New Group 4 Organometallic and Imido Compounds of Diamide-Diamine and Related Dianionic O2N2-Donor Ligands

Michael E. G. Skinner, Thierry Toupance, David A. Cowhig, Ben R. Tyrrell, and Philip Mountford*

Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.

Received July 27, 2005

New group 4 compounds supported by the tetradentate diamide-diamine ligand N_2NN' are reported $(N_2NN' = (2-C_5H_4N)CH_2N(CH_2CH_2NSiMe_3)_2$ along with some comparative studies with the new bis(alkoxide)-diamine ligand O_2NN' ($O_2NN' = (2-C_5H_4N)CH_2N(CH_2 \text{CMe}_2\text{O}_2$). Reaction of the previously described $\text{ZrCl}_2(N_2NN')$ (1) with 2 equiv of MeLi or PhCH₂MgCl gave $\text{ZrR}_2(N_2NN')$ (R = Me (2) or CH₂Ph (3)). Reaction of 1 with 1 equiv of RCH₂MgCl gave the monoalkyl analogues $ZrCl(R)(N_2NN')$ ($R = CH_2Ph (6)$ or $CH_2SiMe₃ (7)$). Reaction of $\rm Zr(CH_2R)_4$ (R = SiMe₃ or CMe₃) with $\rm H_2N_2NN'$ in $\rm C_6D_6$ gave the corresponding $Zr(CH_2R)_2(N_2NN')$, but these decomposed over several hours. Reaction of 1 with allylmagnesium chloride gave $ZrCl{(2-NC_5(6-C_3H_5)H_4)CH_2N(CH_2CH_2NSiMe_3)_2}$, in which the pyridyl group has undergone nucleophilic attack. Reaction of **2** with BAr_s^s ($Ar_s = C_6F_5$) in benzene
led to the cyclometalated cation [Zr{(2-NC₅H))CH₀N(CH₀CH₀NSiMe₀)(CH₀CH₀NSiMe₀CH₀– led to the cyclometalated cation $[\rm Zr{(2-NC_5H_4)CH_2N(CH_2CH_2NSiMe_3)(CH_2CH_2NSiMe_2CH_2-$)}]⁺ via SiMe₃ group C-H activation, but in the presence of THF the methyl cation [ZrMe- $(THF)(N_2NN')^+$ was formed. Reaction of **6** with BAT^F_3 gave the chloride cation $[ZrCl(N_2+1)]^+$ NN ^{\pm}]⁺. Reaction of Li₂N₂NN' with Ti(NR)Cl₂(py)₃ gave the five-coordinate imides Ti(NR)(N₂NN') $(R = H$ u or Ar (15), Ar $= 2.6$ -C₆H₃ⁱPr₂). Zirconium imides Zr(NAr)(N₂NN') and Zr(N^tBu)-
(py)(N₀NN') (18) were prepared by sequential reaction of 1 with LiCH₀SiMe₂ (2 equiv) and (py)(N_2NN') (18) were prepared by sequential reaction of 1 with $LiCH_2SiMe₃$ (2 equiv) and the appropriate amine and pyridine for the latter. Reaction of **1** with LiNHt Bu (2 equiv) gave $Zr(NH^tBu)₂(N₂NN')$. Reaction of 18 with piperidine gave $Zr(NH^tBu)(NC₅H₁₀)(N₂NN')$ (**19**) via N-H bond activation. For comparative purposes the group 5 imides $M(N^tBu)Cl - (N_0MV)$ ($M = Nh$ (**20**) or $Ta(21)$) were prepared from Li_0N_0MV and the corresponding $M(N^t$ (N_2NN') ($M = Nb$ (20) or Ta (21)) were prepared from Li_2N_2NN' and the corresponding $M(N^t)$
Bu)Cl₂(py)₂, Reaction of 2-aminomethylpyridine with an excess of isobutylene oxide afforded $Bu)Cl₃(py)₂$. Reaction of 2-aminomethylpyridine with an excess of isobutylene oxide afforded H_2O_2NN' (22). Reaction of H_2O_2NN' (1 or 2 equiv) with $Ti(NMe₂)₄$ gave $Ti(O_2NN')₂$, which reacted with $\text{TiCl}_4(\text{THF})_2$ to form $\text{TiCl}_2(\text{O}_2\text{NN}')$. Reaction of $\text{H}_2\text{O}_2\text{NN}'$ with $\text{Zr}(\text{CH}_2\text{SiMe}_3)_2$ - $\text{Cl}_2(\text{Et}_2\text{O})_2$, $\text{Zr}(\text{NMe}_2)_4$, or $\text{Zr}(\text{CH}_2\text{SiMe}_3)_4$ gave $\text{Zr}(\text{X}_2\text{O}_2\text{NN}')$ (X = Cl, NMe₂, or CH₂SiMe₃ (27)). Reaction of 27 with $\text{Bar}_{3}^{\text{F}}$ in the presence of THF formed $[\text{Zr}(\text{CH}_2\text{SiMe}_3)(\text{THF})(\text{O}_2\text{NN}')]^+,$ but in the absence of a Lewis base the μ -alkoxide-bridged dimer $[Zr_2(CH_2SiMe_3)_2(O_2NN')_2]^{2+}$ was formed. The compounds **3**, **6**, **15**, **19**, **21**, **22**, and **27** were crystallographically characterized.

Introduction

The development of polydentate ligand frameworks containing anionic nitrogen or oxygen donors has accompanied many of the advances in early transition metal organometallic and related chemistry over the past ca. 15 years.¹⁻⁹ The success of these supporting ligands can be attributed to the hard nature of the N and O donor atoms, the diversity and relative ease of manipulation of ligand topology (macrocylic or podand/ open-chain), chirality, and coordination number, as well as the "tunability" of the associated steric factors. Many of the developments in the area have been in the context of Ziegler-Natta olefin polymerization^{2,6,7} and the stoichiometric and catalytic activation and transformation of small organic molecules.^{1a,b,f,j,l} Diamide ligands, in particular those incorporating one or two additional Lewis base donors (e.g., N, O, or P), have been widely studied in all of these contexts.^{1a,b,f,g,h,2,3}

With the aim of developing the chemistry of diamidedonor ligand chemistry, we recently reported the synthesis of the diamide-diamine protio ligands $(2-C₅ H_4N)CH_2N(CH_2CH_2N(H)R)_2$ (R = SiMe₃ (H₂N₂NN'), SiMe₂^tBu, or mesityl) and their corresponding lithiated derivatives.10a-^c These are precursors to new zirconium

^{*} To whom correspondence should be addressed. E-mail: philip.mountford@chem.ox.ac.uk.

⁽¹⁾ Some reviews of polydentate amide and other anionic N-donor ligand chemistry: (a) Odom, A. L. *Dalton Trans.* **2005**, 225. (b) Fryzuk, M. D. *Chem. Rec.* **2003**, *3*, 2. (c) Schmidt, J. A. R.; Giesbrecht, G. R.; Cui, C.; Arnold, J. *Chem. Commun.* **2003**, 1025. (d) Kempe, R. *Eur. J. Inorg. Chem.* **2003**, 791. (e) Bourget-Merle, L.; Lappert, M. F.; Severn, J. R. Chem. Rev. **2002**, 102, 3031. (f) Gade, L. H.; Mountford, P. Coord.
Chem. Rev. **2001**, 216–217, 65. (g) Gade, L. H. Chem. Commun. **2000,**
173. (h) Kempe, R. Angew. Chem., Int. Ed. **2000**, 39, 468. (i) Mountford, P. *Chem. Soc. Rev.* **1998**, 27, 105. (j) Cummins, C. C. *Prog. Inorg. Chem.*
1998, 47, 685. (k) McKnight, A. L.; Waymouth, R. M. *Chem. Rev.* **1998**,
98, 2587. (l) Schrock, R. R. *Acc. Chem. Res.* **1997**, 30, 9. (m) B *Coord. Chem. Rev.* **1994**, *137*, 403. (o) Chisholm, M. C. *Acc. Chem. Res.* **1990**, *23*, 419.

⁽²⁾ Reviews of olefin polymerization catalysis: (a) Gromada, J.; Carpentier, J.-F.; Mortreaux, A. *Coord. Chem. Rev.* **2004**, *248*, 397. (b) Gibson, V. C.; Spitzmesser, S. K. *Chem. Rev*. **2003**, *103*, 283. (c) Coates, G. W. *J. Chem. Soc., Dalton Trans.* **2002**, 467. (d) Hou, Z.; Wakatsuki, Y. *Coord. Chem. Rev.* **2002**, *231*, 1. (e) Bolton, P. D.; Mountford, P. *Adv. Synth. Catal.* **2005**, *347*, 355.

 $SiMe₂$ ^tBu or mesityl

and hafnium coordination compounds such as $ZrCl₂(N₂ NN'$) (1, Chart 1),^{10b} as well as to a range of organometallic and coordination complexes of the group 3^{10d} (e.g., $ScCH_2SiMe_3(N_2NN')$, Chart 1) and lanthanide^{10c} metals. However, apart from the simple dichloride and bis- (dimethylamide) coordination compounds $MX_2(N_2NN')$ $(M = Zr$ or Hf; $X = Cl$ or NMe₂), no other group 4 chemistry of N_2NN' has been described. Therefore we report here new group 4 organometallic and related compounds containing N_2NN' , together with complementary comparative studies with a bis(alkoxide) analogue. In one instance studies have extended to some isoelectronic group 5 imido systems. Part of this work has been communicated.10a

Results and Discussion

Neutral and Cationic Group 4 Organometallic Complexes of N₂NN'. The protio ligand H_2N_2NN'

(4) Organometallic and related chemistry with calixarene ligands: Floriani, C.; Floriani-Moro, R. *Adv. Organomet. Chem.* **2001**, *47*, 167. (5) "Salen" type Schiff base transition metal chemistry: (a) Katsuki, T. *Chem. Soc. Rev.* **2004**, *33*, 437. (b) Katsuki, T. *Adv. Synth. Catal.*

2002, *344*, 131. (c) Jacobsen, E. N. *Acc. Chem. Res.* **2000**, *33*, 421. (6) For recent reviews of phenoxide-based olefin polymerization catalysts see: (a) Suzuki, Y.; Terao H.; Fujita, T. *Bull. Chem. Soc. Jpn.* **2003**, *76*, 1493. (b) Mitani, M.; Saito, J.; Ishii, S.; Nakayama, Y.; Makio, H.; Matsukawa, N.; Matsui, S.; Mohri, J.; Furuyama, R.; Terao, H.; Bando, H.; Tanaka H.; Fujita, T. *Chem. Rec.* **2004**, *4*, 137.

(Chart 1) and its lithiated derivative Li_2N_2NN' were prepared according to methods previously described.10b Although six-coordinate zirconium and hafnium compounds $MX_2(N_2NN')$ $(X = Cl or NMe_2)$ could be prepared,10b the titanium congeners could not, and only complex mixtures of products were obtained. In exploring the group 4 organometallic chemistry of N_2NN' we therefore focused on zirconium, starting either from the protio ligand H_2N_2NN' or the readily prepared dichloride $ZrCl_2(N_2NN')$ (1).

Scheme 1 summarizes the reactions of **1** with MeLi and Grignard reagents. Reaction with MeLi (2 equiv) in benzene afforded the dimethyl compound $\rm ZrMe_2(N_2-$ NN′) (**2**) as a white solid in 88% isolated yield. It was necessary to add the lithiating reagent in two stages, otherwise a mixture of products (containing **2** as a minor component) was obtained. $PhCH₂MgCl$ (2 equiv) could be added in one portion, and after stirring at room temperature for 18 h, $Zr(CH_2Ph)_2(N_2NN')$ (3) was (3) For a selection of papers and leading references on early obtained as a yellow solid in 62% yield. The NMR data

(9) Chelating bis(alkoxide)-amine ligands in group 4: (a) Edema, J. J. H.; Libbers, R.; Ridder, A. M.; Kellogg, R. M.; van Bolhuis, F.; Kooijman, H.; Spek, A. L. *J. Chem. Soc., Chem. Commun.* **1993**, 625. (b) Mack, H.; Eisen, M. S. *J. Chem. Soc., Dalton. Trans.* **1998**, 917. (c) Gauvin, R. M.; Osborn, J. A.; Kress, J. *Organometallics* **2000**, *19*, 2944. (d) Manickam, G.; Sundararajan, G. *Tetrahedron Asymmetry* **1999**, *10*, 2913. (e) Manivannan, R.; Sundararajan, G.; Kaminsky, W. *J. Mol. Catal. A* **2000**, *160*, 85. (f) Manivannan, R.; Sundararajan, G. *Macromolecules* **2002**, *35*, 7883. (g) Shao, P.; Gendron, R. A. L.; Berg, D. J.; Bushnell, G. W. *Organometallics* **2000**, *19*, 509. (h) Shao, P.; Gendron, R. A. L.; Berg, D. J. *Can. J. Chem.* **2000**, *78*, 255. (i) Kim, Y.; Han, Y.; Do, Y. *J. Organomet. Chem.* **2001**, *634*, 19. (i) Kemmitt, T.; Al-Salim, N. I.; Ginsford, G. J.; Henderson, W. *Aust. J. Chem.* **1999**, *52*, 915.

(10) (a) Skinner, M. E. G.; Cowhig, D. A.; Mountford, P. *Chem. Commun*. **2000**, 1167. (b) Skinner, M. E. G.; Li, Y.; Mountford, P. *Inorg. Chem.* **2002**, *41*, 1110. (c) Bonnet, F.; Hillier, A. C.; Collins, A.; Dubberley, S. R.; Mountford, P. *Dalton Trans.* **2005**, 421. (d) Skinner, M. E. G.; Mountford, P. *J. Chem. Soc., Dalton Trans*. **2002**, 1694.

transition metal poly(amide)-donor ligand and related chemistry see: (a) Lowes, T. A.; Ward, B. D.; Whannel, R. A.; Dubberley, S. R.; Mountford, P. *Chem. Commun.* **2005**, 113. (b) Ward, B. D.; Orde, G.; Clot, E.; Cowley, A. R.; Gade, L. H.; Mountford, P. *Organometallics*
2005, 24, 2368. (c) O'Connor, P.; Berg, D. J.; Twamley, B. *Organome-tallics* **2005**, 24, 28. (d) Ward, B. D.; Maisse-Francois, A.; Mountford, P.; Gade, L. H. *Chem. Commun.* **2004**, 704. (e) Hultzsch, K. C.; Hampel, F.; Wagner, T. *Organometallics* **2004**, *23*, 2601. (f) Tonzetich, Z. J.; Lu, C. C.; Schrock, R. R.; Hock, A. S.; Bonitatebus, P. J., Jr.
Organometallics 2004, 23, 4362. (g) Cochran, F. V.; Hock, A. S.;
Schrock, R. R. *Organometallics* 2004, 23, 665–678. (h) Kettunen, K.;
Vedder C. Schaner F. Vedder, C.; Schaper, F.; Leskelä, M.; Mutikainen, I.; Brintzinger, H.-
H. *Organometallics* **2004**, 23, 3800. (i) Li, Y.; Shi, Y.; Odom, A. L. *J.*
Am. Chem. Soc. 2004, 126, 1794. (j) Studt, F.; Morello, L.; Lehnert, N.; Fryzuk, M. D.; Tuczek, F. *Chem. Eur. J.* **2003**, *9*, 520. (k) Spencer, L. P.; Winston, S.; Fryzuk, M. D. *Organometallics* **2004**, *23*, 3372. (l) Carpentier, J.-F.; Martin, A.; Swenson, D. C.; Jordan, R. F. *Organometallics* **2003**, *22*, 4999. (m) Estler, F.; Eickerling, G.; Herdtweck, E.; Anwander, R. *Organometallics* **2003**, *22*, 1212. (n) Ehrkhodavandi, P.; Schrock, R. R.; Pryor, L. L. *Organometallics 2003, 22, 4569. (o)*
Yandulov, D. V.; Schrock, R. R. *Science 2003, 301,* 76. (p) Fryzuk, M.
D.; Shaver, M. P.; Patrick, B. O. *Inorg. Chim. Acta* 2003, 350, 293. (q) Cloke, F. G. N.; Elvidge, B. R.; Hitchcock, P. B.; Lamarche, V. M. E. *J. Chem. Soc., Dalton Trans.* **2002**, 2413. (r) Gade, L. H.; Renner, P.; Memmler, H.; Fecher, F.; Galka, C. H.; Laubender, M.; Radojevic, S.; McPartlin, M.; Lauher, J. W. *Chem. Eur. J.* **2001**, *7*, 2563. (s) Firman, T. K.; Ziegler, T. *J. Organomet. Chem.* **2001**, *635*, 153. (t) Bates, V. M. E.; Clentsmith, G. K. B.; Cloke, F. G. N.; Green, J. C.; Jenkin, H. D. L. *Chem. Commun.* **2000**, 927. (u) Steinhuebel, D. P.; Lippard, S. J. *Inorg. Chem.* **1999**, *38*, 6225. (v) Martin, A.; Uhrhammer, R.; Gardner, T. G.; Jordan, R. F.; Rogers, R. D. *Organometallics* **1998**, *17*, 382. (w) Friedrich, S.; Schubart, M.; Gade, L. H.; Scowen, I. J.; Edwards, A. J.; McPartlin, M. *Chem. Ber.-Recl.* **1997**, *130*, 1751. (x) Cloke, F. G. N.; Hitchcock, P. B.; Love, J. B. *J. Chem. Soc., Dalton Trans.* **1995**, 25. (y) Horton, A. D.; de With, J.; van der Linden, A. J.; van de Weg, H. *Organometallics* **1996**, *15*, 2672. (z) Scollard, J. D.; McConville, D. H.; Rettig, S. J. *Organometallics* **1997**, *16*, 1810.

⁽⁷⁾ For selected recent work on group 4 phenoxide-imine catalysts see the following and references therein: (a) Pennington, D. A.; Coles, S. J.; Hursthouse, M. B.; Bochmann, M.; Lancaster, S. J. *Chem. Commun.* **2005**, 3150. (b) Furuyama, R.; Saito, J.; Ishii, S.; Mitani, M.; Matsui, S.; Tohi, Y.; Makio, H.; Matsukawa, N.; Tanaka, H.; Fujita, T. *J. Mol. Catal. A: Chem.* **2003**, *200*, 31. (c) Hustad, P. D.; Coates, G. W. *J. Am. Chem. Soc.* **2002**, *124*, 11578. (d) Reinartz, S.; Mason, A. F.; Lobkovsky, E. B.; Coates, G. W. *Organometallics* **2003**, *22*, 2542.

