An η^2 -Aryl–Metal Interaction Turns a Chiral Monodentate Phosphoramidite into a Chelating Ligand in (S_a, S_{Ru}, R_C, R_C) -[RuCl $(\eta^6$ -p-cymene) $(O,O'-(1,1'-dinaphthyl-2,2'-diyl)-N-(1-(1,2-\eta-1-naphthyl)ethyl) N-(1-(1-naphthyl)ethyl)phosphoramidite-\kappa P)$]PF₆

Dominik Huber, P. G. Anil Kumar, Paul S. Pregosin, and Antonio Mezzetti*

Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology, ETH Hönggerberg, CH-8093 Zürich, Switzerland

Received August 8, 2005

Summary: Chloride abstraction from the half-sandwich complex $[RuCl_2(\eta^6-p-cymene)(1-\kappa P)]$ (2; $1 = (S_a, R_C, R_C)$ -O,O'-(1,1'-dinaphthyl-2,2'-diyl)-N,N-bis(1-(1-naphthyl)ethyl)phosphoramidite) with $TlPF_6$ or $(Et_3O)PF_6$ gives the cationic, 18-electron complex (S_a, S_{Ru}, R_C, R_C) -[RuCl-(n⁶-p-cymene)(O,O'-(1,1'-dinaphthyl-2,2'-diyl)-N-(1-(1,2- η -1-naphthyl)ethyl)-N-(1-(1-naphthyl)ethyl)phosphoramidite- κP]PF₆, (S_a, S_{Ru}, R_C, R_C)-3, which features the η^2 -coordination of a naphthyl substituent of the phosphoramidite ligand, as indicated by ¹H, ¹³C, and ³¹P NMR spectroscopy and by X-ray studies. Complex (S_a, S_{Rw}, R_C, R_C) -3 catalyzes the asymmetric cyclopropanation of styrene and α -methylstyrene with ethyl diazoacetate, giving good enantioselectivities for the latter olefin (up to 86% and 87% ee for the cis- and the transcyclopropane, respectively) when formed in situ in the presence of an excess of 1 to suppress ligand dissociation.

Monodentate chiral phosphoramidite ligands¹ have found increasing application in asymmetric catalytic reactions such as C-C bond formation^{1,2} and hydrogenation.³ In some cases, the success of these ligands has been tentatively explained with their supposed ability to stabilize coordinatively unsaturated metal complexes in low oxidation state.^{2a} However, there is no experimental evidence supporting this assumption. As recently reported from our laboratory,⁴ [RuCl₂(η^6 -pcymene)($1 - \kappa P$)] (2), prepared by reacting [RuCl₂(η^6 -pcymene)]₂ with $(S_a, R_C, R_C) - O, O' - (1, 1' - dinaphthyl - 2, 2' - 2')$ divl)-N,N-bis(1-(1-naphthyl)ethyl)phosphoramidite⁵ (1) (Scheme 1), reacts with a chloride scavenger (TlPF₆ or $(Et_{3}O)PF_{6},\ 1.1\ equiv)$ to give a hitherto unidentified species, 3. Complex 3 catalyzes the cyclopropanation of styrene and α -methylstyrene with ethyl diazoacetate

(3) (a) Blaser, H. U.; Malan, C.; Pugin, B.; Spindler, F.; Steiner, H.; Studer, M. Adv. Synth. Catal. 2003, 345, 103. (b) Jerphagnon, T.; Renaud, J. L.; Bruneau, C. Tetrahedron: Asymmetry 2004, 15, 2101. (4) Huber, D.; Mezzetti, A Tetrahedron: Asymmetry 2004, 15, 2193.

(5) Arnold, L. A.; Imbos, R.; Mandoli, A.; de Vries, A. H. M.; Naasz, R.; Feringa, B. L. *Tetrahedron* **2000**, *56*, 2865.

with up to 86% and 87% ee for the cis- and the transcyclopropane, respectively (Scheme 2).⁴ We report here the characterization of 3 as the cationic, 18-electron complex $(S_a, S_{R\mu}, R_C, R_C)$ -[RuCl $(\eta^6$ -p-cymene)(O, O'-(1, 1'dinaphthyl-2,2'-diyl)-N-(1-(1,2-η-1-naphthyl)ethyl)-N-(1- $(1-naphthyl)ethyl)phosphoramidite-\kappa P)]PF_6, (S_a, S_{Ru}, R_C,$ R_{C})-3, which features the η^{2} -coordination of one naphthyl group of the phosphoramidite ligand. Complex (S_a, S_{Ru}, R_C, R_C) -3 was prepared as shown in Scheme 3 and fully characterized, including multinuclear NMR and X-ray studies.

