theory calculations
(BP86) were performed with the Gaussian98 suite of pro-
grams,'” using the LANL2DZ basis and pseudopotentials for
tungsten and the 6-31G** basis for all other atoms. The
natures of all transition structures were confirmed with
frequency calculations. Intrinsic reaction coordinate (IRC)
calculations were performed to ascertain the connection be-
tween reactant and product. The nucleus independent chemi-
cal shift? (NICS) values were calculated at the B3LYP/6-
311G+(2p,d) level, leaving out the substituents.

General Considerations. NMR spectra were recorded on
Bruker Advance 250 (*'P; 85% H3PO,) and MSL 400 instru-
ments (*H, 3C) and referenced internally to residual solvent
resonances ('H, 6 7.25 ppm (CDCl;); BC{'H}, 77.0 ppm
(CDCly)). The IR spectrum was recorded on a Mattson-6030
Galaxy FT-IR spectrophotometer, and the high-resolution
mass spectrum (HR-MS) was performed on a Finnigan Mat
900 mass spectrometer operating at an ionization potential of
70 eV. The melting point of 10 was measured on a sample in
an unsealed capillary and is uncorrected.

Synthesis of 10. CHCI; (56 uL, 0.7 mmol) was added under
nitrogen at 0 °C to a solution of 83 (87 mg, 0.14 mmol) and
t-BuOK (79 mg, 0.7 mmol) in dry pentane (3 mL). After
additional stirring for 30 min at 0 °C and another 30 min at
room temperature, the reaction mixture was filtered and
concentrated and 10 could be obtained as colorless crystals in
95% yield (104 mg; =10-(pentane)) after crystallization at —
20 °C. Characterization data for 10: mp 100 °C dec; 3'P{'H}
NMR (101.3 MHz, CDCls, 293 K) ¢ 110.0 (1J(P,W) = 282.7 Hz);
BBC{H} NMR (100.6 MHz, CDCl;, 328 K) 6 20.5 (s; p-CHs-
ArP), 24.5 (d, 3J(C,P) = 5.4 Hz; 0-CH3-ArP), 28.4 (s; C(CHjs)s),
29.6 (s; C(CHs)s), 32.3 (s; C(CHjs)s), 32.4 (d, “J(C,P) = 0.8 Hz;
C(CHs)3), 86.6 (d, J(C,P) = 52.5 Hz; =CCl), 131.4 (d, 3J(C,P)
= 7.3 Hz; m-ArP), 135.2 (d, 2J(C,P) = 9 Hz; o-ArP), 135.2 (d,
2J(C,P) = 9 Hz; C=CCl), 135.7 (d, 'J(C,P) = 26.8 Hz; ipso-
ArP), 139.9 (d, 4J(C,P) = 1.5 Hz; p-ArP), 146.0 (s; =CC(CHs)s3),
147.4 (d, 3J(C,P) = 6.4 Hz; =CC(CHjs)3), 196.8 (d, 2J(C,P) =
7.3 Hz, 1J(C,W) = 127.2 Hz; cis-CO), 200.3 (d, %J(C,P) = 31.1
Hz, 1J(C,W) = 141.6 Hz; trans-CO); 'H NMR (400.1 MHz,
CDCls, 328 K) 6 0.86 (s, 9H; C(CHj)s), 1.40 (s, 9H; C(CHj)s),
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2.25 (s, 3H; p-CHs-ArP), 2.54 (br s, 6H; o-CH3-ArP), 6.84 (d,
4J(H,P) = 4.2 Hz, 2H; m-ArP); IR (KBr) v 1939 (s/br, CO,y),
2074 cm™! (w, CO.y); MS (EI, 70 eV) m/z (%) 706 (0.5) [M]*,
671 (0.5) [M — Cl]*, 566 (10) [M — 5CO]*; HR-MS m/z caled
for [M — 5CO]* 566.0893, found 566.0900.

Crystal Structure Determination of Compound 10.
Crystal data: CgsHg9CloOsPW-0.5C5H s, fw 743.28, colorless
needle, 0.42 x 0.24 x 0.06 mm?; monoclinic crystal system,
space group C2/c (No. 15); cell parameters a = 19.0406(2) A,
b = 18.9032(2) A, ¢ = 19.5695(2) A, = 117.0955(5)°, V =
6270.57(11) A3. Z = 8, p = 1.575 glem?®. A total of 71511
reflections were measured up to ((sin 8)/A) = 0.65 A-1on a
Nonius KappaCCD instrument with rotating anode (graphite
monochromator, Mo Ka, A = 0.710 73 A) at a temperature of
150 K. An analytical absorption correction was applied (¢ =
3.94 mm™!, 0.27—0.72 correction range). There were 7212
unique reflections (Riy; = 0.049). The structure was solved with
automated Patterson methods with the program DIRDIF992%6
and refined with the program SHELXL97%7 against F? of all
reflections. Non-hydrogen atoms were refined freely with

(26) Beurskens, P. T.; Admiraal, G.; Beurskens, G.; Bosman, W. P;
Garcia-Granda, S.; Gould, R. O.; Smits, J. M. M.; Smykalla, C. The
DIRDIF99 Program System; Technical Report of the Crystallography
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anisotropic displacement parameters. All hydrogen atoms were
located in the difference Fourier map and were refined as rigid
groups. The pentane solvent molecule is located on a 2-fold
axis in the unit cell. There were 348 refined parameters, with
20 restraints. R (I > 20(I)): R1 = 0.0237, wR2 = 0.0545. R
(all reflections): R1 = 0.0321, wR2 = 0.0586. GOF = 1.0(25.
The residual electron density was between —1.52 and 0.94 e/A3.
The drawings, geometry calculations, and checks for higher
symmetry were performed with the program PLATON.28
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