⁽⁸⁾ For selected recent work on chelating bis(phenoxide)-donor ligands in group 4 see the following and references therein: (a) Segal,
S.; Goldberg, I.; Kol, M. *Organometallics* **2005**, 24, 200. (b) Capac-
chione, C.; Manivannan, R.; Barone, M.; Beckerle, K.; Centore, R.;
Oliva, L.; **2005**, *24*, 2971. (c) Boyd, C. L.; Toupance, T.; Tyrrell, B. R.; Ward, B. D.; Wilson, C. R.; Cowley, A. R.; Mountford, P. *Organometallics* **2005**, *24*, 309. (d) Capacchione, C.; De Carlo, F.; Zannoni, C.; Okuda, J.; Proto, A. *Macromolecules* **2004**, *37*, 8918. (e) Knight, P. D.; Munslow, I.; O'Shaughnessy, P. N.; Scott, P. *Chem. Commun.* **2004**, 894. (f) Cuomo, C.; Strianese, M.; Cuenca, T.; Sanz, M.; Grassi, A. *Macromolecules* **2004**, *37*, 7469. (g) Groysman, S.; Goldberg, I.; Kol, M.; Genizi, E.; Goldschmidt, Z. *Organometallics* **2003**, *22*, 3013. (h) Owiny, D.; Parkin, S.; Ladipo, F. T. *J. Organomet. Chem.* **2003**, *678*, 134. (i) Tshuva, E. T.; Groysman, S.; Goldberg, I.; Kol, M.; Goldschmidt, Z. *Organometallics* **2002**, *21*, 662. (j) Toupance, T.; Dubberley, S. R.; Rees, N. H.; Tyrrell, B. R.; Mountford, P. *Organometallics* **2002**, *21*, 1367. (k) Balsells, J.; Carroll, P. J.; Walsh, P. J. *Inorg. Chem.* **2001**, *40*, 5568. (l) Tshuva, E. T.; Goldberg, I.; Kol, M.; Goldschmidt, Z. *Organometallics* **2001**, *20*, 3017.

Scheme 1. Synthesis of Zirconium Alkyl, Dialkyl, and Allyl Complexes of N2NN′

for **2** and **3** are consistent with the *Cs* symmetrical products illustrated in Scheme 1, and **3** has been structurally characterized (see below). Reaction of Zr- $(CH_2SiMe_3)_4$ or $Zr(CH_2CMe_3)_4$ with H_2N_2NN' in C_6D_6 gave quantitative conversion to $Zr(CH_2R)_2(N_2NN')$ (R $=$ SiMe₃ (4) or CMe₃ (5)) and the expected side-products SiMe4 or CMe4. The same organometallic products could also be obtained on an NMR tube scale from **1** and $LiCH₂R$ (2 equiv). However, regardless of the method of preparation, both complexes were unstable in solution at room temperature, decomposing completely over 6 h to a mixture of products (including free SiMe_4 or CMe_4). No attempt was made to isolate either compound on a preparative scale. It is possible that excessive steric crowding promotes alkane elimination and decomposition. It is not known whether the decomposition occurs through attack at one of the SiMe3 ^C-H bonds (*σ*-bond metathesis) or via α -C-H abstraction to form transient and reactive alkylidenes.

The monoalkyl derivatives $ZrCl(R)(N_2NN')$ ($R = CH_2$ -Ph (6) or $CH_2SiMe₃(7)$ were obtained in $87-97\%$ yield by reaction of **1** with 1 equiv of alkylating agent. Compound **7** appears to be indefinitely stable at room temperature, unlike the bis(trimethylsilylmethyl) analogue **4**. Reaction of ZrCl(CH2Ph)(N2NN′) (**6**) with MeMgBr in benzene gave the mixed-alkyl product ZrMe- $(CH₂Ph)(N₂NN')$ (8) in very good yield. An NOE (nuclear Overhauser effect) experiment showed that the methyl ligand lies in the position previously occupied by chlo-

Figure 1. Displacement ellipsoid plot $(25\%$ probability) of $Zr(CH_2Ph)_2(N_2NN')$ (3). H atoms omitted for clarity.

ride in **6** (i.e., *cis* to the pyridyl nitrogen, as confirmed by X-ray crystallography for **6**; see below).

Surprisingly, reaction of **1** with allyl Grignard gave exclusive attack at the N_2NN' pyridyl group 6 position, forming $ZrCl{(2-NC_5(6-C_3H_5)H_4)CH_2N(CH_2CH_2NSiMe_3)_2}$ (**9**) as a yellow oil in 74% yield. Addition of a further equivalent of Grignard in an attempt to substitute the chloride ligand did not lead to an isolable product. Metalation of pyridines in the 6-position has been reported previously,¹¹ but it is not clear why the pyridyl group of **1** should be attacked only in the case of allyl reagent and not with the other alkylating reagents used. We have recently reported the successful use of C_3H_5 -MgCl in chloride substitution in a complex supported by a related diamide-pyridine ligand.¹² The modified N_4 donor ligand in **9** is now a triamide-amine rather than diamide-diamine.

The molecular structures of $Zr(CH_2Ph)_2(N_2NN')$ (3) and $ZrCl(CH_2Ph)(N_2NN')$ (6) are shown in Figures 1 and 2, respectively. Selected bond distances and angles are listed in Tables 1 and 2. The overall geometries (distorted octahedral because of the constraining nature of N2NN′) of **3** and **6** are similar to the coordination complexes $ZrX_2(N_2NN')$ ($X = Cl(1)$ and NMe_2), which have been structurally characterized previously.^{10b} The $Zr-N_{N2NN'}$ distances in **3** are intermediate between those in $ZrCl_2(N_2NN')$ and $Zr(NMe_2)_2(N_2NN')$, with the capping nitrogen $(N(4))$ showing the smallest variation in Zr-N distance, presumably because it is the most constrained by the ligand framework. The $Zr-N_{N2NN'}$ distances in **6** are all slightly shorter than the corresponding ones in **3**, as would be expected. Surprisingly the Zr-Cl distance in **⁶** (2.458(2) Å) is shorter than the corresponding bond length in **1** (2.4760(4) Å) despite the presence of the good *σ*-donor benzyl group in the former.

⁽¹¹⁾ Armstrong, D. R.; Mulvey, R. E.; Barr, D.; Snaith, R.; Reed, D. *J. Organomet. Chem.* **1988**, *350*, 191. Giam, C. S.; Stout, J. L. *J. Chem. Soc., Chem. Commun.* **1969**, 142. Gros, P.; Fort, Y.; Caubere, P. *J. Chem. Soc., Perkin Trans.* **1997**, 3071. Nakamura, N.; Yoshino, A.; Takahashi, K. *Bull. Chem. Soc. Jpn.* **1994**, *67*, 26. Zhang, L.-H.; Tan, Z. L. *Tetrahedron Lett.* **2000**, *41*, 3025.

⁽¹²⁾ Ward, B. D.; Orde, G.; Clot, E.; Cowley, A. R.; Gade, L. H.; Mountford, P. *Organometallics* **2004**, *23*, 4444.

Figure 2. Displacement ellipsoid plot $(25\% \text{ probability})$ of $ZrCl(CH_2Ph)(N_2NN')$ (6). H atoms omitted for clarity.

Table 1. Selected Bond Lengths (Å) and Angles (deg) for $\text{Zr}(\text{CH}_2\text{Ph})_2(\text{N}_2\text{NN}')$ (3)

$Zr(1) - N(1)$ $Zr(1)-N(2)$ $Zr(1) - N(3)$	2.111(2) 2.112(2) 2.479(2)	$Zr(1)-N(4)$ $Zr(1)-C(17)$ $Zr(1)-C(24)$	2.442(2) 2.342(3) 2.344(2)
$N(1)-Zr(1)-N(2)$	137.29(9)	$N(3)-Zr(1)-C(17)$	163.04(9)
$N(1) - Zr(1) - N(3)$	99.82(8)	$N(4)-Zr(1)-C(17)$	126.99(9)
$N(2)-Zr(1)-N(3)$	87.56(8)	$N(1)-Zr(1)-C(24)$	99.54(9)
$N(1) - Zr(1) - N(4)$	71.84(8)	$N(2)-Zr(1)-C(24)$	123.16(8)
$N(2)-Zr(1)-N(4)$	72.44(8)	$N(3)-Zr(1)-C(24)$	80.51(8)
$N(3)-Zr(1)-N(4)$	67.77(7)	$N(4) - Zr(1) - C(24)$	144.51(8)
$N(1) - Zr(1) - C(17)$	93.58(9)	$C(17)-Zr(1)-C(24)$	87.09(9)
$N(2)-Zr(1)-C(17)$	89.62(9)	$Zr(1) - C(17) - C(18)$	104.4(2)
$Zr(1)-C(24)-C(25)$	130.2(2)		

Table 2. Selected Bond Lengths (Å) and Angles (deg) for $\text{ZrCl}(\text{CH}_2\text{Ph})(N_2\text{NN}')$ (6)

The Zr-CH2-Cipso angles for the benzyl ligands in **³** are substantially different. The angle subtended at C- (17) (*trans* to pyridyl N) is very acute (104.4(2)°) in comparison to that subtended at $C(24)$ (130.2(2)°). The corresponding angle at $C(17)$ in **6** is $104.5(4)^\circ$, confirming that this is not simply a consequence of intermolecular packing forces, for example. The additional Z_{r} . interactions in these two compounds presumably help reduce the electron deficiency at the formally 12 valence electron Zr centers (ignoring any likely $N(2p\pi) \rightarrow Zr$ - $(4d\pi)$ donation from the trigonal planar sp²-hybridized N_{amide} atoms). Such $M \cdots C_{ipso}$ interactions are wellknown in early transition metal chemistry.13 It appears that steric factors favor the formation of the $Zr\cdots C_{\text{ipso}}$ interaction approximately *trans* to pyridyl nitrogen as opposed to the analogous position approximately *trans* to the apical nitrogen $N(4)$ since the amide SiMe_3 substituents are slightly oriented "up" toward this site.

Scheme 2. Synthesis of Cationic Zirconium Complexes of N2NN′ **(anions omitted for clarity)**

Group 4 complexes of polydentate amide ligands are important in the polymerization of olefins.2b,3a,f,h,l,n,y,z Regrettably, attempts to polymerize ethylene (5 bar pressure, toluene solvent) using $ZrX_2(N_2NN')$ ($X = Cl(1)$ or Me (2)) with methyl aluminoxane or (for 2) BAr_3 (Ar_3 $= C_6F_5$) or [CPh₃][BAr^F₄] yielded no activity. Cationic alkyl cations are accepted as being the active species in group 4 olefin polymerization catalysts, $2b$, 14 and so we were interested to see if the N_2NN' ligand could be used for the stoichiometric generation of such species, despite the lack of catalytic activity. Scheme 2 shows the reactions of **2** or $ZrCl(CH_2Ph)(N_2NN')$ (6) with BAF_{3} . Analogous NMR tube scale experiments were carried out using $[CPh_3][BArF_4]$ and yielded the same cations.

Reaction of 2 in benzene with $BArF_3$ gave $Zr(2 \rm{NC}_5H_4)CH_2NCH_2CH_2NSiMe_3)CH_2CH_2NSiMe_2CH_2-$)}][MeBArF 3] (**10**-MeBArF 3) as a white solid in 60% yield. The cation 10^+ was unambiguously identified by NMR spectroscopy (see the Experimental Section) as the C-^H bond activation product illustrated in Scheme 2 in which one of the SiMe₃ groups of N_2NN' has been metalated. This presumably occurs via a *σ*-bond metathesis reaction with the Zr-Me group of the transient $[ZrMe(N_2 NN'$ ⁺ cation 11^+ (Scheme 2), which is isoelectronic with the structurally characterized scandium alkyl $ScCH₂$ - $\text{SiMe}_3\text{N}_2\text{NN}'$ (Chart 1) reported by us previously.^{10d} Evidence for the postulated intermediate five-coordinate cation 11^+ was obtained by reacting 2 with BAr_3 in the presence of an excess of THF, which afforded [ZrMe-

⁽¹³⁾ Elschenbroich, C.; Salzer, A. *Organometallics: a concise intro-duction*, 2nd ed.; VCH: Weinheim, 1992. (14) Bochmann, M. *J. Organomet. Chem.* **2004**, *689*, 3982.

 $(THF)(N_2NN')$][MeBAr^F₃] (12-MeBAr^F₃) in quantitative yield (Scheme 2). Cation **12**⁺ is stable for days at room temperature in CD_2Cl_2 solution.

When the reaction between 2 and $BAr^F₃$ was followed by NMR (C_6D_6) , an additional singlet was observed at ca. 0.8 ppm, which is assigned to $CH₄$, the expected sideproduct of *σ*-bond metathesis. The cyclometalated cation 10^+ is also formed in the reaction of Zr (CH₂Ph)₂(N₂NN') with $\text{Bar}_{3}^{\text{F}}$ (NMR tube scale reaction) along with 1 equiv of toluene and the anion $[PhCH_2BArF_3]^-$. This reaction presumably occurs via a transient mono(benzyl) cation $[Zr(CH_2Ph)(N_2NN')]$ ⁺. The $[RBAr^{F3}]$ ⁻ $(R = Me$ or $PhCH_2$) anions appear to be noncoordinating according to the ¹H and ¹⁹F NMR spectra.^{3y,15} The intramolecular C-H bond activation leading to **10**⁺ is well precedented in the chemistry of polydentate silylamido ligands, including cationic alkyl zirconium derivatives.3y,16 Such reactions have previously been identified as catalyst deactivation pathways,¹⁷ although stable zirconium alkyl cations can be formed with silylated polyamide ligands by careful choice of ligand backbone.^{3a} The ready formation of the four-membered zirconocyclic ring in **10**⁺ accounts for the lack of catalytic activity of **2**. Exposure of CD_2Cl_2 solutions of 10^+ to ethylene (1 atm) gave only a slow consumption (several days) of the cation and the formation a small quantity of white precipitate (presumably polyethylene). Attempted scale-up of this reaction, however, afforded no isolable polymer.

A chloride analogue of **11**⁺ was prepared by the reaction of $ZrCl(CH_2Ph)(N_2NN')$ (6) with $BAT^F₃$, which gave $[ZrCl(N_2NN')]$ [PhCH₂BAr^F₃] (**13**-PhCH₂BAr^F₃) as a white solid. The ¹H and ¹⁹F NMR spectra are consistent with a noncoordinating $[PhCH_2BArF_3]$ ⁻ anion. It was not possible to obtain diffraction-quality crystals of 13 -PhCH₂BAr^F₃. We recently^{10c,18} found than the isoelectronic yttrium and samarium complexes $M_2(\mu)$ - $\text{Cl}_{2}(N_{2}NN')_{2}$ exist as chloride-bridged dimers in the solid state with the structures illustrated in Chart 2. Likewise, the related diamide-amine compounds Zr_2Cl_2 - $(\mu\text{-}Cl)_2\{\text{RN}(CH_2CH_2SiMe_3)_2\}_2$ (**II**, $R = SiMe_3^{3x}$ or Me^{3a})

Bis(amide) Complexes of N2NN′

form chloride-bridged dimers. The N_2NN' -supported dimers I possess no plane of symmetry, and the N_2NN' SiMe3 groups occupy chemically inequivalent sites. The NMR spectrum of 13 -PhCH₂BAr^F₃ in CD₂Cl₂ at 20 °C indicated C_s symmetry for the N_2NN' cation resonances $(e.g., equivalent$ SiMe₃ groups). This is consistent with the monomeric structure illustrated for **13**⁺ in Scheme 2 or a dimeric, dicationic compound with *Cs* symmetry. Cooling a sample of 13-PhCH₂BAr^F₃ in CD₂Cl₂ to -90 °C led to broadening of the ¹H NMR (500 MHz) N_2NN' resonances, while those for the anion remained sharp. Unfortunately a well-defined low-temperature limiting spectrum could not be obtained. It is therefore possible that **13**⁺ may be dimeric in solution, at least at low temperature, but even at -90 °C is rather fluxional. This lability is attributable to repulsive effects of the positively charged Zr centers.

Imido Complexes of N2NN′**.** There is a rich and diverse chemistry associated with early transition metal imido compounds supported by the tridentate diamideamine ligands $Me₃SiN(CH₂CH₂SiMe₃)₂$ and (2-C₅H₄N)- $C(Me)$ $CH₂NSiMe₃$ $2^{1f,3b,d,12,19}$ and their analogues.^{1a} Scheme 3 summarizes the synthesis of titanium and zirconium terminal imido and related compounds using N_2NN' .

⁽¹⁵⁾ Lee, C. H.; La, Y.-H.; Park, J. W. *Organometallics* **2000**, *19*, 344. Pflug, J.; Bertuleit, A.; Kehr, G.; Fröhlich, R.; Erker, G. Organo*metallics* **1999**, *18*, 3818. Pindado, G. J.; Thornton-Pett, M.; Hursthouse, M. B.; Coles, S. J.; Bochmann, M. *J. Chem. Soc., Dalton Trans.* **1999**, 1663.

⁽¹⁶⁾ Morton, C.; Munslow, I. J.; Sanders, C. J.; Alcock, N. W.; Scott, P. *Organometallics* **1999**, *18*, 4608. Boaretto, R.; Roussel, P.; Alcock, N. W.; Kingsley, A. J.; Munslow, I. J.; Sanders, C. J.; Scott, P. *J. Organomet. Chem.* **1999**, *591*, 174.

⁽¹⁷⁾ Schrock, R. R.; Liang, L.-C.; Baumann, R.; Davis, W. M. *J. Organomet. Chem.* **1999**, *591*, 163.

⁽¹⁸⁾ Hillier, A. C.; Bonnet, F.; Dubberley, S. R.; Cowley, A. R.; Mountford, P. Manuscript in preparation.

^{(19) (}a) Pugh, S. M.; Trösch, D. J. M.; Skinner, M. E. G.; Gade, L. H.; Mountford, P. *Organometallics* **2001**, *20*, 3531. (b) Pugh, S. M.; Blake, A. J.; Gade, L. H.; Mountford, P. *Inorg. Chem.* **2001**, *40*, 3992. (c) Pugh, S. M.; Clark, H. S. C.; Love, J. B.; Blake, A. J.; Cloke, F. G. N.; Mountford, P. *Inorg. Chem.* **2000**, *39*, 2001.

Figure 3. Displacement ellipsoid plot (25% probability) of $Ti(NAr)(N_2NN')$ (15). H atoms omitted for clarity. Atoms carrying the suffix 'A' are related to their counterparts by the symmetry operator $[x, y, \sqrt[3]{2} - z]$.

Table 3. Selected Bond Lengths (Å) and Angles (deg) for Ti(NAr)(N2NN′**) (15)***^a*

$Ti(1)-N(1)$	1.769(2)	$Ti(1)-N(3)$	2.291(2)
$Ti(1)-N(2)$	1.992(1)	$Ti(1)-N(4)$	2.227(2)
$N(1) - Ti(1) - N(2)$	108.35(4)	$N(1) - Ti(1) - N(4)$	92.13(7)
$N(2) - Ti(1) - N(2A)$	112.67(8)	$N(2) - Ti(1) - N(4)$	116.38(4)
$N(1) - Ti(1) - N(3)$	163.77(7)	$N(3) - Ti(1) - N(4)$	71.64(6)
$N(2) - Ti(1) - N(3)$	79.94(4)	$Ti(1)-N(1)-C(1)$	164.9(1)

^a Atoms carrying the suffix 'A' are related to their counterparts by the symmetry operator $[x, y, \sqrt[3]{2} - z]$.

We have shown previously²⁰ that the readily prepared compounds $Ti(NR)Cl₂(py)₃²¹$ are useful reagents in the synthesis of new titanium imido compounds. Reaction of Ti(N^tBu)Cl₂(py)₃ or Ti(NAr)Cl₂(py)₃ (Ar = 2,6-C₆H₃ⁱ-
Pro) with LioNeNN' in benzene gave the five-coordinate $Pr₂$) with $Li₂N₂NN'$ in benzene gave the five-coordinate imido complexes $Ti(NR)(N_2NN')$ $(R = {^tBu} (14)$ or Ar (15))
in ca. 60% isolated vield. The NMR spectra were in ca. 60% isolated yield. The NMR spectra were consistent with the C_s symmetric structures illustrated in Scheme 3 and confirmed by X-ray diffraction for **15** as shown in Figure 3. Selected bond distances and angles are listed in Table 3.