Complex (S_a, S_{Ru}, R_C, R_C) -3 shows a broadened singlet at δ 168.0 in the ³¹P NMR spectrum, is stable in solution for (at least) 3 days and in the solid state for (at least) 7 weeks, and analyzes as [RuCl(p-cymene)(1)]PF₆,⁶ which would imply a 16-electron count. However, fivecoordinate, 16-electron ruthenium(II) complexes of the type $[RuX(Cp^*)(P^iPr_2Ph)]$ (X = Cl, Br, I) are usually

^{*} Corresponding author. Phone: +41 44 632 61 21. Fax: +41 44 632 13 10. E-mail: mezzetti@inorg.chem.ethz.ch.

⁽¹⁾ Feringa, B. L. Acc. Chem. Res. 2000, 33, 346.

⁽²⁾ Selected examples: (a) Park, H.; Kumareswaran, R.; RajanBabu, (2) Selected examples: (a) Fark, H.; Kumareswaran, K.; KajanBaou,
 T. V. Tetrahedron 2005, 61, 6352. (b) Boing, C.; Franciò, G.; Leitner,
 W. Chem. Commun. 2005, 1456. (c) Bartels, B.; Garcia-Yebra, C.;
 Helmchen, G. Eur. J. Org. Chem. 2003, 1097. (d) Zhou, H.; Wang, W.
 H.; Fu, Y.; Xie, J. H.; Shi, W. J.; Wang, L. X.; Zhou, Q. L. J. Org. Chem. 2003, 68, 1582. (e) Franciò, G.; Faraone, F.; Leitner, W. J. Am. Chem. Soc. 2002, 124, 736.

dark blue or violet in color, whereas their 18-electron adducts [RuX(Cp*)(CO)(PⁱPr₂Ph)] are orange-yellow.⁷ Molecular volume data obtained by NMR spectroscopy (PGSE diffusion measurements)⁸ ruled out the binuclear formulation [Ru(μ -Cl)(p-cymene)(1)]₂. Eventually, a combination of multinuclear 2D NMR measurements indicated that **3** is a mononuclear six-coordinate complex in which the coordination sphere of ruthenium is saturated by means of an η^2 -interaction with the naphthyl ring of one of the CH(Me)(1-Np) groups.

The line widths for several proton resonances in the aromatic region of the room-temperature ¹H and ¹³C NMR spectra of **3** indicated a dynamic behavior on the NMR time scale. Upon cooling to -20 °C, the signals sharpened sufficiently to measure both one-bond and long-range ¹³C-¹H correlations, which revealed the ¹³C NMR signals of C(1) and C(2) of one of the diastereotopic naphthyl rings at δ 100.9 and 96.8, respectively.⁹ The low-frequency shifts of these signals (the coordination chemical shifts $\Delta\delta$ are 44.5 and 31.4 ppm for C(1) and C(2), respectively) indicate that one of the diastereotopic naphthyl rings is bonded to ruthenium in an η^2 -fashion.¹⁰ The second, noncomplexed naphthyl ring reveals carbon chemical shifts in the normal aromatic region.

It should be noted that the pseudotetrahedral ruthenium atom of **3** is stereogenic, whereas this is not the case in **2**. The ³¹P, ¹H, and ¹³C NMR spectra indicated that **3** is formed as a single diastereomer. Molecular modeling calculations indicated that, with ligand $(S_a, R_ _C, R_C)$ -**1**, the *S* configuration¹¹ at ruthenium is preferred over the *R* isomer by 8.5 kcal/mol (Figure 1),¹² and an X-ray study confirmed the accuracy of the MM prediction.

After several attempts to crystallize enantiomerically pure **3**, suitable crystals were obtained with the racemic

(7) Johnson, T. J.; Folting, K.; Streib, W. E.; Martin, J. D.; Huffman, J. C.; Jackson, S. A.; Eisenstein, O.; Caulton, K. G. *Inorg. Chem.* **1995**, *34*, 488.

(8) (a) Valentini, M.; Rüegger, H.; Pregosin, P. S. Helv. Chim. Acta
2001, 84, 2833. (b) Binotti, B.; Macchioni, A.; Zuccaccia, C.; Zuccaccia, D. Comments Inorg. Chem. 2002, 23, 417. (c) Pregosin, P. S.; Martinez-Viviente, E.; Kumar, P. G. A. Dalton 2003, 4007. (d) Kumar, P. G. A.; Pregosin, P. S.; Vallet, M.; Bernardinelli, G.; Jazzar, R. F.; Viton, F.; Kündig, E. P. Organometallics 2004, 23, 5410. (e) Kumar, P. G. A.; Pregosin, P. S.; Schmid, T. M.; Consiglio, G. Magn. Reson. Chem. 2004, 42, 795. (f) Kumar, P. G. A.; Pregosin, P. S.; Goixoenetallics 2003, 22, 2956. (g) Martinez-Viviente, E.; Pregosin, P. S. Inorg. Chem. 2003, 42, 2209.