Molecules of **15** lie across crystallographic mirror planes that pass through the atoms $Ti(1)$, $N(1)$, $N(3)$, and N(4). Disorder associated with the methylene linkages about N(3) was satisfactorily modeled. The geometry at Ti(1) is distorted trigonal bipyramidal with $N(1)$ and $N(3)$ occupying the apical positions. The Ti- $(1)-N(1)-C(1)$ angle of 164.9(1)° is typical for a formally "linear" imido group with $N(1)$ being formally sp hybridized and, in principle, capable of acting as a fourelectron donor. The bonding in related diamide-donor supported trigonal bipyramidal imido complexes has been analyzed in detail recently, as discussed below.¹² The $Ti-N_{\text{amine}}$ and $Ti-N_{\text{amide}}$ distances are within the usual ranges for such linkages,²² whereas $Ti(1)-N(1)$ is rather long at 1.769(2) Å. The range for terminal Ti NAr bonds in the Cambridge Structural Database²² is 1.697(7)-1.756(5) Å (av 1.727 Å for 20 examples). The \log Ti=NAr bond in 15 is attributed to steric repulsions between the Ar and SiMe₃ groups.

Titanium and zirconium imido complexes M(NR)(py)- (N_2N') $(N_2N' = Me_3\sin(CH_2CH_2SiMe_3)_2^{19c}$ or $(2-C_5-H_2N)C(Me)(CH_2NSiMe_3)_2^{23}$ related to 15 have been H4N)C(Me)(CH2NSiMe3)2 23) related to **15** have been structurally characterized previously. In these trigonal bipyramidal complexes the imido and amido ligands all occupy the *equatorial* coordination sites while the neutral donors lie in the axial positions. An analogous geometry was found for the tantalum *tert*-butyl imido complex $Ta(N^tBu)Me{(2-C_5H_4N)C(Me)(CH_2NSiMe_3)_2}.$ However, the isoelectronic phenyl imido cation [W(N- $Ph)Me$ { $(2-C_5H_4N)CMe$ $(CH_2NSiMe_3)_2$ }⁺ had a trigonal pyramidal geometry with equatorial amido groups but an *axial* imido ligand.12 DFT calculations on model complexes $M(NR)(X)\{HC(2-C_5H_4N)(CH_2SiH_3)_2\}$ showed an unambiguous electronic preference for the imido ligand to occupy the axial sites (thereby allowing for optimal π -donation from the amido and imido nitrogens).12 However, inclusion of significant steric bulk on the N atoms was shown to invert the site preference. The geometry found for **15** is therefore the electronically preferred one, i.e., with an axial imido ligand. However, this is clearly associated with unfavorable steric repulsion, which cannot be relieved due to the enforcing nature of the tetradentate N_2NN' ligand.

Zirconium imido complexes of N_2NN' have also been prepared (Scheme 3). Reaction of Li_2N_2NN' with the imido synthon $\rm{Zr}_2(\mu\text{-}NAr)_2\rm{Cl}_4(\rm{THF})_4{}^{24}$ in a manner analogous to that used for **14** and **15** gave a complex mixture of products. However, reaction of in situ generated $ZrCH_2SiMe_3$)₂(N₂NN') (4) with ArNH₂ (1 equiv) afforded the target imido compound $Zr(NAr)(N_2NN')$ (**16**) as an orange, sparingly soluble solid in low yield. The corresponding NMR tube scale reaction in C_6D_6 identified SiMe4 as the expected side-product. Weakly diffracting crystals of **16** were found to have a unit cell very similar to that of **15**, but the diffraction data were too weak for a satisfactory refinement to be carried out. Nonetheless, on the basis of the available data it is likely that **16** has the five-coordinate monomeric structure shown in Scheme 3.

Attempts to prepare a *tert*-butyl imido compound by $\text{reaction of } \mathrm{ZrCl}_2(\mathrm{N}_2\mathrm{NN}')$ $\bf 1$ with 2 equiv of $\text{LiNH}^{\text{t}}\text{Bu}$ gave the six-coordinate bis(*tert*-butyl amide) complex **17** in 49% yield. The compound does not eliminate t BuNH₂ on heating at 70 °C for extended periods in C_6D_6 either on its own or in the presence of pyridine. Reaction of $\text{ZrMe}_2(\text{N}_2\text{NN}')$ (2) with ^tBuNH₂ (1 equiv) in C₆D₆ in a manner akin to that employed for **16** gave only **17** (ca. 30% yield based on **2**, the remainder remaining unreacted) after 24 h. The corresponding reaction of in situ generated **4** also failed to produce an imido complex. Analogous results have been found previously in the reactions of zirconium dichloride or dialkyl compounds with less sterically demanding lithiated amides or

⁽²⁰⁾ Mountford, P. *Chem. Commun.* **1997**, 2127 (Feature article review). Hazari, N.; Mountford, P. *Acc. Chem. Res.*, in press.

⁽²¹⁾ Blake, A. J.; Collier, P. E.; Dunn, S. C.; Li, W.-S.; Mountford, P.; Shishkin, O. V. *J. Chem. Soc., Dalton Trans.* **1997**, 1549.

⁽²²⁾ Allen, F. H.; Kennard, O. *Chem. Des. Autom. News* **1993**, *8*, 1 & 31. Fletcher, D. A.; McMeeking, R. F.; Parkin, D. J. *Chem. Inf. Comput. Sci.* **1996**, *36*, 746.

⁽²³⁾ Blake, A. J.; Collier, P. E.; Gade, L. H.; Mountford, P.; Pugh, S. M.; Schubart, M.; Skinner, M. E. G.; Trösch, D. J. M. *Inorg. Chem.* **2001**, *40*, 870.

⁽²⁴⁾ Arney, D. J.; Bruck, M. A.; Huber, S. R.; Wigley, D. E. *Inorg. Chem.* **1992**, *31*, 3749. Dubberley, S. R.; Evans, S. E.; Boyd, C. L.; Mountford, P. *Dalton Trans*. **2005**, 1448.

Figure 4. Displacement ellipsoid plot (25% probability) of Zr(NHt Bu)(NC5H10)(N2NN′) (**19**). C-bound H atoms omitted for clarity. H atom bound to N(5) drawn as a sphere of arbitrary radius.

primary amines.25 However, when the reaction between **4** and ^t BuNH2 (1 equiv) was carried out in the presence of pyridine, the dark red, six-coordinate imido complex Zr(Nt Bu)(py)(N2NN′) (**18**) was obtained in 73% yield. The *Cs* symmetrical structure proposed for **18** in Scheme 3 is based on the available NMR data (e.g., equivalent SiMe₃ groups). The presence of coordinated pyridine is also clearly indicated by the NMR data, and NOE experiments established the relative arrangements of the N^tBu, N₂NN', and pyridine ligands.

Although the use of pyridine in **18** allows access to this terminal imido compound, it still reacts readily with primary amines to form tetrakis(amido) derivatives. Thus addition of t BuNH₂ (1 equiv) to a $\mathrm{C}_6\mathrm{D}_6$ solution of **18** quantitatively afforded **17** and free pyridine. This type of reaction has been seen previously for zirconium imido compounds.25a,26 An analogous reaction between **18** and piperidine gave the mixed amide complex Zr- $(NH^tBu)(NC₅H₁₀)(N₂NN')$ (19) as the single isomer illustrated in Scheme 3 and confirmed by X-ray crystallography (see below). Compound **19** was made on a preparative scale in 52% yield from the "one-pot" reaction of in situ generated 4 with ^tBuNH₂, piperidine, and pyridine.

The molecular structure of **19** is shown in Figure 4, and selected bond distances and angles are listed in Table 4. The overall geometry is analogous to that found $f_{\rm 2D}$ for ${\rm ZrX_2(N_2NN')}$ ${\rm (X=Cl, NMe_2,^{10b}CH_2Ph (3, Figure 1),}$ and $ZrCl(CH_2Ph)(N_2NN')$ (6, Figure 2)). The N-H atom of the ^tBuNH ligand was found from a Fourier difference map and positionally and isotropically refined. The Zr- $(1)-N(1)$ and $Zr(1)-N(2)$ distances are experimentally identical to the corresponding distances in $Zr(NMe₂)₂(N₂$ -NN').^{10b} $Zr(1)-N(5)$ is marginally shorter than $Zr(1)$ - $N(6)$ ($\Delta = 0.016(3)$ Å), and both of these distances are shorter than those to $N(1)$ and $N(2)$. The trends in $Zr N_{amide}$ distances is the same as in $Zr(NMe₂)₂(N₂NN')$. As proposed previously,^{10b} the relative orientation of the

Table 4. Selected Bond Lengths (Å) and Angles (deg) for Zr(NHt Bu)(NC5H10)(N2NN′**) (19)**

$Zr(1)-N(1)$ $Zr(1)-N(2)$	2.160(1) 2.168(1)	$Zr(1)-N(4)$ $Zr(1)-N(5)$	2.452(1) 2.075(2)
$Zr(1) - N(3)$	2.520(2)	$Zr(1)-N(6)$	2.091(2)
$N(1)-Zr(1)-N(2)$ $N(1) - Zr(1) - N(3)$ $N(2)-Zr(1)-N(3)$ $N(1) - Zr(1) - N(4)$ $N(2)-Zr(1)-N(4)$ $N(3)-Zr(1)-N(4)$ $N(1)-Zr(1)-N(5)$ $N(2)-Zr(1)-N(5)$	141.83(6) 84.02(5) 88.59(5) 73.40(5) 69.18(5) 67.63(5) 112.04(6) 104.17(6)	$N(3)-Zr(1)-N(5)$ $N(4) - Zr(1) - N(5)$ $N(1) - Zr(1) - N(6)$ $N(2)-Zr(1)-N(6)$ $N(3)-Zr(1)-N(6)$ $N(4)-Zr(1)-N(6)$ $N(5)-Zr(1)-N(6)$	83.45(6) 150.14(6) 90.53(6) 94.20(6) 174.01(6) 108.45(6) 100.96(7)

substituents at the trigonal planar $(sp²]$ hybridized) atoms $N(5)$ and $N(6)$ can be rationalized in terms of maximizing $N(2p_\pi) \rightarrow Zr(4d_\pi)$ donation.^{10b}

We have previously reported^{19b} the synthesis and solid-state structures of the group 5 diamide-donor supported imido compounds M(NR)Cl{(2-C5H4N)C(Me)(CH2- NSiMe_3) $\{M = Nb \text{ or } Ta; R = \text{^tBu} \text{ or } Ar\}$, which were prepared from Li_9 (2-C-H_eNC(Me)(CH_eNSiMe₀) and prepared from $Li_2[(2-C_5H_4N)C(Me)(CH_2NSiMe_3)_2]$ and the appropriate imido reagent $M(NR)Cl₃(py)₂$.²⁷ In contrast, reaction between $Li_2[Me_3SiN(CH_2CH_2NSiMe_3)_2]$ and $Nb(N^tBu)Cl₃(py)₂$ gave a mixture of diamide-amine ligand degradation and ill-defined dimeric imido compounds. For the purposes of comparison with these previous studies and the new N2NN′-supported imido chemistry described in Scheme 3 we carried out the reactions summarized in eq 1.

Reaction of Li_2N_2NN' with $M(N^tBu)Cl_3(py)_2$ in benzene followed by crystallization from pentane afforded the six-coordinate imido complexes $M(N^tBu)Cl(N_2NN')$ $(M = Nb (20)$ or Ta (21)) as yellow or brown solids in ca. 30% isolated yield (eq 1). The low isolated yield is attributed to the rather high solubility of these compounds in pentane since the NMR tube scale reactions (C_6D_6) were quantitative. The NMR spectra for the two compounds were virtually identical and support the *C*¹ symmetrical structures illustrated in eq 1 (e.g., inequivalent SiMe₃ groups and 10 independent multiplet resonances (each of relative integration 1 H for the methylene hydrogens). The solid-state structure of **21** is shown in Figure 5, and selected bond distances and angles are listed in Table 5. There are two crystallographically independent molecules of **21** in the asymmetric unit but no substantial differences between them.

The structure of **21** in the solid state agrees with that assigned on the basis of the solution NMR data. The geometry at Ta(1) is approximately octahedral, and the metal-ligand distances are within previously reported ranges.22 It is of particular interest to compare this structure with that of $Ta(N^tBu)Cl{(2-C_5H_4N)C(Me)CH_2}$ -

^{(25) (}a) Nikonov, G. I.; Blake, A. J.; Mountford, P. *Inorg. Chem.* **1997**,
1107 (b) Dubberley S. R.; Friedrich A.; Willman, D. A.; Mountford, N. Will Nearly, 19b in which the imide and amide donors are *36*, 1107. (b) Dubberley, S. R.; Friedrich, A.; Willman, D. A.; Mountford, P.; Radius, U. *Chem. Eur. J.* **2003**, *9*, 3634.

⁽²⁶⁾ Walsh, P. J.; Baranger, A. M.; Bergman, R. G. *J. Am. Chem. Soc.* **1992**, *114*, 1708.

⁽²⁷⁾ Sundermeyer, J.; Putterlik, J.; Foth, M.; Field, J. S.; Ramesar, N. *Chem. Ber.* **1994**, *127*, 1201.

Figure 5. Displacement ellipsoid plot (25% probability) of one of the two crystallographically independent molecules of Ta(Nt Bu)Cl(N2NN′) (**21**). H atoms omitted for clarity.

Table 5. Selected Bond Lengths (Å) and Angles (deg) for Ta(Nt Bu)Cl(N2NN′**) (21)***^a*

$Ta(1)-Cl(1)$	2.5500(9)	[2.515(1)]
$Ta(1)-N(1)$	2.055(3)	[2.055(3)]
$Ta(1)-N(2)$	2.029(3)	[2.034(3)]
$Ta(1)-N(3)$	2.274(3)	[2.309(3)]
$Ta(1) - N(4)$	2.363(3)	[2.379(3)]
$Ta(1)-N(5)$	1.783(3)	[1.791(3)]
$Cl(1) - Ta(1) - N(1)$	153.77(9)	[153.48(9)]
$Cl(1) - Ta(1) - N(2)$	88.88(9)	[90.4(1)]
$N(1) - Ta(1) - N(2)$	104.0(1)	[103.6(1)]
$Cl(1) - Ta(1) - N(3)$	75.30(8)	[75.09(8)]
$N(1) - Ta(1) - N(3)$	82.0(1)	[81.2(1)]
$N(2) - Ta(1) - N(3)$	147.5(1)	[146.9(1)]
$Cl(1) - Ta(1) - N(4)$	82.17(8)	[83.03(8)]
$N(1) - Ta(1) - N(4)$	78.4(1)	[77.9(1)]
$N(2) - Ta(1) - N(4)$	78.2(1)	[78.4(1)]
$N(3) - Ta(1) - N(4)$	71.7(1)	[70.5(1)]
$Cl(1) - Ta(1) - N(5)$	93.8(1)	[93.4(1)]
$N(1) - Ta(1) - N(5)$	103.3(1)	[103.7(1)]
$N(2) - Ta(1) - N(5)$	108.4(1)	[106.9(1)]
$N(3) - Ta(1) - N(5)$	101.0(1)	[103.6(1)]
$N(4) - Ta(1) - N(5)$	172.3(1)	[173.7(1)]
$Ta(1)-N(5)-C(17)$	165.5(3)	[165.0(3)]

^a Values in brackets are for the other crystallographically independent molecule in the asymmetric unit.

also all *cis* to one another. The Ta-Cl, Ta-Namine, and Ta-Cl distances in 21 and Ta(N^tBu)Cl{(2-C₅H₄N)C(Me)-
(CH_eNSiMealak are very similar. In contrast, the Ta= $(CH₂NSiMe₃)₂$ are very similar. In contrast, the Ta= Nt Bu distances in **21** (1.783(3) and 1.791(3) Å) are somewhat shorter than in the previous compound (1.822(4) Å). It is not clear why **20** and **21** adopt nonsymmetrical structures while all the zirconium compounds $[Zr(A)(B)(N_2NN')]^{n+}$ described above with two different coligands A and B (i.e., **6**, **7**, **8**, **12**+, **19**, and (especially) **18**) have *Cs* symmetry.

Group 4 Complexes of O_2 **NN'.** In a previous paper^{10b} on the zirconium and hafnium complexes $MX_2(N_2NN')$ $(X = Cl or NMe₂)$ we described how we had been unable to prepare six-coordinate titanium analogues $\text{TiX}_2(\text{N}_2$ -NN′). This was tentatively attributed to the possible difficulties in placing six ligands around Ti at the shorter metal-ligand bond lengths required for this 3d metal. The instability of the zirconium complexes Zr-

 $(CH_2R)_2(N_2NN')$ $(R = SIMe_3 (4)$ or $CMe_3 (5))$ may also stem from increased crowding in these silylamido systems. To test these ideas, we have developed a bis- (alkoxide) analogue of N_2NN' , namely, O_2NN' (O_2NN' $= (2-C_5H_4N)CH_2N(CH_2CMe_2O)_2$, in which the NSiMe₃ group is replaced by O. Polydentate ligands with two anionic oxygen donors are extremely well established in early transition metal chemistry, $4-6,8$ as are the related phenoxide-imine ligands (monoanionic N,O donors).⁷ Interestingly, although dianionic O_2N_2 donor atom ligands with phenoxide groups are very well established in group $4,5-6,8$ the corresponding bis-(alkoxide)-diamine systems are underdeveloped (tridentate O_2N donor bis(alkoxide)-monoamine ligand systems are, however, better known9).

 H_2O_2NN' (22)

Our initial efforts focused on the known28 protio ligand (2-C5H4N)CH2N(CH2CH2OH)2 used previously in vanadium28a and nickel chemistry.28b However, reaction of this with a number of titanium and zirconium precursors of the type MX_2R_2 (X or R = alkyl, halide, or NMe2) gave rather insoluble and intractable products. Reasoning that the O atoms in $(2-C_5H_4N)CH_2NCH_2$ - $CH₂OH₂$ are too sterically unprotected, we moved our attention to the new ligand system O_2NN' , in which a *gem*-dimethyl group is positioned next to each O (making the ligand a little like a bis(*tert*-butoxide) system). The protio ligand H_2O_2NN' (22) was prepared from 2-aminomethyl pyridine and isobutylene oxide in the presence of a catalytic quantity of ethanol (eq 2) and isolated as a white powder in ca. 50% yield after column chromatography and high-vacuum sublimation.

H2O2NN′ (**22**) was structurally characterized. The molecular structure is shown in Figure 6, and selected intra- and intermolecular distances are listed in Table 6. The associated distances and angles are within the usual ranges.22 The O-bound H atoms were located from Fourier difference maps and positionally refined. Molecules of H2O2NN′ form eight-membered intramolecular hydrogen-bonded rings (via $O(1)$ -H (1) ··· $O(2)$), and each H_2O_2NN' is part of a supramolecular chain motif propagating along the crystallographic *b* axis via hydrogen bonds between $O(1)$ of one molecule and $H(2)$ of its neighbor. Neither N atom is involved in a supramolecular interaction. The ¹H NMR spectrum of H_2O_2NN' in CD_2Cl_2 at 20 °C showed (in addition to pyridyl and O*H* signals) resonances for a single methyl group environment (relative integral 12 H) and two methylene environments (2 and 4 H for $(2-C_5H_4N)CH_2N$ and $NCH₂Me₂OH₂$, respectively), indicating that no intramolecular order is maintained (at least on the NMR time scale) at this temperature. Cooling to -90 °C led to significant broadening of the $NCH₂Me₂OH)₂$ meth-

(28) (a) Crans, D. C.; Keramidas, A. D.; Amin, S. S.; Anderson, O. P.; Miller, S. M. *J. Chem. Soc., Dalton. Trans.* **1997**, 2799. (b) Saalfrank, R. W.; Bernt, I.; Hampel, F. *Chem. Eur. J.* **2001**, *7*, 2770.