(9) The signal of C(1) was attributed on the basis of the three-bond interactions to H(3) and H(5), respectively. Analogously, protons H(4) and H(6) correlate to C(2) (δ 96.8). Relevant ¹³C NMR signals are C(1), 100.9; C(2), 96.8; C(3), 131.8; C(4), 132.6; C(5) and C(6) are not resolved in the region 128–132 ppm. (10) Mann, B. E.; Taylor, B. F. ¹³C NMR Data for Organometallic

(10) Mann, B. E.; Taylor, B. F. ¹³C NMR Data for Organometallic Compounds; Academic Press: London, 1981.

(11) Stanley, K.; Baird, M. C. J. Am. Chem. Soc. 1975, 97, 6598.
(12) The ruthenium-naphthyl η²-interaction was modeled as a metal-olefin bond wih the Cerius² program by using standard Universal Force Field (UFF) settings: (a) Rappé, A. K.; Casewit, C. J.; Colwell, K. S.; Goddard, W. A., III; Skiff, W. M. J. Am. Chem. Soc. 1992, 114, 10024. (b) Rappé, A. K.; Colwell, K. S.; Casewit, C. J. Inorg. Chem. 1993, 32, 3438.

Figure 1. Energy-minimized MM structures (Cerius²) of (S_a, S_{Ru}, R_C, R_C) -**3** and (R_a, R_{Ru}, S_C, S_C) -**3**.

Figure 2. ORTEP drawing of (S_a, S_{Ru}, R_C, R_C) -3 (50% probability ellipsoids). Selected bond distances (Å) and angles (deg): Ru(1)-Cl(1), 2.3926(6); Ru(1)-P(1), 2.2783(5); Ru(1)-C(1), 2.379(2); Ru(1)-C(2), 2.386(2); Ru(1)-C(46), 2.258-(2); Ru(1)-C(47), 2.216(2); Ru(1)-C(48), 2.208(2); Ru(1)-C(49), 2.306(2); Ru(1)-C(54), 2.221(2); Ru(1)-C(53), 2.298(2); Cl(1)-Ru-P(1), 81.07(2); Cl(1)-Ru-C(2), 84.04(6); Cl(1)-Ru(1)-C(48), 91.47(7); P(1)-Ru-C(1), 72.05(5); P(1)-Ru(1)-C(47), 90.82(6); C(2)-Ru(1)-C(53), 85.14(8).

complex (rac)-3, obtained by mixing (S_a, R_C, R_C) -1 and (R_a, S_C, S_C) -1 in 1:1 ratio.¹³ The crystal is made up of pairs of discrete cations (S_a, S_{Ru}, R_C, R_C) -3 and (R_a, R_{Ru}, R_C) -3 and (R_a, R_Ru) -3 a S_C, S_C)-3 (related by an inversion center) and of $[PF_6]^$ anions with normal nonbonded distances. Figure 2 depicts the structure of (S_a, S_{Ru}, R_C, R_C) -3. Besides the chloro ligand and the P atom of 1, the ruthenium is coordinated in a η^6 -fashion to *p*-cymene and in a η^2 -fashion to a naphthyl group of one amine moiety of the phosphoramidite to give an 18-electron complex. The η^2 -coordination of the aromatic C–C bond is supported by the Ru-C(1) and Ru-C(2) distances of 2.379(2) and 2.386(2) Å, respectively, and by the fact that the C(1)-C(2) distance of 1.407(3) Å is longer than the corresponding separation in the noncoordinated naphthyl (C(15)-C(16), 1.375(3) Å), which indicates significant back-bonding from ruthenium. The C(1) carbon atom is pyramidalized to some extent, as indicated by the sum of the C(2)-C(10), C(2)-C(1)-C(11), and C(10)-C(1)-C(2) angles of 353.6°, as a consequence of the Ru– η^2 aryl bond and of the nonbonded interactions between the naphthyl ring and the *p*-cymene ligand.