Figure 6. Displacement ellipsoid plot $(25\% \text{ probability})$ of H2O2NN′ (**22**). C-bound H atoms omitted for clarity. H atoms bound to O drawn as spheres of arbitrary radius.

$N(1)-C(2)$ $N(1)-C(9)$ $N(2)-C(14)$ $O(1) - H(1)$ $O(2) - C(3)$ $O(2) - H(2)$	1.469(2) 1.470(2) 1.347(2) 0.88(2) 1.440(2) 0.88(2)	$N(1)-C(4)$ $N(2) - C(10)$ $O(1) - C(1)$ $O(1)\cdots H(2A)$ $O(2)\cdots H(1)$	1.473(2) 1.339(2) 1.438(2) 1.88(2) 1.83(2)
$C(2)-N(1)-C(4)$ $C(4)-N(1)-C(9)$ $C(1)-O(1)-H(1)$ $H(1)-O(1)-H(2A)$ $O(1) - H(1) \cdots O(2)$	114.2(1) 110.5(1) 109.0(12) 102.5(14) 167(2)	$C(2)-N(1)-C(9)$ $C(10)-N(2)-C(14)$ $C(1)-O(1) - H(2A)$ $C(3)-O(2)-H(2)$ $O(1B) \cdots H(2) - O(2)$	111.9(1) 117.39(13) 128.7(6) 110.4(13) 169(2)

^a Atoms carrying the suffixes 'A' and 'B' are related to their counterparts by the symmetry operator $[3/2 - x, y + 1/2, 3/2 - z]$ and $[3/2 - x, y - 1/2, 3/2 - z]$, respectively.

ylene signal and splitting of the $NCH₂Me₂OH)₂$ methyl resonance to two broad resonances, each of relative integral 6 H. This is consistent with a greater degree of ordering of the intramolecular H bonding at low temperature.

Attempts to prepare $Li₂O₂NN'$ or other alkali metal bis(alkoxide) salts by reaction of H_2O_2NN' with ⁿBuLi, MeLi, NaH, or KH gave decomposition products, and so all complexation reactions needed to take place using only the protio ligand. The synthesis and proposed structures of the new neutral organometallic and coordination complexes of O_2NN' are shown in Scheme 4.

Reaction of Ti(NMe₂)₄ with H_2O_2NN' (1 equiv) gave ca. 50% conversion to the white homoleptic compound $Ti(O_2NN')_2$ (23) with ca. 50% of the $Ti(NMe_2)_4$ remaining unreacted. The preference for formation of **23** over the desired product $Ti(NMe₂)₂(O₂NN')$ persisted regardless of the method of addition, solvent, or reaction conditions. Reaction of $Ti(NMe₂)₄$ with $H₂O₂NN'$ (2 equiv) gave 23 in ca*.* 80% isolated yield. Compound **23** is fluxional at room temperature, giving rise to broad NMR spectra. On cooling to -80 °C, a sharp, low-temperature limit 1H spectrum was obtained which is consistent with the C_2 symmetric structure (equivalent O_2NN' ligands) illustrated in Scheme 4. The two $\rm CH_2CMe_2O$ "arms" of each ligand are inequivalent, and the methylene H

Scheme 4. Synthesis of Group 4 Dichloride, Bis(amide), and Dialkyl Complexes of O₂NN[']

 $R = NMe₂$ (26) or $CH₂SiMe₃$ (27)

atoms and CMe2 methyl groups of each are also inequivalent. The shifts of the pyridyl group are rather similar to those in H_2O_2NN' itself, suggesting that it is not coordinated. The structure proposed for **23** is analogous to that found by X-ray diffraction for the homologous bis(alkoxide)-methylamine complex Ti{MeN- $(CH_2CH_2O)_2$ ₂, isolated from the reaction of amorphous α -titanic acid with MeN(CH₂CH₂OH)₂.⁹ⁱ
The redistribution reaction between

The redistribution reaction between **23** and TiCl4- $(THF)_2$ in benzene gave the sparingly soluble dichloride complex $TiCl₂(O₂NN')$ (24) as a white solid in 90% isolated yield. The NMR spectrum of **24** shows *Cs* symmetry with equivalent "arms" (featuring diastereotopic $CH₂$ and $CMe₂$ groups as expected). The EI mass spectrum of **24** showed a parent ion with the appropriate isotope distribution. The zirconium analogue of **24** was prepared in a similar way to that used for $ZrCl_2(N_2-$ NN′) (**1**), namely, by reaction of the protio ligand with $\rm ZrCl_2(CH_2SiMe_3)_2(Et_2O)_2$.²⁹ The compound $\rm ZrCl_2(O_2NN')$ (**25**) was isolated in 52% yield, and the NMR and other data were analogous to those of **24**. Protonolysis routes were also used for the synthesis of $Zr(NMe₂)₂(O₂NN')$ (26) and $Zr(CH_2SiMe_3)_2(O_2NN')$ (27) from $Zr(NMe_2)_4$ and Zr(CH2SiMe3)4, respectively. The expected side products $SiMe₄$ and $HNNe₂$ were identified in NMR tube scale experiments. In contrast to $Zr(CH_2SiMe_3)_2(N_2NN')$ (4), which decomposes at room temperature over several hours, the dialkyl compound **27** appears to be indefinitely stable in solution at room temperature and has been crystallographically characterized. The molecular structure is shown in Figure 7, and selected bond

⁽²⁹⁾ Brand, H.; Capriotti, J. A.; Arnold, J. *Organometallics* **1994**, *13*, 4469.

Figure 7. Displacement ellipsoid plot $(30\% \text{ probability})$ of one of the two crystallographically independent molecules of $Zr(CH_2SiMe_3)_2(O_2NN')$ (27). H atoms omitted for clarity.

Table 7. Selected Bond Lengths (Å) and Angles (deg) for $\text{Zr}(CH_2SiMe_3)_2(O_2NN')$ (27)^{*a*}

$Zr(1)-N(1)$	2.482(3)	[2.479(3)]
$Zr(1)-N(2)$	2.514(3)	[2.516(3)]
$Zr(1)-O(1)$	1.983(3)	[1.981(3)]
$Zr(1)-O(2)$	1.985(3)	[1.978(3)]
$Zr(1) - C(15)$	2.261(4)	[2.271(4)]
$Zr(1) - C(19)$	2.295(4)	[2.293(4)]
$N(1) - Zr(1) - N(2)$	68.30(11)	[68.3(1)]
$N(1)-Zr(1)-O(1)$	72.03(11)	[72.22(11)]
$N(2)-Zr(1)-O(1)$	85.66(11)	[81.95(11)]
$N(1)-Zr(1)-O(2)$	71.98(11)	[72.01(11)]
$N(2)-Zr(1)-O(2)$	85.49(11)	[88.60(11)]
$O(1) - Zr(1) - O(2)$	143.69(11)	[144.00(11)]
$N(1) - Zr(1) - C(15)$	154.25(13)	[154.70(13)]
$N(2)-Zr(1)-C(15)$	85.96(13)	[86.77(13)]
$O(1) - Zr(1) - C(15)$	106.95(13)	[109.61(13)]
$O(2) - Zr(1) - C(15)$	107.44(13)	[104.39(13)]
$N(1)-Zr(1)-C(19)$	106.69(13)	[102.76(14)]
$N(2)-Zr(1)-C(19)$	174.77(14)	[170.52(14)]
$O(1) - Zr(1) - C(19)$	91.35(14)	[92.45(14)]
$O(2) - Zr(1) - C(19)$	94.45(14)	[91.53(14)]
$C(15)-Zr(1)-C(19)$	99.03(15)	[102.37(16)]
$Zr(1)-C(15)-Si(1)$	124.0(2)	[120.9(2)]
$Zr(1) - C(19) - Si(2)$	124.7(2)	[125.8(2)]
$Zr(1)-O(1)-C(1)$	130.5(2)	[130.7(2)]
$Zr(1)-O(2)-C(3)$	129.9(2)	[129.7(2)]

^a The values in brackets are for the other crystallographically independent molecule in the asymmetric unit.

distances and angles are listed in Table 7. There are two crystallographically independent molecules of **27** in the asymmetric unit with no substantial differences between them.

Molecules of **27** have approximately octahedral metal centers with $Zr-N$, $-O$, and $-C$ distances within the usual ranges.²² The overall coordination environment is analogous to both the previously described bis- (phenolate)-diamine complexes ZrX_2 { $(2-C_5H_4N)CH_2N$ - $(2\text{-}O\text{-}3,5\text{-}C_6H_2R_2)_2$ $(X = Cl, NMe_2, alkyl; R = 'Bu or$
Me)^{8j,l} and Zr(CH₂Ph)₂(N₂NN') (3) The formal replace- $Me^{8j,l}$ and $Zr(CH_2Ph)_2(N_2NN')$ (3). The formal replacement of the $\text{CH}_2\text{NSiMe}_3$ groups of N₂NN' by $-\text{CMe}_2\text{O}$ in O_2NN' has clearly provided for a more open metal center. Surprisingly, the Zr-Namine distances in **³** are both somewhat shorter than the corresponding values in **27** despite the apparent greater crowding in the former. The CH_2 -Zr-CH₂ angle in **27** (av 100.7°) is more acute than that in $3(87.09(9)°)$, which can be

Scheme 5. Synthesis of Cationic Zirconium Complexes of O2NN′ **(anions omitted for clarity)**

attributed to several factors, including the bulkier nature of N_2NN' vs O_2NN' and SiMe₃ vs Ph and the presence of the additional Zr'''Cipso interaction in **³**. In contrast to 3, there are no acute $Zr-CH_2-R$ angles (range 120.9(2)-125.8(2)°) in **²⁷**.

Scheme 5 summarizes the reactions of 27 with $BArF_3$ to form alkyl zirconium cations. In the presence of THF, dichloromethane solutions of 27 react with BAr^F₃ to form [Zr(CH2SiMe3)(THF)(O2NN′)][Me3SiCH2BArF 3] (**28**- $Me₃SiCH₂BAr^F₃$ in 87% isolated yield. The NMR data for the $[Me_3SiCH_2BArF_3]$ ⁻ anion show that it is noncoordinating. The $[Zr(CH_2SiMe_3)(THF)(O_2NN')]^+$ cation $(28⁺)$ is proposed to have the C_s symmetrical structure illustrated in Scheme 5. The relative positions of the CH2SiMe3, THF, and pyridyl groups were determined by NOE experiments. The base-stabilized cation **28**⁺ is analogous to $[ZrMe(THF)(O_2NN')]^+(12^+,$ Scheme 2) and to previously described bis(phenolate)-diamine monoalkyl cations, for example, $[Zr(CH_2Ph)(THF)(2-C_5H_4N)CH_2N (2\text{-}O\text{-}3,5\text{-}C_6H_2R_2)_2\}$ ^{+ $8j$}

Reaction of 27 with BAr^F ₃ in dichloromethane in the absence of THF gave the compound 29 -Me₃SiCH₂BAr^F₃ as a white solid in 90% yield. In addition to resonances for a noncoordinating $[Me₃SiCH₂BAr^F₃]⁻$ anion, the NMR spectra showed the formation of a *C*¹ symmetric species " $[\text{Zr}(\text{CH}_2\text{SiMe}_3)(\text{O}_2\text{NN}')]^{+\nu}$. The methylene H atoms of the alkyl ligand appear as a pair of mutually coupled doublets, and the methyl groups and methylene H atoms of O_2NN' are all inequivalent. On the basis of these data and selected NOE experiments it is proposed that 29-Me₃SiCH₂BAr^F₃ contains the bimetallic cation $[Zr_2(CH_2SiMe_3)_2(O_2NN')_2]^{2+}$ (Scheme 5). The dication has six-coordinate Zr centers linked by bridging alkoxide O atoms (each O_2NN' has one bridging and one nonbridging $CH₂CMe₂O$ "arm").

Compounds with $Zr_2(\mu\text{-O})_2$ cores are structurally well established.²² The structure proposed for 29^{2+} can, in particular, be compared to recently reported^{8c} dimeric neutral or dicationic complexes Sc_2Cl_2 { $(2-C_5H_4N)CH_2N$ $(2 O-3,5-C_6H_2Me_2$ ₂}₂ (III, structurally characterized) and $[Ti_2Me_2$ {(2-C₅H₄N)CH₂N(2-O-3,5-C₆H₂R₂)₂}₂]²⁺ (**IV**, R =

Me or ^tBu). Whereas the titanium dication $[Ti₂Me₂$ { $(2 C_5H_4N$)CH₂N(2-O-3,5-C₆H₂R₂)₂}₂]²⁺ is very fluxional on the NMR time scale at room temperature (the fluxional process being frozen out at -80 °C), the dizirconium complex 29^{2+} is not. This is attributed to the reduced steric crowding about the μ -O atoms in the later (despite the presence of the neighboring CMe_2 units) and the larger radius of Zr. The discandium complex **III** was static on the NMR time scale at room temperature, there being much less Coulombic repulsion between the metal centers in this case.

Addition of ethylene (1 bar) to NMR tube samples of 29-Me₃SiCH₂BAr^F₃ gave no polymerization activity (the same observation was made^{8c} for solutions of $[Ti₂Me₂ {(2-C_5H_4N)CH_2N(2-O-3,5-C_6H_2^tBu_2)_2}^{2+}),$ indicating that in these O_2NN' -supported systems the formation of alkoxide-bridged dimers is a potent catalyst deactivation pathway. Unsurprisingly, in the light of this, none of the compounds $MX_2(O_2NN')$ (M = Ti or Zr; X = Cl or $CH₂SiMe₃$) showed any significant ethylene polymerization capability when activated with either methyl aluminoxane or (for 27) $BArF_3$ or $[CPh_3][BArF_4]$ (toluene solvent, 5 bar ethylene pressure, room temperature).

Conclusions

The N_2NN' ligand provides a useful support for a range of organometallic and imido complexes of certain group 4 and 5 metals, except for when bulky alkyl groups are involved. As seen in other silylamidesupported systems, however, monoalkyl cations undergo intramolecular cyclometalation via SiMe_3 group C-H bond activation. The new O_2NN' ligand allows for the syntheses of six-coordinate titanium dichloride and bis- (dimethylamide) derivatives that were not accessible for N2NN′. Furthermore, bulkier dialkyl zirconium derivatives are apparently more stable with the bis(alkoxide) diamine ligand. The formation of cationic *µ*-alkoxidebridged dimers probably accounts for (or at least contributes to) the lack of any significant ethylene polymerization activity with the O_2NN' -supported systems.

Experimental Section

General Methods and Instrumentation. All manipulations were carried out using standard Schlenk line or drybox techniques under an atmosphere of argon or of dinitrogen. Protio- and deutero-solvents were predried over activated 4 Å molecular sieves and were refluxed over the appropriate drying agent, distilled, and stored under dinitrogen in Teflon valve ampules. NMR samples were prepared under dinitrogen in 5 mm Wilmad 507-PP tubes fitted with J. Young Teflon valves. ¹H, ¹³C{¹H}, ¹³C, and ¹⁹F NMR spectra were recorded on Varian Mercury-VX 300 and Varian Unity Plus 500 spectrometers.

¹H and ¹³C assignments were confirmed with the use of DEPT-135 and two-dimensional ${}^{1}H-{}^{1}H$ and ${}^{13}C-{}^{1}H$ NMR experiments. 1H and 13C spectra were referenced internally to residual protio-solvent (1H) or solvent (13C) resonances and are reported relative to tetramethylsilane ($\delta = 0$ ppm). ¹⁹F and ¹¹B spectra were referenced externally to CFCl₃ and BF₃'Et₂O, respectively. Chemical shifts are quoted in *δ* (ppm) and coupling constants in hertz. Infrared spectra were prepared as Nujol mulls and were recorded on Perkin-Elmer 1600 and 1710 series FTIR spectrometers; data are quoted in wavenum $bers$ (cm⁻¹). Mass spectra were recorded by the mass spectrometry services of the University of Oxford Department of Chemistry, and elemental analyses by the analytical services of the University of Oxford Inorganic Chemistry Laboratory.

Literature Preparations and Other Starting Materials. The compounds H_2N_2NN' , ^{10b} Li_2N_2NN' , ^{10b} $ZrCl_2(N_2NN')$ $(1)^{10b}$ Ti(NR)Cl₂(py)₃ (R = ^tBu or Ar),²¹ Zr(CH₂SiMe₃)₄,³⁰
Zr(CH₂CMe₃), ³¹ Zr(CH₂SiMe₃),Cl₂(Ft₂O)₂ ²⁹ M(NMe₃), (M = Ti $\rm Zr(CH_2CMe_3)_4, ^{31}Zr(CH_2Sime_3)_2Cl_2 (Et_2O)_2, ^{29}M(NMe_2)_4 (M=Ti)$ or Zr) 32 TiCl (THE)2 33 LiCH SiMe2 34 and M(N^tBu)Cla(ny)2 (M or Zr), 32 TiCl4(THF)2, 33 LiCH2SiMe3, 34 and M(N^tBu)Cl3(py)2 (M $=$ Nb or Ta)²⁷ were prepared according to published methods. Samples of BArF ³ were provided by DSM Research. Pyridine, t BuNH2, ArNH2, and piperidine were dried over the appropriate drying agents and distilled under reduced pressure. All other compounds and reagents were purchased and used without further purification.

ZrMe₂(N₂NN[']) (2). To a solution of $ZrCl_2(N_2NN')$ (1) (490 mg, 0.98 mmol) in benzene (20 mL) was added dropwise a solution of MeLi $(1.6 \text{ M} \text{ in } Et_2O, 0.62 \text{ mL}, 0.98 \text{ mmol})$ in benzene (5 mL). After stirring for 12 h another equivalent of MeLi (1.6 M in Et_2O , 0.62 mL, 0.98 mmol), in benzene (5 mL), was added dropwise. The mixture was stirred for a further 4 h, after which time the volatiles were removed under reduced pressure, giving crude $ZrMe₂(N₂NN')$ (2) as a light brown solid. This was extracted into pentane $(3 \times 15 \text{ mL})$ and filtered, and the combined extracts were concentrated to 5 mL. Cooling the solution to -30 °C produced **²** as a white solid, which was washed with cold pentane and dried in vacuo. Yield: 397 mg (88%).

¹H NMR (500.0 MHz, 293 K, C₆D₆): δ 8.59 (1 H, d, ³*J* 5.0 Hz, 6-C5H4N), 6.77 (1 H, dd, ³*J* 8.0, 7.0 Hz, 4-C5H4N), 6.38 (1 H, dd, ³*J* 5.0, 7.0 Hz, 5-C5H4N), 6.31 (1 H, d, ³*J* 8.0 Hz, 3-C5H4N), 3.43 (2 H, m, NCH2C*H*2NSi), 3.29 (2 H, s, C5H4- NC*H*2), 3.09 (2 H, m, NCH2C*H*2NSi), 2.54 (2 H, m, NC*H*2CH2- NSi), 2.09 (2 H, m, NC*H*2CH2NSi), 0.79 (2 H, s, ZrCH3), 0.70 (2 H, s, ZrCH3), 0.36 (18 H, s, Si(CH3)3). 13C{1H} NMR (125.7 MHz, 293 K, C₆D₆): δ 158.5 (2-C₅H₄N), 150.1 (6-C₅H₄N), 137.8 (4-C5H4N), 122.9 (5-C5H4N), 121.8 (3-C5H4N), 58.3 (C5H4N*C*H2), 57.9 (N*C*H2CH2NSi), 48.0 (NCH2*C*H2NSi), 41.8 (ZrCH3), 36.4 (ZrCH3), 1.3 (Si(CH3)3). IR (CsBr plates, Nujol): *ν* 1604 (m), 1572 (w), 1303 (w), 1280 (w), 1243 (s), 1154 (w), 1074 (s), 1035 (w), 1008 (w), 942 (m), 916 (m), 834 (s), 804 (m), 757 (m), 731 (w), 678 (w), 594 (w), 560 (w), 535 (w), 484 (w) cm-1. EI-MS: m/z 441 (28%), $[M - CH_3]^+$; 425 (100%), $[M - 2CH_3, H]^+$. Anal. Found (calcd for $C_{18}H_{38}N_4Si_2Zr$): C, 46.0 (47.2); H, 8.1 (8.4); N, 11.8 (12.2).

 $\mathbf{Zr}(\mathbf{CH}_2\mathbf{Ph})_2(\mathbf{N}_2\mathbf{NN}')$ (3). To a yellow solution of $\mathrm{ZrCl}(\mathrm{CH}_2)$ -Ph)(N2NN′) (**6**) (204 mg, 0.37 mmol) in benzene (20 mL) cooled to 5 °C was added PhCH₂MgCl (1.0 M in Et₂O, 368 μ L, 0.37 mmol) in benzene (5 mL). The mixture was allowed to warm to room temperature and stirred for 18 h, giving an opaque, dark orange solution. The volatiles were removed under reduced pressure, yielding an orange solid, which was triturated with pentane and dried in vacuo to afford pale yellow **3**. Yield: 140 mg (62%).

- (31) Davidson, P. J.; Lappert, M. F.; Pearce, R. *J. Organomet. Chem.* **1973**, *57*, 269.
	- (32) Bradley, D. C.; Thomas, I. M. *J. Chem. Soc.* **1960**, 3857.
	-
	- (33) Manzer, L. E. *Inorg. Synth.* **1982**, *21*, 135. (34) Tessier-Youngs, C.; Beachley, O. T. *Inorg. Synth.* **1986**, *24*, 95.

⁽³⁰⁾ Collier, M. R.; Lappert, M. F. *J. Chem. Soc., Dalton Trans.* **1973**, 445.

¹H NMR (500.0 MHz, 293 K, C₆D₆): δ 8.14 (1 H, d, ³*J* 5.5 Hz, 6-C5H4N), 7.35 (2 H, d, ³*J* 8.5 Hz, *o-*C6H5), 7.30 (2 H, t, ³*J* 7.5, 14 Hz, *m-*C6H5), 7.11 (2 H, t, ³*J* 8.5, 6 Hz, *m-*C6H5), 7.06 (2 H, d, ³*J* 7.5 Hz, *o-*C6H5), 6.85 (2 H, m, *p-*C6H5), 6.66 (1 H, dd, ³*J* 8.0, 7.5 Hz, 4-C5H4N), 6.23 (1 H, dd, ³*J* 5.5, 7.5 Hz, 5-C5H4N), 6.19 (1 H, d, ³*J* 8.0 Hz, 3-C5H4N), 3.28 (2 H, m, NCH2C*H*2NSi), 3.15 (2 H, s, C6H5C*H*2), 3.06 (2 H, s, C6H5C*H*2), 2.94 (2 H, s, C5H4NC*H*2), 2.91 (2 H, m, NCH2C*H*2NSi), 2.06 (2 H, m, NC*H*2CH2NSi), 1.76 (2 H, m, NC*H*2CH2NSi), 0.30 (18 Hs, Si(CH3)3). 13C{1H} NMR (125.7 MHz, 293 K, C6D6): *δ* 157.4 $(2-C_5H_4N)$, 151.8 $(i-C_6H_5)$, 151.4 $(6-C_5H_4N)$, 150.4 $(i-C_6H_5)$, 137.7 (4-C₅H₄N), 128.8 (o -C₆H₅), 127.0 (m -C₆H₅), 122.3 (5- C_5H_4N), 122.2 (3-C₅H₄N), 120.6 (*o*-, *m*-C₆H₅), 118.6 (2 \times overlapping *p*-C₆H₅), 73.1 (C₆H₅CH₂), 65.3 (C₆H₅CH₂), 58.1 (C5H4N*C*H2), 56.7 (N*C*H2CH2NSi), 48.1 (NCH2*C*H2NSi), 2.0 (Si- (CH3)3). IR (CsBr plates, Nujol): *ν* 1733 (w), 1605 (w), 1591 (m), 1572 (w), 1302 (w), 1259 (m), 1247 (m), 1206 (w), 1073 (w), 1017 (w), 942 (w), 902 (w), 835 (s), 802 (w), 746 (m), 725 (m), 697 (w), 678 (w), 670 (w), 447 (w) cm-1. EI-MS: *m*/*z* 505 $(25\%), \, [\text{M} - 2 \text{CH}_3, \, \text{Si}(\text{CH}_3)_3]^+; \, 367 \, (7\%), \, [\text{M} - \text{Si}(\text{CH}_3)_3,$ $CH_2C_6H_5$, C_6H_5 ⁺. Anal. Found (calcd for $C_{30}H_{46}N_4Si_2Zr$): C, 59.4 (59.1); H, 7.8 (7.6); N, 8.8 (9.2).

NMR Tube Scale Synthesis of Zr(CH2SiMe3)2(N2NN′**) (4).** A solution of H_2N_2NN' (18 mg, 0.053 mmol) in C_6D_6 (ca. 0.75 mL) was added to a sample of $Zr(CH_2SiMe_3)_4$ (20 mg, 0.045 mmol), resulting in the immediate formation of an orange-red solution. The NMR data were consistent with the quantitative formation of **4** and 2 equiv of SiMe4. **4** subsequently decomposed to a complex mixture of products over 6 h. ¹H NMR (500.0 MHz, 293 K, C₆D₆): δ 8.61 (1 H, d, ³*J* 5.5 Hz, 6-C₅H₄N), 6.87 (1 H, dd, ³J 8.0, 7.5 Hz, 4-C₅H₄N), 6.53 (1 H, dd, ³*J* 5.5, 7.5 Hz, 5-C5H4N), 6.48 (1 H, d, ³*J* 8.0 Hz, 3-C5H4N), 3.47 (2 H, s, C5H4NC*H*2), 3.41 (2 H, m,NCH2C*H*2- NSi), 3.33 (2 H, m,NCH2C*H*2NSi), 2.59 (2 H, m,NC*H*2CH2NSi), 2.39 (2 H, m,NC*H*2CH2NSi), 0.84 (2 H, s, C*H*2Si(CH3)3), 0.58 (2 H, s, C*H*2Si(CH3)3), 0.31 (18 H, s, NSi(CH3)3), 0.24 (9 H, s, CH2Si(C*H*3)3), 0.22 (9 H, s, CH2Si(C*H*3)3). 13C{1H} NMR (125.7 MHz, 293 K, C_6D_6): δ 156.5 (2-C₅H₄N), 150.6 (6-C₅H₄N), 137.3 (4-C5H4N), 123.1 (5-C5H4N), 122.7 (3-C5H4N), 57.1 (N*C*H2CH2- NSi), 54.2 (*C*H2Si(CH3)3), 54.2 (*C*H2Si(CH3)3), 51.1 (C5H4N*C*H2), 48.0 (NCH2*C*H2NSi), 2.5 (CH2Si(*C*H3)3), 2.4 (CH2Si(*C*H3)3), 0.5 $(NSi(CH₃)₃)$.

NMR Tube Scale Synthesis of $\operatorname{Zr}(\mathrm{CH}_2{}^t \mathrm{Bu})_2(\mathrm{N}_2 \mathrm{NN}')$ **(5).** A colorless solution of $\rm{Zr} (CH_2$ ^tBu)₄ (22 mg, 0.059 mmol) in $\rm{C_6D_6}$ (ca. 0.75 mL) was added to H_2N_2NN' (20 mg, 0.059 mmol), producing an immediate orange coloration. The NMR data were consistent with the quantitative formation of **5** and 2 equiv of CMe4. **5** subsequently decomposed to a complex mixture of products over 6 h.

¹H NMR (500.0 MHz, 293 K, C₆D₆): δ 8.38 (1 H, d, ³J 4.0 Hz, 6-C5H4N), 6.94 (1 H, dd, ³*J* 6.0, 8.0 Hz, 4-C5H4N), 6.67 (1 H, dd, ³*J* 4.0, 8.0 Hz, 5-C5H4N), 6.58 (1 H, d, ³*J* 6.0 Hz, 3-C5H4N), 3.98 (2 H, s, C5H4NC*H*2), 3.94 (2 H, m, NCH2C*H*2- NSi), 3.33 (2 H, m, NCH2C*H*2NSi), 3.00 (2 H, m, NC*H*2CH2- NSi), 2.57 (2 H, m, NCH₂CH₂NSi), 1.33 (2 H, s, CH₂C(CH₃)₃), 1.28 (2 H, s, CH₂C(CH₃)₃), 1.15 (18 Hs, C(CH₃)₃), 0.46 (18 Hs, $Si(CH₃)₃$. ¹³C{¹H} NMR (125.7 MHz, 293 K, C₆D₆): δ 153.8 $(2-C_5H_4N)$, 150.0 (6-C₅H₄N), 136.1 (4-C₅H₄N), 125.4 (5-C₅H₄N), 122.5 (3-C5H4N), 83.8 (*C*H2C(CH3)3), 77.4 (*C*H2C(CH3)3), 56.7 (N*C*H2CH2NSi), 48.5 (NCH2*C*H2NSi), 48.1 (C5H4N*C*H2), 34.3 (*C*(CH3)3), 32.2 (*C*(CH3)3), 23.2 (C(*C*H3)3), 20.0 (C(*C*H3)3), 0.13 $(Si(CH₃)₃)$.

ZrCl(CH₂Ph)(N₂NN') (6). To a solution of $ZrCl_2(N_2NN')$ (1) (500 mg, 1.0 mmol) in benzene (30 mL) cooled to 5 °C was added dropwise a solution of $PhCH_2MgCl$ (1.0 M in Et₂O, 1.0) mL, 1.0 mmol) in benzene (5 mL). The mixture immediately turned slightly orange and was allowed to warm to room temperature before being stirred for a further 16 h. The volatiles were removed under reduced pressure, and the resulting yellow solid was extracted into benzene (60 mL). The yellow extract was filtered, and the volatiles were removed under reduced pressure to give **6** as a yellow solid. Yield: 486 mg (87%).

¹H NMR (500.0 MHz, 293 K, C₆D₆): δ 9.26 (1 H, d, ³J 5.0 Hz, 6-C5H4N), 7.28 (4 H, m, *o-, m*-C6H5), 6.84 (1 H, t, ³*J* 6.5 Hz, *p*-C₆H₅), 6.72 (1 H, dd, ³J 7.5, 7.5 Hz, 4-C₅H₄N), 6.37 (1 H, dd, ³*J* 5.0, 7.5 Hz, 5-C5H4N), 6.20 (1 H, d, ³*J* 7.5 Hz, 3-C5H4N), 3.33 (2 H, s, $C_6H_5CH_2$), 3.32 (2 H, m, NCH₂CH₂NSi), 3.03 (2 H, s, C5H4NC*H*2), 2.90 (2 H, m, NCH2C*H*2NSi), 2.15 (2 H, m, NC*H*2CH2NSi), 2.09 (2 H, m, NC*H*2CH2NSi), 0.32 (18 H, s, Si- (CH₃)₃). ¹³C{¹H} NMR (125.7 MHz, 293 K, C₆D₆): *δ* 157.5 (2- C_5H_4N), 151.4 (*i*-C₆H₅), 150.5 (6-C₅H₄N), 138.4 (4-C₅H₄N), 129.3 (*o-*C6H5), 128.3 (*m*-C6H5), 122.9 (5-C5H4N), 121.5 (3- C_5H_4N , 118.7 (p - C_6H_5), 64.7 ($C_6H_5CH_2$), 57.5 ($C_5H_4NCH_2$), 57.2 (N*C*H2CH2NSi), 48.7 (NCH2*C*H2NSi), 2.1 (Si(CH3)3). IR (CsBr plates, Nujol): *ν* 1604 (m), 1589 (m), 1570 (w), 1300 (w), 1206 (m), 1175 (w), 1157 (w), 1083 (s), 1015 (m), 946 (s), 925 (w), 902 (s), 873 (w), 839 (s), 799 (m), 790 (m), 747 (m), 730 (w), 694 (m), 679 (w), 648 (w), 633 (w), 594 (m), 579 (m) cm-1. EI-MS: *^m*/*^z* 552 (5%), [M]+; 517 (21%), [M - Cl]+; 461 (35%), [M $-C_6H_5$ ⁺. Anal. Found (calcd for $C_{23}H_{39}CIN_4Si_2Zr$): C, 49.5 (49.8); H, 7.2 (7.1); N, 9.2 (10.1).

ZrCl(CH2SiMe3)(N2NN′**) (7).** To a yellow solution of $\rm ZrCl_2(N_2NN')$ (1) (113 mg, 0.23 mmol) in benzene (10 mL) was added dropwise a solution of $\text{CIMgCH}_2\text{SiMe}_3$ (1.0 M in Et₂O, 215 μ L, 0.22 mmol) in benzene (5 mL), resulting in the immediate formation of a white precipitate. After stirring for 15 min the volatiles were removed under reduced pressure, producing a yellow solid, which was washed with pentane (20 mL) before being extracted into benzene $(3 \times 20 \text{ mL})$. The combined yellow extracts were filtered and the volatiles removed under reduced pressure to afford **7** as a white solid. Yield: 117 mg (97%).

¹H NMR (300.1 MHz, 293 K, C₆D₆): δ 9.16 (1 H, d, ³J 5.5 Hz, (6-C5H4N), 6.82 (1 H, dd, ³*J* 7.8, 7.8 Hz, (4-C5H4N), 6.44 (1 H, dd, ³*J* 5.5, 7.8 Hz, (5-C5H4N), 6.36 (1 H, d, ³*J* 7.8 Hz, (3-C5H4N), 3.49 (2 H, m, NCH2C*H*2NSi), 3.29 (2 H, s, C5H4- NC*H*2), 3.09 (2 H, m, NCH2C*H*2NSi), 2.82 (2 H, m, NC*H*2CH2- NSi), 2.23 (2 H, m, NC*H*2CH2NSi), 1.18 (2 H, s, C*H*2Si(CH3)3), 0.39 (9 H, s, $CH_2Si(CH_3)_3$), 0.35 (18 H, s, NSi $CH_3)_3$). ¹³C{¹H} NMR (75.5 MHz, 293 K, C₆D₆): δ 157.0 (2-C₅H₄N), 150.8 (6- C_5H_4N , 138.1 (4- C_5H_4N), 123.0 (5- C_5H_4N), 121.3 (3- C_5H_4N), 59.7 (C5H4N*C*H2), 59.2 (N*C*H2CH2NSi), 53.0 (*C*H2Si(CH3)3), 50.0 (NCH₂CH₂NSi), 4.0 (CH₂Si(CH₃)₃), 1.9 (NSi(CH₃)₃). IR (CsBr plates, Nujol): *ν* 1644 (w), 1605 (s), 1572 (m), 1402 (w), 1350 (w), 1306 (m), 1283 (m), 1156 (m), 1137 (m), 1106 (w), 1083 (s), 1036 (m), 1013 (w), 988 (w), 965 (w), 946 (w), 899 (w), 801 (w), 727 (w), 627 (s), 645 (m), 632 (m), 596 (s), 562 (s), 507 (s), 485 (w), 445 (m), 425 (m) cm-1. Anal. Found (calcd for $C_{20}H_{43}CIN_4Si_3Zr$: C, 43.5 (43.6); H, 7.7 (7.9); N, 10.2 (10.2).

 $\mathbf{ZrMe}(\mathbf{CH}_2\mathbf{Ph})(N_2\mathbf{NN}')$ (8). To a yellow solution of ZrCl-(CH2Ph)(N2NN′) (**6**) (206 mg, 0.37 mmol) in benzene (20 mL) cooled to 5 °C was added MeMgBr (1.4 M in toluene/thf, 265 μ L, 0.37 mmol) in benzene (5 mL). The mixture was allowed to warm to room temperature and stirred for 16 h to give an opaque orange-brown solution. The volatiles were removed under reduced pressure, yielding a light brown solid. The solid was extracted into benzene (15 mL) and filtered to give an orange solution. The volatiles were removed under reduced pressure, yielding **8** as a yellow solid. Yield: 162 mg (82%).

¹H NMR (500.0 MHz, 293 K, C₆D₆): δ 8.60 (1 H, d, ³*J* 5.5 Hz, 6-C₅H₄N), 7.35 (2 H, d, ³J 7.0 Hz, o -C₆H₅), 7.29 (2 H, dd, ³*J* 7.0, 7.5 Hz, *m*-C6H5), 6.84 (1 H, t, ³*J* 7.5 Hz, *p*-C6H5), 6.76 (1 H, dd, ³*J* 7.5, 7.5 Hz, 4-C5H4N), 6.37 (1 H, dd, ³*J* 5.5, 7.5 Hz, 5-C5H4N), 6.29 (1 H, d, ³*J* 7.5 Hz, 3-C5H4N), 3.29 (2 H, m, NCH₂CH₂NSi), 3.21 (2 H, s, C₆H₅CH₂), 3.08 (2 H, s, C₅H₄-NCH₂), 2.91 (2 H, m, NCH₂CH₂NSi), 2.10 (2 H, m, NCH₂CH₂-NSi), 1.83 (2 H, m, NC*H*2CH2NSi), 0.73 (3 H, s, ZrCH3), 0.32 (18 H, s, Si(CH₃)₃). ¹³C{¹H} NMR (125.7 MHz, 293 K, C₆D₆): *δ* 158.6 (2-C5H4N), 150.6 (6-C5H4N), 150.2 (*i*-C6H5), 138.0 (4 C_5H_4N), 128.6 (o - C_6H_5), 127.7 (m - C_6H_5), 122.8 (5- C_5H_4N), 121.9 (3-C5H4N), 118.2 (*p*-C6H5), 63.7 (C6H5*C*H2), 58.0 (C5H4N*C*H2), 57.0 (NCH₂CH₂NSi), 48.3 (NCH₂CH₂NSi), 44.5 (ZrCH₃), 1.8 (Si(CH3)3). IR (CsBr plates, Nujol): *ν* 1654 (m), 1604 (s), 1304 (m), 1280 (w), 1250 (s), 1209 (s), 1174 (w), 1159 (w), 1142 (w), 1112 (w), 1082 (m), 1072 (s), 1036 (w), 1025 (w), 1010 (w), 1000 (w), 943 (s), 906 (s), 835 (s), 779 (w), 764 (w), 747 (m), 730 (w), 697 (m), 675 (w), 633 (m), 593 (w), 584 (w), 561 (w), 541 (w), $520 \, (\text{w})$, $452 \, (\text{m}) \, \text{cm}^{-1}$. EI-MS: $m/z \, 441 \, (20 \%)$, $[\text{M} - \text{CH}_2\text{C}_6\text{H}_5^+]$;
 $425 \, (96 \%)$ $[\text{M} - \text{CH}_2\text{C}_6\text{H}_7]$. H. $[\text{H}_2]$ ⁺ Anal, Found (calcd for 425 (96%), [M - CH₂C₆H₅, H, CH₃]⁺. Anal. Found (calcd for $C_{24}H_{42}N_{4}Si_{2}Zr$: C, 53.7 (54.0); H, 7.8 (7.9); N, 10.2 (10.5).