⁽⁶⁾ Synthesis of **3**: [RuCl₂(η^6 -*p*-cymene)]₂ (65 mg, 0.107 mmol) and 1^5 (150 mg, 0.234 mmol, 1.1 equiv) were dissolved in dry CH₂Cl₂ (12 mL) under an Ar atmosphere. After stirring at 23 °C for 1 h, TIPF₆ (78 mg, 0.224 mmol, 1.05 equiv) was added and the resulting solution was stirred at 23 °C for 21 h. Then, TICl was filtered off, 2-propanol (18 mL) was added, and CH₂Cl₂ was evaporated. The precipitate was filtered off and dried in a vacuum to give **3** as a red solid. Yield: 201 mg (89%). [α]²⁰_D: +381 (*c* 0.125, CHCl₃). ³¹P NMR (202.5 MHz, CD₂-Cl₂): δ 168.0 (s). MS (ESI): 910.1 ([**3**]⁺, 100). Anal. Calcd for C₅₄H₄₈-ClF₆NO₂P₂Ru: C, 61.45; H, 4.58; N, 1.33. Found: C, 61.31; H, 4.66; N, 1.35.

⁽¹³⁾ X-ray study of **3**: chemical formula: C_{55.5}H₄₈Cl₄F₆NO₂P₂Ru, *a* = 13.3040(8) Å, *b* = 13.7074(8) Å, *c* = 15.1350(9) Å, *α* = 98.822(1)°, *β* = 96.636(1)°, *γ* = 11.659(1)°, *V* = 2489.9(3) Å³, triclinic, $P\overline{1}, Z = 2, \omega$ -scans, T = 201 K, refinement on F^2 (SHELXTL-97), $R_1 = 0.0405$ for 11 071 $F_0 > 4 \sigma(F_0)$ and 0.0447 for all 12 262 data (715 parameters), $wR_2 = 0.1112$.

run 10

 2^{c}

3

4

5

48

73

19

46

73

19

	Table	e 1. Catalyti	c Cyclopropa	nation ^a			
	R Ph R = H, Me	N ₂ CHCO ₂ Et 2 (5 mol%) (Et ₃ O)PF ₆ (1.1 equiv)	R ^{,,,} Ph _{cis} CO ₂ Et +	Ph, R trans CO ₂ Et			
					ee	ee (%) ^b	
catalyst	R	conv (%)	yield (%)	cis:trans	cis (1R,2S)	trans(1R,2R)	
(S_a, S_{Ru}, R_C, R_C) -3 (in situ)	Н	6	5	45:55	77	68	
(S_a, S_{Ru}, R_C, R_C) -3 (in situ)	Me	20	19	56:44	86	87	

20

17

12

Me

Me

Me

^a Reaction conditions: ethyl diazoacetate (0.48 mmol, 1 equiv vs olefin) in CH₂Cl₂ (1 mL) was added over 6 h to a CH₂Cl₂ solution of the olefin (0.48 mmol) and the catalyst (24 µmol, 5 mol %, prepared in situ). The total reaction time was 20 h at 23 °C. Each experiment was reproduced at least once. ^b Determined by chiral GC analysis, see Supporting Information. ^c From ref 4.

14

13

61:39

59:41

61:39

To the best of our knowledge, this is the first welldocumented η^2 -coordination of the arylamine moiety of a phosphoramidite ligand, although such bonding has been predicted by calculation in a study on nickelcatalyzed hydrovinylation.¹⁴ Our results may help explain the remarkable influence of the secondary amine appendage observed in the same reaction.¹⁵ In contrast with other η^2 -interactions in ruthenium complexes reported so far,¹⁶ the bonding in **3** involves a "dangling" aryl group and not the chelate ring of a diphosphine. An analogous interaction involving a binaphthyl group has been claimed for cationic palladium(II) MOP¹⁷ complexes,¹⁸ but it is still controversial as to whether the coordination mode is η^2 or $\eta^{1.19}$ On similar lines, the cyclometalation of the phosphoramidite at the phenethyl methyl group has been observed in iridium(I) complexes,²⁰ which offers an alternative possibility of turning a "monodentate" phosphoramidite into a chelating ligand.

 (S_a, S_{Ru}, R_C, R_C) -3 (isolated)

3 (isolated) + 1

 $2 + 2 (Et_3O)PF_6$

As reported previously, 3 cyclopropanates styrene and α -methylstyrene with high enantioselectivity (Table 1, runs 1, 2) when prepared in situ from $[RuCl_2(\eta^6-p$ cymene)]₂, ligand 1, and (Et₃O)PF₆ (1 equiv).²¹ Surprisingly, isolated 3 gives lower enantioselectivity with α -methylstyrene (48 and 46% ee for the *cis* and *trans* isomers, respectively) (run 3) than the catalyst formed in situ (run 2). This may be related to an equilibrium involving dissociation of ligand 1 from complex 3 in

(16) (a) den Reijer, C. J.; Dotta, P.; Pregosin, P. S.; Albinati, A. Can. J. Chem. 2001, 79, 693. (b) Cyr, P. W.; Rettig, S. J., Patrick, B. O.; James, B. R. Organometallics 2002, 21, 4672. (c) Doherty, S.; Knight, J.; Rath, R. K.; Clegg, W.; Harrington, R. W.; Newman, C. R.; Campbell, R.; Amin, H. Organometallics 2005, 24, 2633.