 $ZrCl{(2-NC_5(6-C_3H_5)H_4)CH_2N(CH_2CH_2NSiMe_3)_2}$ (9). To a yellow solution of $ZrCl_2(N_2NN')$ (1) (194 mg, 0.39 mmol) in benzene (5 mL) was added dropwise a solution of ClMgCH₂-CHCH₂ (2.0 M in thf, 194 μ L, 0.39 mmol) in benzene (3 mL). After stirring for 75 min the mixture had become cloudy and brown-orange in color. The volatiles were removed under reduced pressure, and the resulting brown oil was extracted into pentane (30 mL). The extract was filtered and the volatiles were removed under reduced pressure to give analytically pure **9** as a yellow oil, which could not be crystallized. Yield: 145 mg (74%).

¹H NMR (300.1 MHz, 293 K, C₆D₆): δ 6.06 (1 H, m, C₅H₄- $(CH_2CHCH_2)N$, 6.02 (1 H, dd, ³ $J = 5.4$, 8.8 Hz, 4-C₅H₄(CH₂-CHCH₂)N), 5.36 (1 H, m, ${}^{3}J = 8.8, 5.9$ Hz, 5-C₅H₄(CH₂-CHCH2)N), 5.20 (1 H, m, C5H4(CH2CHC*H*2)N), 5.05 (1 H, m, 6-C5H4(CH2CHCH2)N), 4.98 (1 H, m, C5H4(CH2CHC*H*2)N), 4.79 $(1 \text{ H}, \text{ d}, \, \text{3}J = 5.4 \text{ Hz}, \, 3\text{-}C_5\text{H}_4(\text{CH}_2\text{CHCH}_2)\text{N}), \, 3.38 \, (2 \text{ H}, \, \text{m}, \, \text{K}$ NCH_2CH_2NSi , 3.12 (1 H, d, ²J = 13.2 Hz, $C_5H_4(CH_2CHCH_2)$ - NCH_2), 2.85 (2 H, m, NCH_2CH_2NSi), 2.78 (1 H, d, ² $J = 13.2$ Hz, C5H4(CH2CHCH2)NC*H*2), 2.47 (3 H, m, NC*H*2CH2NSi, C5H4(C*H*2CHCH2)N), 2.10 (3 H, m, NC*H*2CH2NSi, C5H4(C*H*2- $CHCH₂$)N), 0.33 (9 H, s, Si(CH₃)₃), 0.29 (9 H, s, Si(CH₃)₃). ¹³C- $\{^1H\}$ NMR (75.5 MHz, 293 K, C₆D₆): δ 148.1 (2-C₅H₄(CH₂-CHCH₂)N), 136.4 (C₅H₄(CH₂CHCH₂)N), 123.2 (4-C₅H₄(CH₂-CHCH2)N), 118.9 (5-C5H4(CH2CHCH2)N), 117.5 (C5H4(CH2CH*C*-H₂)N), 95.5 (3-C₅H₄(CH₂CHCH₂)N), 60.1 (C₅H₄(CH₂CHCH₂)-N*C*H2), 60.1 (N*C*H2CH2NSi), 59.5 (N*C*H2CH2NSi), 58.0 (6- C5H4(CH2CHCH2)N), 48.0 (NCH2*C*H2NSi), 47.7 (NCH2*C*H2NSi), 40.8 (C5H4(*C*H2CHCH2)N), 1.5 (Si(CH3)3), 1.3 (Si(CH3)3). IR (CsBr plates): *ν* 3072 (w), 3036 (w), 2951 (s), 2900 (w), 2854 (m), 1634 (m), 1607 (m), 1560 (s), 1465 (w), 1445 (m), 1407 (m), 1374 (m), 1354 (w), 1308 (m), 1247 (s), 1201 (w), 1157 (w), 1122 (w), 1072 (m), 1022 (w), 992 (m), 916 (s), 869 (w), 836 (m), 807 (w), 758 (w), 747 (m), 706 (w), 680 (m), 624 (w), 599 (w), 570 (w), 450 (w) cm-1. EI-MS: *m*/*z* 502 (15%) [M]+; 429 (29%) $[M - Si(CH_3)_3]^+$. Anal. Found (calcd for $C_{19}H_{39}CIN_4$ -Si₂Zr): C, 46.3 (45.3); H, 7.0 (7.4); N, 11.3 (11.1).

[Zr{**(2-NC5H4)CH2N(CH2CH2NSiMe3)(CH2CH2NSiMe**- $_{2}CH_{2}-$ }][MeBAr^F₃] (10-MeBAr^F₃). To a solution of ZrMe₂(N₂-NN′) (**2**) (187 mg, 0.41 mmol) in benzene (5 mL) was added BAT_{3} in benzene (5 mL), resulting in the immediate formation of a red oil. The oil was isolated, washed with benzene (3×5 mL), and dried in vacuo to afford **10**-MeBArF ³ as a white solid. Yield: 235 mg (60%).

¹H NMR (500.0 MHz, 293 K, CD₂Cl₂): δ 9.20 (1 H, d, ³*J* 6.0 Hz, 6-C₅H₄N), 8.24 (1 H, dd, ³J 8.0, 7.5 Hz, 4-C₅H₄N), 7.76 (1 H, dd, ³*J* 7.5, 6.0 Hz, 5-C5H4N), 7.69 (1 H, d, ³*J* 8.0 Hz, 3-C5H4N), 4.32 (2 H, s, C5H4NC*H*2), 3.93 (1 H, m, NCH2C*H*2- NSi), 3.79 (1 H, m, NCH2C*H*2NSi), 3.79 (1 H, m, NCH2C*H*2- NSi), 3.61 (1 H, m, NCH2C*H*2NSi), 3.54 (1 H, m, NC*H*2CH2- NSi), 3.32 (1 H, m, NC*H*2CH2NSi), 3.24 (1 H, m, NC*H*2CH2NSi), 3.02 (1 H, m, NC*H*₂CH₂NSi), 1.39 (1 H, d, ²J = 15.5 Hz, ZrCH₂), 1.10 (1 H, d, $^2J = 15.5$ Hz, ZrCH₂), 0.44 (3 H, br s, BCH₃), 0.43 (3 H, s, Si $(CH_3)_2$), 0.00 (3 H, s, Si $(CH_3)_2$), -0.02 (9 H, s, Si(CH₃)₃). ¹³C{¹H} NMR (125.7 MHz, 293 K, CD₂Cl₂): δ 159.3 (2-C5H4N), 152.5 (6-C5H4N), 148.7 (*o-*C6F5, ¹*J* 234 Hz), 143.7 $(4-C_5H_4N)$, 137.8 $(p-C_6F_5, 1J$ 248 Hz), 136.8 $(m-C_6F_5, 1J$ 264 Hz), 126.2 (5-C₅H₄N), 124.8 (3-C₅H₄N), 60.0 (NCH₂CH₂NSi), 59.5 (ZrCH₂), 58.7 (C₅H₄NCH₂), 56.1 (NCH₂CH₂NSi), 52.6 (NCH2*C*H2NSi), 45.0 (NCH2*C*H2NSi), 10.3 (BCH3), 7.6 (SiCH3), 3.2 (SiCH₃), 0.8 (Si(CH₃)₃). ¹⁹F NMR (470.4 MHz, 293 K, CD₂-Cl₂): δ -133.4 (6 F, d, ³J 21.4 Hz, o -C₆F₅), -165.2 (3 F, t, ³J 21.4 Hz, *^p*-C6F5), -167.9 (6 F, dd, ³*^J* 21.4 Hz, *^m*-C6F5). 11B NMR (160.4 MHz, 293 K, CD₂Cl₂): δ -14.73 ([MeB(C₆F₅)₃]⁻). IR (CsBr plates, Nujol): *ν* 1641 (m), 1610 (m), 1510 (s), 1304 (w), 1260 (m), 1086 (s), 1054 (w), 1040 (w), 1018 (w), 995 (w), 979 (w), 966 (w), 952 (w), 936 (w), 922 (w), 876 (w), 840 (s), 766 (w), 748 (w), 724 (w), 685 (w), 660 (w), 647 (w), 619 (w), 604 (w), 588 (w), 570 (w), 541 (w), 522 (w), 474 (w), 430 (w) cm-1. Anal. Found (calcd for $C_{35}H_{34}BF_{15}N_4Si_2Zr$): C, 44.7 (44.1); H, 4.0 (3.6); N, 5.7 (5.9); B, 1.1 (1.1).

 $[\mathbf{ZrMe(THF)(N_2NN')}][\mathbf{MeBArF_3}]$ (12-MeBAr^F₃). To a colorless solution of $ZrMe₂(N₂NN')$ (2) (111 mg, 0.24 mmol) and THF (ca. 0.5 mL) in benzene (5 mL) was added a solution of BArF ³ (124 mg, 24 mmol) in benzene (10 mL), resulting in the immediate formation of an orange-brown solution. The mixture was stirred for 15 min, after which time the volatiles were removed under reduced pressure, yielding **12**-MeBArF ³ as a brown oil, which could not be crystallized. Yield: 247 mg (98%).

¹H NMR (300.0 MHz, 293 K, CD₂Cl₂): δ 8.84 (1 H, d, ³*J* 6.6 Hz, 6-C5H4N), 8.04 (1 H, dd, ³*J* 7.8, 7.5 Hz, 4-C5H4N), 7.55 (2 H, m, 3-C₅H₄N, 5-C₅H₄N), 4.31 (4 H, br s, 2,5-C₄H₈O), 4.13 (2 H, s, C5H4NC*H*2), 3.76 (2 H, m, NCH2C*H*2NSi), 3.37 (4 H, m, NCH2C*H*2NSi, NC*H*2CH2NSi), 2.85 (2 H, m, NC*H*2CH2NSi), 2.18 (3 H, br s, 3,4-C₄H₈O), 1.92 (1 H, br s, 3,4-C₄H₈O), 0.52 (3 H, s, ZrCH₃), 0.48 (3 H, br s, BCH₃), 0.0518 H, s, Si(CH₃)₃). $^{13}{\rm C}\{^1{\rm H}\}$ NMR (75.5 MHz, 293 K, CD₂Cl₂): $\,\delta$ 159.4 (2-C₅H₄N), 151.4 (6-C₅H₄N), 148.7 (o -C₆F₅, ¹J 228 Hz), 141.8 (4-C₅H₄N), 137.7 (*p-*C6F5, ¹*J* 238 Hz), 137.0 (*m-*C6F5, ¹*J* 238 Hz), 125.1 $(5-C_5H_4N)$, 124.6 $(3-C_5H_4N)$, 74.6 $(2,5-C_4H_8O)$, 58.1 (NCH₂CH₂-NSi), 56.5 (C5H4N*C*H2), 49.4 (NCH2*C*H2NSi), 48.0 (3,4-C4H8O), 25.8 (ZrCH3), 10.6 (BCH3), 0.9 (Si(CH3)3). 19F NMR (282.3 MHz, 293 K, CD₂Cl₂): δ -133.6 (6 F, d, ³J 21.5 Hz, o -C₆F₅), -165.6 (3 F, t, ³*^J* 21.7 Hz, *^p*-C6F5), -168.2 (6 F, m, ³*^J* 21.7, 21.5 Hz, *m*-C₆F₅). ¹¹B NMR (96.3 MHz, 293 K, CD₂Cl₂): δ -14.9 ([MeBAr^F₃]⁻). IR (CsBr plates, Nujol): *ν* 2613 (w), 2588 (w), 2538 (w), 2082 (w), 2006 (w), 1933 (w), 1871 (w), 1641 (s), 1611 (s), 1572 (m), 1554 (w), 1515 (m), 1505 (w), 1306 (m), 1261 (s), 1163 (m), 1142 (m), 1099 (s), 1044 (w), 898 (w), 802 (w), 780 (w), 687 (m), 661 (s), 647 (w), 602 (s), 568 (s), 529 (w), 459 (s), 436 (w), 423 (w) cm⁻¹. Anal. Found (calcd for $C_{40}H_{46}BF_{15}N_4$ -OSi2Zr'0.3C6H6): C, 46.9 (47.2); H, 4.8 (4.5); N, 5.1 (5.3).

 $[\text{ZrCl}(N_2NN')] [\text{PhCH}_2\text{BAT}^F_3]$ (13-PhCH₂BAr^F₃). To a yellow suspension of ZrCl(CH2Ph)(N2NN′) (**6**) (426 mg, 0.77 mmol) in benzene (15 mL) cooled to 5 °C was added dropwise a solution of BAr^{F}_3 (393 mg, 0.77 mmol) in benzene (15 mL), resulting immediately in a loss of color intensity of the solution. The solution was stirred for 10 min, after which time the volatiles were removed under reduced pressure from the mixture (cooled to freezing), yielding 13-PhCH₂BAr^F₃ as a white solid. Yield: 769 mg (94%).

¹H NMR (500.0 MHz, 293 K, CD₂Cl₂): δ 9.19 (1 H, d, ³*J* 5.5 Hz, 6-C₅H₄N), 8.16 (1 H, dd, ³J 8.5, 7.5 Hz, 4-C₅H₄N), 7.66 (1 H, dd, ³*J* 8.5, 5.5 Hz, 5-C5H4N), 7.57 (1 H, d, ³*J* 7.5 Hz, 3-C5H4N), 6.97 (2 H, dd, ³*J* 7.0, 7.5 Hz, *m*-C6H5), 6.87 (1 H, t, ³*J* 7.5 Hz, *p*-C6H5), 6.84 (2 H, d, ³*J* 7.0 Hz, *o*-C6H5), 4.20 (2 H, s, C5H4NC*H*2), 3.91 (2 H, m, NCH2C*H*2NSi), 3.60 (2 H, m, NCH2C*H*2NSi), 3.50 (2 H, m, NC*H*2CH2NSi), 3.01 (2 H, m, NCH₂CH₂NSi), 2.89 (2 H, br s, C₆H₅CH₂), 0.27 (18, H, s, Si-(CH₃)₃). ¹³C{¹H} NMR (125.7 MHz, 293 K, CD₂Cl₂): δ 159.2 (2-C5H4N), 152.4 (*i*-C6H5), 149.0 (6-C5H4N), 148.6 (*o-*C6F5, ¹*J* 226 Hz), 144.3 (4-C5H4N), 138.0 (*p-*C6F5, ¹*J* 245 Hz), 136.8 (*m-*C6F5, ¹*J* 237 Hz), 129.1 (*o*-C6H5), 127.2 (*m-*C6H5), 126.2 $(5-C_5H_4N)$, 125.2 $(3-C_5H_4N)$, 122.8 $(p-C_6H_5)$, 60.2 (NCH₂CH₂-NSi), 59.4 (C₅H₄NCH₂), 49.2 (NCH₂CH₂NSi), 32.0 (C₆H₅CH₂), 0.6 (Si(CH3)3). 19F NMR (282.3 MHz, 293 K, CD2Cl2): *^δ* -131.5 $(6 \text{ F}, \text{d}, \frac{3 \text{ J}}{20.3 \text{ Hz}}, \text{o-C}_6\text{F}_5)$, $-165.0 \text{ (3 F}, \text{t}, \frac{3 \text{ J}}{20.0 \text{ Hz}}, \text{p-C}_6\text{F}_5)$, -167.9 (6 F, m, ³*J* 20.3, 20.0 Hz, *m*-C₆F₅). ¹¹B NMR (160.4 MHz, 293 K, CD_2Cl_2): δ -10.51 ([PhCH₂B(C_6F_5)₃]⁻). IR (CsBr plates, Nujol): *ν* 1641 (w), 1612 (w), 1511 (m), 1307 (w), 1259 (m), 1213 (w), 1082 (m), 1026 (w), 982 (m), 930 (w), 894 (w), 840 (m), 800 (w), 755 (w), 723 (w), 704 (w), 681 (w), 651 (w), 634 (w), 606 (w), 570 (w), 550 (w), 528 (w) cm-1. Anal. Found (calcd for C41H39BClF15N4Si2Zr): C, 46.0 (46.2); H, 3.8 (3.7); N, 5.3 (5.3).

Ti(N^tBu)(N₂NN') (14). To a solution of Li_2N_2NN' (339 mg, 0.97 mmol) in benzene (30 mL) cooled to 5 °C was added a solution of $Ti(N^tBu)Cl₂(py)₃$ (368 mg, 0.83 mmol) in benzene (20 mL). The mixture was allowed to warm to room temperature and stirred for a further 90 min. The volatiles were removed under reduced pressure, leaving an orange-red solid, which was extracted into pentane (40 mL). The resulting red solution was filtered and concentrated to 20 mL, at which point the formation of a yellow crystalline solid began. The mixture was cooled to -30 °C for 2 days, and the resulting yellow solid was isolated and dried in vacuo affording **14**. Yield: 232 mg (61%).

¹H NMR (300.1 MHz, 293 K, C₆D₆): δ 9.68 (1 H, d, ³*J* 5.5 Hz, 6-C5H4N), 6.71 (1 H, dd, ³*J* 7.7, 7.7 Hz, 4-C5H4N), 6.42 (1 H, dd, ³*J* 5.5, 7.7 Hz, 5-C5H4N), 6.12 (1 H, d, ³*J* 7.7 Hz, 3-C5H4N), 3.64 (2 H, m, NCH2C*H*2NSi), 3.38 (2 H, m, NCH2C*H*2- NSi), 2.97 (2 H, s, C5H4NC*H*2), 2.47 (2 H, m, NC*H*2CH2NSi), 1.98 (2 H, m, NC*H*₂CH₂NSi), 1.69 (9 H, s, C(CH₃)₃), 0.69 (18) H, s, Si(CH₃)₃). ¹³C{¹H} NMR (75.5 MHz, 293 K, C₆D₆): *δ* 159.9 $(2-C_5H_4N), 155.7 (6-C_5H_4N), 139.3 (4-C_5H_4N), 122.1 (5-C_5H_4N),$ 122.1 (3-C5H4N), 65.4 (*C*(CH3)3), 57.0 (C5H4N*C*H2), 56.2 (N*C*H2- CH2NSi), 49.1 (NCH2*C*H2NSi), 34.8 (C(*C*H3)3), 4.4 (Si(CH3)3). IR (CsBr plates, Nujol): *ν* 1608 (m), 1571 (w), 1299 (w), 1235 (m), 1155 (w), 1096 (m), 1042 (w), 1018 (w), 937 (m), 836 (m), 757 (m), 682 (w), 592 (m), 552 (w), 531 (m), 457 (m) cm-1. EI-MS: m/z 455 (11%), [M]⁺; 440 (25%), [M - CH₃]⁺. Anal. Found (calcd for $C_{20}H_{41}N_5Si_2Ti$): C, 52.5 (52.7); H, 8.9 (9.1); N, 15.0 (15.4).

Ti(NAr)(N₂NN') (15). To a mixture of solid Ti(N-2,6-C₆H₃ⁱ- Pr_2)Cl₂(py)₃ (298 mg, 0.56 mmol) and Li_2N_2NN' (197 mg, 0.56 mmol) cooled to -78 °C was added benzene (10 mL). The mixture was allowed to warm to room temperature and stirred for a further 12 h. The volatiles were removed under reduced pressure, and the resulting orange solid was extracted into CH_2Cl_2 (ca. 30 mL). The orange solution was filtered, and the volatiles were removed under reduced pressure to yield **15** as a red-orange solid. Yield: 183 mg (58%).

¹H NMR (500.0 MHz, 293 K, CD₂Cl₂): δ 9.23 (1 H, d, ³*J* 5.5 Hz, 6-C5H4N), 7.88 (1 H, dd, ³*J* 6.5, 7.5 Hz, 4-C5H4N), 7.38 (1 H, d, ³*J* 6.5 Hz, 3-C5H4N), 7.34 (1 H, dd, ³*J* 5.5, 7.5 Hz, 5-C5H4N), 7.00 (2 H, d, ³*J* 7.5 Hz, *m*-C6H3), 6.70 (1 H, t, ³*J* 7.5 Hz, *p*-C₆H₃), 4.12 (2 H, m, ³J 7.0 Hz, CH(CH₃)₂), 4.10 (2 H, s, C5H4NC*H*2), 3.77 (2 H, m, NCH2C*H*2NSi), 3.50 (2 H, m, NCH2C*H*2NSi), 3.10 (2 H, m, NC*H*2CH2NSi), 2.69 (2 H, m, NC*H*2CH2NSi), 1.15 (12 H, d, ³*J* 7.0 Hz, CH(C*H*3)2), 0.22 (18 H, s, Si(CH3)3). 13C{1H} NMR (125.7 MHz, 293 K, CD2Cl2): *δ* 159.5 (2-C5H4N), 154.8 (6-C5H4N), 143.0 (*o*-C6H3), 140.6 (4- C_5H_4N), 123.7 (5- C_5H_4N), 122.8 (3- C_5H_4N), 122.8 (m - C_6H_3), 117.6 (*p*-C6H3), 59.6 (N*C*H2CH2NSi), 59.5 (C5H4N*C*H2), 48.3 (NCH2*C*H2NSi), 27.5 (*C*H(CH3)2), 24.9 (CH(*C*H3)2), 2.3 (Si- (CH3)3). IR (CsBr plates, Nujol): *ν* 1608 (m), 1417 (m), 1328 (m), 1269 (m), 1241 (m), 1161 (w), 1141 (w), 1069 (w), 1032 (w), 1020 (w), 957 (w), 933 (s), 893 (w), 873 (m), 837 (s), 804 (m), 758 (m), 682 (w), 593 (w), 553 (w) cm-1. EI-MS: *m*/*z* 559 $(30\%), [\text{M}]^+$; 544 (10%), $[\text{M} - \text{CH}_3]^+$; 384 (65%), $[\text{M} - \text{NAr}]^+$. Anal. Found (calcd for $C_{28}H_{49}N_5Si_2Ti$): C, 59.8 (60.1); H, 8.4 (8.8); N, 12.2 (12.5).

 $\mathbf{Zr}(\mathbf{NAr})(\mathbf{N}_2\mathbf{N}\mathbf{N}')$ (16). To a yellow solution of $\mathrm{ZrCl}_2(\mathrm{N}_2\mathbf{N}\mathbf{N}')$ (**1**) (163 mg, 0.33 mmol) in benzene (10 mL) was added dropwise a solution of $LiCH_2SiMe₃$ (62 mg, 0.65 mmol) in benzene (10 mL). After complete addition the resulting opaque orange mixture was stirred for 5 min before being filtered. A solution of ArNH₂ (58 mg, 62 μ L, 0.33 mmol) in benzene (5 mL) was added to the solution and the mixture stirred at room temperature for 20 h to give a brown opaque mixture. The volatiles were removed under reduced pressure, and the resulting brown solid was washed with CH_2Cl_2 (3 \times 5 mL), giving **16** as an orange solid. Yield: 55 mg (27%).

¹H NMR (500.0 MHz, 293 K, CD₂Cl₂): δ 9.18 (1 H, d, ³*J* 5.0 Hz, 6-C₅H₄N), 8.00 (1 H, dd, ³J 7.5, 7.0 Hz, 4-C₅H₄N), 7.49 (1 H, d, ³*J* 7.5 Hz, 3-C5H4N), 7.45 (1 H, dd, ³*J* 5.0, 7.0 Hz, 5-C5H4N), 6.87 (2 H, d, ³*J* 7.5 Hz, *m*-C6H3), 6.46 (1 H, t, ³*J* 7.5 Hz, *p*-C6H3), 4.14 (2 H, s, C5H4NC*H*2), 4.06 (2 H, m, ³*J* 6.8 Hz, C*H*(CH3)2), 3.68 (2 H, m, NCH2C*H*2NSi), 3.41 (2 H, m, NCH2C*H*2NSi), 3.18 (2 H, m, NC*H*2CH2NSi), 2.68 (2 H, m, NC*H*2CH2NSi), 1.08 (12 H, d, ³*J* 6.8 Hz, CH(C*H*3)2), 0.06 (18 H , s, Si $(CH₃)₃$). The compound was too insoluble to obtain ¹³C NMR data. IR (CsBr plates, Nujol): *ν* 1607 (m), 1580 (w), 1568 (w), 1416 (m), 1338 (m), 1277 (w), 1255 (w), 1241 (w), 1161 (w), 1139 (w), 1108 (w), 1098 (w), 1071 (m), 1053 (w), 1029 (w), 1000 (w), 926 (s), 869 (m), 836 (s), 797 (m), 754 (m), 724 (w), 680 (w), 649 (w), 635 (w), 624 (w), 606 (w), 587 (m), 543 (m), 454 (w), 430 (m) cm-1. EI-MS: *^m*/*^z* 571 (18%), [M - $2CH_3$ ⁺; 557 (10%), [M – CH(CH₃)₂, H]⁺; 543 (20%), [M – CH₃, $CH(CH_3)_2]$ ⁺; 515 (18%), [M - 2 CH(CH₃)₂]⁺. Anal. Found (calcd for C28H49N5Si2Zr): C, 55.5 (55.8); H, 7.9 (8.2); N, 10.9 (11.6).

 $\mathbf{Zr}(\mathbf{N}\mathbf{H}^t\mathbf{B}\mathbf{u})_2(\mathbf{N}_2\mathbf{N}\mathbf{N}')$ (17). To a yellow solution of $\mathrm{ZrCl}_2(\mathrm{N}_2\text{-}$ NN′) (**6**) (219 mg, 0.44 mmol) in benzene (20 mL) was added a colorless solution of LiNHt Bu in benzene (20 mL). The mixture was stirred at room temperature for 6 h, after which time the mixture attained an orange-red color and a small amount of precipitate formed. After filtering, the solid was washed with benzene $(2 \times 5 \text{ mL})$, and the volatiles of the combined filtrates were removed under reduced pressure. The resulting solid was triturated with pentane to give **17** as an orange-red solid. Yield: 122 mg (49%).

¹H NMR (300.1 MHz, 293 K, C₆D₆): δ 8.89 (1 H, d, ³J 5.4 Hz, 6-C₅H₄N), 6.82 (1 H, dd, ³J 7.8, 7.5 Hz, 4-C₅H₄N), 6.49 (1 H, dd, ³*J* 5.4, 7.5 Hz, 5-C5H4N), 6.30 (1 H, d, ³*J* 7.8 Hz, 3-C5H4N), 5.22 (1 H, br s, NH), 4.22 (1 H, br s, NH), 3.67 (2 H, m, NCH2C*H*2NSi), 3.27 (2 H, s, C5H4NC*H*2), 3.17 (2 H, m, NC*H*2CH2NSi), 3.09 (2 H, m, NCH2C*H*2NSi), 2.13 (2 H, m, NCH₂CH₂NSi), 1.68 (9 H, s, C(CH₃)₃), 1.50 (9 H, s, C(CH₃)₃), 0.16 (18 H, s, Si(CH₃)₃). ¹³C{¹H} NMR (75.5 MHz, 293 K, C_6D_6): δ 158.8 (2-C₅H₄N), 149.2 (6-C₅H₄N), 137.8 (4-C₅H₄N), 122.5 (5-C5H4N), 122.5 (3-C5H4N), 59.8 (C5H4N*C*H2), 58.0 (N*C*H2CH2NSi), 54.7 (*C*(CH3)3), 54.4 (*C*(CH3)3), 46.2 (NCH2*C*H2- NSi), 35.9 (C(*C*H3)3), 35.1 (C(*C*H3)3), 1.5 (Si(CH3)3). IR (CsBr plates, Nujol): *ν* 1604 (m), 1572 (w), 1364 (m), 1307 (w), 1254 (w), 1240 (m), 1214 (m), 1154 (w), 1065 (m), 985 (w), 967 (w), 944 (w), 910 (m), 897 (m), 832 (s), 774 (w), 756 (m), 726 (w), 677 (w), 584 (w) cm⁻¹. EI-MS: m/z 523 (5%), [M - 3 CH₃, H]⁺; 497 (3%), $[M - SiCH₃)₃]⁺$. A satisfactory elemental analysis could not be obtained.

 $\mathbf{Zr}(\mathbf{N}^t\mathbf{Bu})(\mathbf{py})(\mathbf{N}_2\mathbf{N}\mathbf{N}')$ (18). To a yellow solution of $\mathrm{ZrCl}_2(\mathrm{N}_2)$ NN′) (**1**) (241 mg, 0.48 mmol) in benzene (10 mL) was added 2 equiv of $LiCH₂SiMe₃$ (91 mg, 0.97 mmol) in benzene (5 mL). The mixture was stirred for 5 min, after which time pyridine (1 mL) and a solution of $tBuNH_2$ (31.8 mg, 0.43 mmol) in benzene (5 mL) was added. The mixture was stirred for 6 h before the volatiles were removed under reduced pressure, yielding a dark red product, which was subsequently extracted into pentane $(2 \times 15 \text{ mL})$. The red pentane solution was filtered, concentrated to ca. 5 mL, and then cooled to -30 °C, resulting in the formation of a dark red solid, which was isolated and dried in vacuo, affording **18**. Yield: 183 mg (73%).

¹H NMR (300.1 MHz, 293 K, C₆D₆): δ 9.86 (1 H, d, ³J 5.4 Hz, 6-C5H4N), 9.16 (2 H, br m, *o-*C5H5N), 6.91 (1 H, tt, *p-*C5H5N), 6.81 (1 H, td, ³*J* 7.8, 7.8 Hz, 4-C5H4N), 6.72 (2 H, t, *m-*C5H5N), 6.55 (1 H, t, ³*J* 5.4, 7.8 Hz, 5-C5H4N), 6.28 (1 H, d, ³*J* 7.8 Hz, 3-C5H4N), 3.33 (4 H, m, NCH2C*H*2NSi), 3.26 (2 H, s, C5H4NC*H*2), 2.55 (2 H, m, NC*H*2CH2NSi), 2.08 (2 H, m, NCH₂CH₂NSi), 1.60 (9 H, s, C(CH₃)₃), 0.52 (18 H, s, Si(CH₃)₃). ¹³C{¹H} NMR (75.5 MHz, 293 K, C₆D₆): δ 159.1 (2-C₅H₄N), 155.4 (6-C₅H₄N), 152.2 (o -C₅H₅N), 138.2 (4 -C₅H₄N), 137.1 (p -C5H5N), 123.6 (*m-*C5H5N), 121.8 (5-C5H4N), 121.5 (3-C5H4N), 60.6 (*C*(CH3)3), 57.9 (C5H4N*C*H2, N*C*H2CH2NSi), 46.9 (NCH2-

 $CH₂NSi$), 36.0 ($C(CH₃)₃$), 3.8 ($Si(CH₃)₃$). IR ($CsBr$ plates, Nujol): *ν* 1603 (s), 1571 (m), 1341 (w), 1305 (m), 1341 (s), 1214 (w), 1153 (m), 1133 (w), 1085 (w), 1069 (w), 1049 (w), 1037 (w), 1019 (w), 1011 (w), 993 (w), 969 (w), 942 (w), 919 (w), 899 (w), 834 (s), 754 (m), 726 (w), 701 (m), 676 (m), 628 (m), 612 (w), 578 (w), 558 (m), 522 (w), 508 (w), 483 (w), 443 (m), 421 (w), 403 (w) cm⁻¹. EI-MS: m/z 576 (27%), [M]⁺; 505 (10%), [M $-$ NC(CH₃)₃]⁺. Anal. Found (calcd for C₂₅H₄₆N₆Si₂Zr): C, 51.8 (51.9); H, 8.4 (8.0); N, 14.9 (14.5).

 $\mathbf{Zr}(\mathbf{N}\mathbf{H}^t\mathbf{Bu})(\mathbf{NC}_5\mathbf{H}_{10})(\mathbf{N}_2\mathbf{NN}')$ (19). To a yellow solution of $ZrCl_2(N_2NN')$ (1) (208 mg, 0.42 mmol) in benzene (5 mL) was added a colorless solution of $LiCH₂SiMe₃$ (65 mg, 0.83 mmol) in benzene (5 mL), resulting in the formation of a precipitate and an orange solution. The mixture was allowed to stir for 15 min before a solution of t_{BuNH_2} (30 mg, 0.42 mmol) and piperidine (200 mg, 2.3 mmol) in pyridine (5 mL) was added dropwise. After complete addition the solution darkened while becoming clear. The solution was stirred for 4 h, after which time the volatiles were removed under reduced pressure and the resulting brown product was extracted into pentane (30 mL). After filtering, the red pentane solution was concentrated to 5 mL and cooled to -30 °C, resulting in the formation of 19 as a red, crystalline solid. Yield: 127 mg (52%).

¹H NMR (300.1 MHz, 298 K, C₆D₆): δ 8.78 (1 H, d, ³*J* 5.1 Hz, 6-C₅H₄N), 6.75 (1 H, td, ³J 8.1, 8.2 Hz, 4-C₅H₄N), 6.41 (1 H, td, ³*J* 5.1, 8.2 Hz, 5-C5H4N), 6.22 (1 H, d, ³*J* 8.1 Hz, $3-C_5H_4N$, 4.22 (1 H, br s, NH), 3.93 (4 H, br m, 2.6 -NC $_5H_{10}$), 3.67 (2 H, m, NCH2C*H*2NSi), 3.20 (2 H, s, C5H4NC*H*2), 3.11 (4 H, m, NCH2C*H*2NSi, NC*H*2CH2NSi), 2.09 (2 H, m, NC*H*2CH2- NSi), 1.67 (6 H, br m, 3,4,5-NC₅H₁₀), 1.61 (9 H, s, C(CH₃)₃), 0.12 (18 H, s, Si(CH3)3). 13C{1H} NMR data (75.5 MHz, 298 K, C_6D_6): δ 158.9 (2-C₅H₄N), 149.2 (6-C₅H₄N), 137.7 (4-C₅H₄N), 122.6 (5-C5H4N), 122.4 (3-C5H4N), 59.3 (C5H4N*C*H2), 57.4 (N*C*H2CH2NSi), 57.0 (2,6-NC5H10), 56.9 (NCH2*C*H2NSi), 44.8 (*C*(CH3)3), 35.8 (C(*C*H3)3), 31.0 (4-NC5H10), 27.0 (3,5-NC5H10), 2.4 (Si(CH3)3). IR (CsBr plates, Nujol): *ν* 1645 (w), 1604 (s), 1571 (m), 1422 (w), 1358 (m), 1305 (m), 1254 (w), 1239 (w), 1202 (m), 1167 (w), 1155 (w), 1148 (w), 1129 (w), 1093 (m), 1078 (w), 1063 (w), 1041 (w), 1027 (w), 1011 (w), 995 (m), 969 (m), 942 (w), 911 (w), 775 (m), 756 (w), 741 (w), 726 (w), 676 (m), 666 (m), 633 (w), 622 (s), 584 (m), 564 (s), 493 (s), 468 (w), 448 (m), 420 (w), 406 (m) cm-1. EI-MS: *m*/*z* 582 (6%), [M]+; 510 (2%), $[M - NH¹Bu]⁺$. Anal. Found (calcd for $C_{25}H_{52}N_6Si_2$ -
Zr): C 51.6 (51.4): H 9.1 (9.0): N 14.7 (14.4) Zr): C, 51.6 (51.4); H, 9.1 (9.0); N, 14.7 (14.4).

 $Nb(N^tBu)Cl(N₂NN')$ (20). To a yellow solution of $Nb(N^t-)$ Bu)Cl3(py)2 (326 mg, 0.71 mmol) in benzene (30 mL) was added dropwise a solution of Li_2N_2NN' (250 mg, 0.71 mmol) in benzene (40 mL), immediately resulting in a darkening of the coloration. The solution was stirred for 16 h, after which time the volatiles were removed under reduced pressure, yielding an orange-brown solid. The remaining solid was extracted into pentane (40 mL), filtered, concentrated to ca. 10 mL, and cooled to -80 °C to give **²⁰** as a yellow solid. Yield: 114 mg (30%).

¹H NMR (300.1 MHz, 293 K, C₆D₆): δ 8.86 (1 H, d, ³*J* 4.9 Hz, 6-C5H4N), 6.71 (1 H, dd, ³*J* 7.2, 8.2 Hz, 4-C5H4N), 6.34 (1 H, dd, ³*J* 4.9, 8.2 Hz, 5-C5H4N), 6.26 (1 H, d, ³*J* 7.2 Hz, 3-C5H4N), 4.73 (1 H, d, ²*J* 14.9 Hz, C5H4NC*H*2), 3.70 (3 H, m, NCH2C*H*2NSi), 3.12 (1 H, m, NC*H*2CH2NSi), 2.90 (1 H, d, ²*J* 14.9 Hz, C5H4NC*H*2), 2.82 (1 H, m, NC*H*2CH2NSi), 2.30 (1 H, m, NCH2C*H*2NSi), 2.12 (1 H, m, NC*H*2CH2NSi), 2.00 (1 H, m, NCH₂CH₂NSi), 1.76 (9 H, s, C(CH₃)₃), 0.63 (9 H, s, Si(CH₃)₃), 0.37 (9 H, s, Si $(CH_3)_3$). ¹³C{¹H} NMR (75.5 MHz, 293 K, C_6D_6): δ 159.9 (2-C₅H₄N), 150.5 (6-C₅H₄N), 137.3 (4-C₅H₄N), 122.0 (5-C5H4N), 121.3 (3-C5H4N), 66.5 (*C*(CH3)3), 64.5 (C5H4N-*C*H2), 59.9 (N*C*H2CH2NSi), 59.5 (N*C*H2CH2NSi), 53.2 (NCH2- CH_2 NSi), 50.2 (NCH₂CH₂NSi), 32.6 (C(*C*H₃)₃), 3.0 (Si(CH₃)₃), 3.0 (Si(CH3)3). IR (CsBr plates, Nujol): *ν* 1606 (m), 1292 (w), 1243 (m), 1156 (w), 1113 (w), 1075 (m), 1018 (w), 930 (m), 864 (m), 837 (m), 776 (m), 724 (w), 685 (w), 592 (m), 549 (m), 442 (m) cm⁻¹. EI-MS: m/z 535 (32%), [M]⁺; 500 (7%), [M - Cl]⁺; 463 (11%), [M – CH₃, C(CH₃)₃]⁺. Anal. Found (calcd for C₂₀H₄₁-ClN5NbSi2): C, 44.4 (44.8); H, 7.3 (7.7); N, 12.7 (13.1).

Ta(Nt Bu)Cl(N2NN′**) (21).** To a green-yellow solution of Ta- $(N^tBu)Cl₃(py)₂$ (430 mg, 0.83 mmol) in benzene (20 mL) cooled to 5 °C was added a solution of Li_2N_2NN' (291 mg, 0.83 mmol) in benzene (20 mL). The reaction was allowed to warm to room temperature and stirred for a further 16 h, giving an orangebrown opaque mixture. The volatiles were removed under reduced pressure, and the resulting solid was extracted into pentane. The solution was filtered and concentrated to ca. 5 mL, and upon cooling to -30 °C, a brown crystalline solid formed. This was isolated and dried in vacuo to afford **21**. Yield: 150 mg (29%).