 (17) Hayashi, T. Acc. Chem. Res. 2000, 33, 354.
 (18) Kocovsky, P.; Vyskocil, S.; Cisarova, I.; Sejbal, J.; Tislerova, I.; Smrcina, M.; Lloyd-Jones, G. C.; Stephen, S. C.; Butts, C. P.; Murray, M.; Langer, V. J. Am. Chem. Soc. **1999**, *121*, 7714.

(19) Kumar, P. G. A.; Dotta, P.; Hermatschweiler, R.; Pregosin, P. S.; Albinati, A.; Rizzato, S. *Organometallics* **2005**, *24*, 1306.

(20) (a) Kiener, C. A.; Shu, C.; Incarvito, C.; Hartwig, J. F. J. Am. Chem. Soc. **2003**, 125, 14272. (b) Welter, C.; Dahnz, A.; Brunner, B.; Streiff, S.; Dubon, P.; Helmchen, G. Org. Lett. 2005, 7, 1239. (c) Streiff, S.; Welter, C.; Schelwies, M.; Lipowsky, G.; Miller, N.; Helmchen, G. Chem. Commun. 2005, 2957.

solution. Accordingly, the addition of 1 equiv of 1 to the isolated complex 3 partially restores the enantioselectivity (73% ee for both isomers, run 4). Previous experiments show that only one P* ligand coordinates to ruthenium even in the presence of an excess of 1.4Further, indirect evidence of the involvement of 3 in the catalytic cyclopropanation is the observation that double chloride abstraction from 2 decreases both the yield and the enantioselectivity (run 5).

Summarizing, the usually monodentate phosphoramidite 1 can assume a bidentate coordination $(1,2-\eta-\kappa P)$ mode in the presence of a 16-electron fragment. In the present case, the hapticity change is triggered by chloride abstraction from 2. Albeit an 18electron complex, 3 is catalytically active in asymmetric cyclopropanation, which suggests a hemilabile behavior of the $1, 2-\eta - \kappa P$ -coordinated phosphoramidite. Preliminary results with the bis(phenethyl)amine derivative of 1 indicate an analogous coordination and catalytic behavior, which points to a general ability of Feringatype phosphoramidites to act as four-electron donors toward coordinatively unsaturated metals. This finding should be useful in the tailoring of catalytically active complexes containing "monodentate" P-donor ligands.

Acknowledgment. We thank Sebastian Gischig for the X-ray structure determination of **3** and the Swiss National Science Foundation for financial support to D.H. (grant 200020-101357).

Supporting Information Available: CIF file of the X-ray study of 3 and details of syntheses and catalytic reactions. This material is available free of charge at http://pubs.acs.org.

OM050686+

⁽¹⁴⁾ Hölscher, M.; Franciò, G.; Leitner, W. Organometallics 2004, 23, 5606.

⁽¹⁵⁾ Kumareswaran, R.; Nandi, M.; RajanBabu, T. V. Org. Lett. 2003, 5, 4345.

⁽²¹⁾ Catalyst preparation: $[RuCl_2(\eta^6-p-cymene)]_2$ (7.3 mg, 12 μ mol), 1 (30.7 mg, 48 μ mol), and (Et₃O)F6 (6.6 mg, 26 μ mol), 1.1 equiv) were dissolved in CH₂Cl₂ (1 mL) and stirred at 23 °C for 17 h. TlCl was filtered off with a syringe filter. Standard catalytic run: The internal standard and the olefin (0.48 mmol) were added to the solution of the catalyst (24 $\mu mol,$ 5 mol %). Ethyl diazoacetate (50.5 $\mu L,$ 0.48 mmol, 1 equiv vs olefin) in CH₂Cl₂ (1 mL) was added over 6 h by syringe pump. The solution, which was protected from light, was stirred for an additional 14 h at 23 °C and then analyzed by GC. The total reaction time was 20 h at 23 °C. Each experiment was at least reproduced once. A control reaction without the catalyst indicated that there is no formation of the cyclopropane derivatives under the conditions used.