¹H NMR (500.0 MHz, 293 K, C₆D₆): δ 9.00 (1 H, d, ³J 5.0, Hz, 6-C₅H₄N), 6.71 (1 H, dd, ³J 8.0, 7.5 Hz, 4-C₅H₄N), 6.34 (1 H, dd, ³*J* 5.0, 7.5 Hz, 5-C5H4N), 6.26 (1 H, d, ³*J* 8.0 Hz, 3-C5H4N), 4.64 (1 H, d, ²*J* 15.1 Hz, C5H4NC*H*2), 3.86 (1 H, m, NCH2C*H*2NSi), 3.80 (1 H, m, NCH2C*H*2NSi), 3.61 (1 H, m, NCH2C*H*2NSi), 3.35 (1 H, m, NC*H*2CH2NSi), 2.90 (1 H, d, ²*J* 15.1 Hz, C5H4NC*H*2), 2.80 (1 H, m, NC*H*2CH2NSi), 2.29 (1 H, m, NCH2C*H*2NSi), 2.19 (1 H, m, NC*H*2CH2NSi), 1.99 (1 H, m, NC*H*2CH2NSi), 1.74 (9 H, s, C(CH3)3), 0.59 (9 H, s, Si(CH3)3), 0.32 (9 H, s, Si(CH₃)₃). ¹³C{¹H} NMR (125.7 MHz, 293 K, C_6D_6): δ 160.3 (2-C₅H₄N), 150.8 (6-C₅H₄N), 137.7 (4-C₅H₄N), 122.3 (5-C₅H₄N), 121.5 (3-C₅H₄N), 65.1 (*C*(CH₃)₃), 64.9 (C₅H₄N-*C*H2), 60.5 (N*C*H2CH2NSi), 59.8 (NCH2*C*H2NSi), 52.2 (NCH2- *C*H2NSi), 49.1 (N*C*H2CH2NSi), 34.1 (C(*C*H3)3), 3.4 (Si(CH3)3), 3.2 (Si(CH3)3). IR (CsBr plates, Nujol): *ν* 1610 (s), 1571 (w), 1355 (m), 1294 (w), 1250 (m), 1212 (w), 1158 (m), 1141 (w), 1132 (w), 1110 (w), 1077 (m), 1055 (w), 1033 (m), 1023 (m), 936 (m), 868 (m), 839 (m), 789 (w), 760 (w), 726 (m), 686 (m), 650 (m), 634 (m), 589 (m), 551 (m), 527 (m), 470 (w) cm^{-1} . EI-MS: *^m*/*^z* 623 (58%), [M]+; 608 (57%), [M - CH3]+; 552 (11%), $[M - NC(CH_3)_3]^+$; 521 (95%), $[M - N^tBu, 2 CH_3, H]^+$. Anal.
Found (calcd for C_2H_4 , CIN-Si, Ta): C. 38.4 (38.5): H. 6.6 (6.6): Found (calcd for $C_{20}H_{41}C1N_5Si_2Ta$): C, 38.4 (38.5); H, 6.6 (6.6); N, 11.0 (11.2).

H2O2NN′ **(22).** 2-Aminomethylpyridine (5.0 g, 46.2 mmol) was added dropwise to isobutylene oxide (9.84 g, 136.7 mmol) with stirring in a thick-walled Teflon valve ampule. A catalytic amount of ethanol (3 mL) was added to the resulting yellow solution, which was frozen using liquid nitrogen and the headspace evacuated. The solution was stirred at 75 °C for 5 days. The volatiles were removed under reduced pressure to give a dark brown solid (13 g), which was purified in 5 g portions by column chromatography on silica (250 g, elution gradient CH₂Cl₂/EtOH, 100:0 to 95:5). Final purification was achieved by sublimation (80-100 °C, 0.5-1 \times 10⁻⁶ mbar) to give **22** as a white powder. Yield: 5.50 g (47%).

¹H NMR (300.1 MHz, 183 K, CD₂Cl₂): δ 8.48 (1 H, d, ³*J* 4.0 Hz, 6-C5H4N), 7.66 (1 H, app.t, app.3*J* 9.0 Hz, 4-C5H4N), 7.37 (1 H, d, ³*J* 7.0 Hz, 3-C5H4N), 7.16 (1 H, app t, app.3*J* 6.0 Hz, 5-C₅H₄N), 6.53 (2 H, br s, NCH₂CMe₂OH), 3.95 (2 H, s, NCH₂C₅H₄N), 2.65 (4 H, br s, NCH₂CMe₂OH), 1.16 (6 H, s, NCH2C*Me*2OH ("b")), 0.96 (6 H, s, NCH2C*Me*2OH ("a")). 13C- {1H} NMR (75.5 MHz, 183 K, CD2Cl2): *δ* 159.0 (2-C5H4N), 147.8 (6-C5H4N), 135.9 (4-C5H4N), 121.7 (3-C5H4N), 121.2 (5- C₅H₄N), 71.2 (NCH₂CMe₂OH), 67.5 (NCH₂CMe₂OH), 63.7 (NCH₂C₅H₄N), 27.2 (NCH₂CMe₂OH ("a")), 26.3 (NCH₂CMe₂-OH ("b")). The arbitrary designations "a" and "b" refer to the chemically distinct methyl groups. IR (KBr plates, Nujol): *ν* 3217 (br s), 1591 (w), 1568 (w), 1261 (w), 1200 (w), 1154 (w), 1126 (w), 1101 (m), 1084 (m), 1047 (w), 1023 (w), 995 (w), 972 (w), 935 (w), 907 (w), 855 (w), 800 (w), 766 (w), 723 (w), 645 (w), 622 (w), 583 (w), 488 (w) cm-1. EI-MS: *m*/*z* 252 (23%), $[M]^+$; 192 (97%), $[M - CMe_2OH]^+$; 162 (97), $[M - CMe_2OH, -]$ 2Me ⁺; 134 (68%), [M - 2CMe₂OH, + H]⁺; 92 (100%), $[CH_2C_5H_4N + H]^+$; 91 (80%), $[CH_2C_5H_4N]^+$. Anal. Found (calcd for $C_{14}H_{24}N_2O$: C, 66.6 (66.6); H, 9.7 (9.6); N, 11.2 (11.1).

 $Ti(O_2NN')_2$ (23). To a stirred solution of $Ti(NMe₂)_4$ (0.329) g, 1.47 mmol) in benzene (20 mL), cooled to 7 °C, was added dropwise a solution of H_2O_2NN' (22) (0.734 g, 2.93 mmol) in benzene (20 mL). The solution was allowed to warm to room temperature and was stirred for 16 h. The volatiles were removed under reduced pressure to give a highly soluble waxy white solid, which was washed with pentane (25 mL) at 7 °C and dried in vacuo to give $Ti(O_2NN')_2$ (23) as a free-flowing white powder. Yield: 0.643 g (80%).

¹H NMR (300.1 MHz, 193 K, CD₂Cl₂): δ 8.50 (2 H, dd, ³*J*</sup> 5.5 Hz, ⁴*J* 2.0 Hz, 6-C5H4N), 7.69 (2 H, app td, app. ³*J* 7.5 Hz, ⁴*^J* 2.0 Hz, 4-C5H4N), 7.29-7.20 (4 H, overlapping m, 3-, 5-C5H4N), 4.42 (2 H, d, ²*J* 14.5 Hz, NC*H*2C5H4N), 3.99 (2 H, d, ²*J* 14.5 Hz, NC*H*2C5H4N), 3.28 (2 H, d, ²*J* 14.0 Hz, NC*H*2CMe2O ("a")), 3.01 (2 H, d, ²*J* 13.0 Hz, NC*H*2CMe2O ("b")), 2.60 (2 H, d, ²*J* 13.0 Hz, NC*H*2CMe2O ("b")), 2.53 (2 H, d, ²*J* 14.0 Hz, NC*H*2CMe2O ("a")), 1.61 (6 H, s, NCH2C*Me*2O), 1.32 (6 H, s, NCH2C*Me*2O), 1.05 (12 H, overlapping 2 [×] s, NCH2C*Me*2O). 13C{1H} NMR (75.5 MHz, 193 K, CD2Cl2): *^δ* 156.1 (2-C5H4N), 148.4 (6-C₅H₄N), 135.4 (4-C₅H₄N), 125.0 (5-C₅H₄N), 121.8 (3-C5H4N), 81.0 (NCH2*C*Me2O), 80.9 (NCH2*C*Me2O), 70.0 (N*C*H2- CMe2O ("b")), 64.8 (N*C*H2C5H4N), 63.8 (N*C*H2CMe2O ("a")), 31.0 (NCH2C*Me*2O), 29.9 (NCH2C*Me*2O), 29.5 (NCH2C*Me*2O), 27.6 (NCH₂CMe₂O). The arbitrary designations "a" and "b" refer to the chemically distinct "arms".

IR (KBr plates, Nujol): *ν* 1588 (w), 1572 (w), 1302 (w), 1262 (w), 1209 (w), 1156 (w), 1079 (w), 992 (w), 954 (w), 918 (w), 852 (w), 799 (w), 772 (w), 723 (w), 652 (w), 633 (w), 603 (w), 583 (w), 551 (w), 474 (w), 442 (w) cm-1. EI-MS: *m*/*z* 490 (13%), $[M - CM_{2}OH, + H]^{+}$; 398 (100%) $[M - CM_{2}OH, - CH_{2}C_{5}H_{4}N,$ $+$ H]⁺; 298 (68%), [M – C₅H₄N(CH₂)N(CH₂CMe₂O)]⁺; 93 (76%), $[CH_2C_5H_4N + H]^+$; 92 (65%), $[CH_2C_5H_4N]^+$. Anal. Found (calcd for $C_{28}H_{44}N_4O_4Ti$: C, 61.0 (61.3); H, 8.1 (8.1); N, 10.2 (10.2).

TiCl₂(O₂NN[']) (24). To a stirred slurry of TiCl₄(THF)₂ (0.274) g, 8.20 mmol) in benzene (25 mL) cooled to 7 °C was added dropwise a solution of $\text{Ti}(\text{O}_2\text{NN}')_2$ (23) (0.450 g, 8.20 mmol) in benzene (20 mL). The solution was allowed to warm to room temperature and was stirred for a further 3 h (on warming, a yellow wax was formed and was triturated by the stirring). The volatiles were removed under reduced pressure to give the crude product as a white powder, which was washed with pentane (60 mL) and dried in vacuo to give **24**. Yield: 0.540 g (90%) .

¹H NMR (300.1 MHz, 293 K, pyridine- d_5): δ 9.37 (1 H, d, ³*J* 6.0 Hz, 6-C5H4N), 7.80 (1 H, dd, ³*J* 7.5 Hz, ³*J* 6.9 Hz, 4-C5H4N), 7.38 (1 H, d, ³*J* 7.5 Hz, 3-C5H4N), 7.24 (1 H, dd, ³*J* 7.0 Hz, ³*J* 6.0 Hz, 5-C5H4N), 4.89 (2 H, s, NC*H*2C5H4N), 3.78 (2 H, d, ²*J* 12.0 Hz, NC*H*2CMe2O), 3.51 (2 H, d, ²*J* 12.0 Hz, NC*H*2CMe2O), 1.48 (6 H, s, NCH2C*Me*2O), 1.03 (6 H, s, NCH2C*Me*2O). 13C{1H} NMR (75.5 MHz, 293 K, pyridine-*d*5): *δ* 159.6 (2-C5H4N), 140.7 (6-C5H4N), 129.2 (4-C5H4N), 124.8 (5-C₅H₄N), 122.6 (3-C₅H₄N), 90.7 (NCH₂CMe₂O), 78.6 (NCH₂-CMe2O), 68.4 (N*C*H2C5H4N), 29.7 (NCH2C*Me*2O), 28.8 (NCH2C-*Me*2O). IR (CsBr plates, Nujol): *ν* 1608 (w), 1573 (w), 1291 (w), 1262 (w), 1225 (w), 1207 (w), 1173 (w), 1151 (m), 1092 (w), 1079 (w), 1061 (w), 1022 (w), 975 (m), 946 (m), 906 (w), 830 (w), 803 (w), 786 (w), 765 (w), 721 (w), 686 (w), 656 (m), 611 (m), 528 (w), 503 (w), 468 (w), 413 (m) cm-1. EI-MS: *m*/*z* 368 (1%) , [M]⁺; 333 (3%), [M – Cl]⁺. Anal. Found (calcd for C₁₄H₂₂- $Cl_2N_2O_2Ti$: C, 45.8 (45.6); H, 6.2 (6.0); N, 7.4 (7.6).

ZrCl₂(O₂NN[']) (25). A solution of H₂O₂NN' (22) (0.36 g, 1.4 mmol) in benzene (15 mL) was added dropwise to $ZrCl_2(CH_2 \text{SiMe}_3$ ₂(Et₂O₂ (0.70 g, 1.4 mmol) in benzene (20 mL) with cooling using an ice/water bath. The mixture was allowed to warm to room temperature and stirred overnight. A white precipitate progressively appeared. The volatiles were removed under reduced pressure, and the resulting powder was extracted into 60 mL of dichloromethane. Filtration and evaporation of the solvent gave **25** as a white powder. Yield: 0.30 g (52%) .

¹H NMR (500.0 MHz, 293 K, C₆D₆): δ 9.12 (1 H, d, ³*J* 6.0 Hz, 6-C5H4N), 6.68 (1 H, ddd, ³*J* 7.2 and 8.1 Hz, ⁴*J* 1.7 Hz, 4-C5H4N), 6.17 (1 H, dd, ³*J* 4.9, 7.2 Hz, 5-C5H4N), 6.09 (1 H, d, ³*J* 8.1 Hz, 3-C5H4N), 3.68 (2 H, s, NC5H4NC*H*2), 3.05 (2 H, d,

²J 12.7 Hz, NC*H*₂CMe₂), 2.44 (2 H, d, ²J 12.7 Hz, NC*H*₂CMe₂), 1.31 (6 H, s, C*Me*2), 0.7 (6 H, s, C*Me*2). The compound is too soluble in C_6D_6 and CD_2Cl_2 to record ¹³C{¹H} NMR data. IR (Nujol mull, KBr plates): *ν* 1608 (w), 1572 (w), 1296 (w), 1261 (w), 1207 (w), 1174 (m), 1158 (m), 1079 (m), 1059 (w), 1019 (m), 983 (m), 948 (w), 801 (w), 767 (w), 684 (w), 641 (w), 617 (w) cm⁻¹. Anal. Found (calcd for $C_{14}H_{22}Cl_2N_2O_2Zr$): C, 48.2 (48.8); H, 5.4 (5.4); N, 6.5 (6.8); Cl, 16.5, (17.2).

Zr(NMe₂)₂(O₂NN') (26). A solution of H_2O_2NN' (22) (220 mg, 0.87 mmol) in benzene (20 mL) was added dropwise to $Zr(NMe₂)₄$ (233 mg, 0.87 mmol) in benzene (15 mL) with stirring and cooling using an ice/water bath. This produced an immediate darkening in color to give a bright orange solution by the end of the addition. The solution was stirred at room temperature for ca. 30 min, which produced no further color change, and the volatiles were subsquently removed under reduced pressure to leave a red solid, which was recrystallized from pentane to give **26** as an orange solid. Yield: 129 mg (34%).

¹H NMR (500. MHz, 293 K, C₆D₆): δ 8.61 (1 H, d, ³*J* 5.5 Hz, 6-C5H4N), 6.82 (1 H, dd, ³*J* 8.4 Hz, ³*J* 7.7 Hz, 4-C5H4N), 6.46 (1 H, dd, ³*J* 7.7 Hz, ³*J* 5.5 Hz,5-C5H4N), 6.21 (1 H, d, ³*J* 8.4 Hz, 3-C₅H₄N), 3.74 (2 H, s, C₅H₄NC*H*₂), 3.68 (6 H, s, NMe₂) cis or *trans* to C_5H_4N , 3.40 (6 H, s, NMe₂ *trans* or *cis* to C_5H_4N , 2.89 (2 H, d, ² $J = 12.3$ Hz, NC*H*₂CMe₂), 2.53 (2 H, d, ² $J = 12.3$ Hz, NC*H*₂CMe₂), 1.32 (6 H, s, C*Me*₂), 0.79 (6 H, s, C*Me*₂). ¹³C{¹H} NMR (75.5 MHz, 293 K, C₆D₆): δ 160.1 (2- C_5H_4N), 151.3 (6- C_5H_4N), 137.7 (4- C_5H_4N), 122.7 (5- C_5H_4N), 119.9 (3-C5H4N), 79.5 (*C*Me2), 76.2 (N*C*H2CMe2), 65.9 (C5H4N- $CH₂$), 47.9 (NMe₂ *cis* or *trans* to $C₅H₄N$), 43.9 (NMe₂ *trans* or *cis* to C5H4N), 32.6 (C*Me*2), 29.0 (C*Me*2). IR (CsBr plates, Nujol): *ν* cm-¹ 2746 (m), 1632 (w), 1602 (w), 1572 (w), 1300 (w), 1286 (w), 1261 (w), 1238 (w), 1221 (w), 1202 (w), 1182 (m), 1160 (m), 1129 (w), 1091 (m), 1051 (w), 1013 (w), 996 (m), 981 (m), 953 (m), 902 (w), 846 (w), 816 (w), 799 (w), 767 (m), 725 (m), 682 (w), 634 (w), 611 (w), 585 (w), 556 (m), 521 (w). Anal. Found (calcd for C18H34N4O2Zr): C, 50.1 (50.3); H, 7.8 (8.0); N, 12.8 (13.0).

 $\text{Zr}(CH_2\text{SiMe}_3)_2(O_2\text{NN}')$ (27). A solution of $H_2O_2\text{NN}'$ (22) (0.254 g, 1 mmol) in benzene (20 mL) was added dropwise to $Zr(CH_2SiMe_3)_4$ (0.441 g, 1 mmol) in benzene (20 mL) with cooling using an ice/water bath. The mixture was allowed to warm to room temperature and was stirred overnight. The volatiles were subsequently removed under reduced pressure, and the resulting solids were extracted into 80 mL of dry pentane. The orange solution was filtered, concentrated to 60 mL, and cooled to -30 °C to give **27** as pale orange crystals. Yield: 0.356 g (69%).

¹H NMR (500.0 MHz, 293 K, C₆D₆): δ 8.59 (1 H, d, ³J 5.3 Hz, 6-C5H4N), 6.83 (1 H, ddd, ³*J* 7.6, 8.0 Hz, ⁴*J* 1.7 Hz, 4-C5H4N), 6.42 (1 H, dd, ³*J* 5.3, 7.6 Hz, 5-C5H4N), 6.19 (1 H, d, ³*J* 8.0 Hz, 3-C5H4N), 3.60 (2 H, s, NC5H4NC*H*2), 2.43 (2 H, Part A of an AB system, ²*J* 12.8 Hz, NC*H*2CMe2), 2.37 (2 H, Part B of an AB system, ²*J* 12.8 Hz, NC*H*2CMe2), 1.24 (6 H, s, C*Me*2), 0.70 (6 H, s, C*Me*2), 0.55 (9 H, s, CH2Si*Me*³ *cis* to pyridyl group), 0.55 (2 H, s, $CH₂SiMe₃$ *trans* to pyridyl group), 0.44 (9 H, s, $CH₂SiMe₃$ trans to pyridyl group), 0.26 (2 H, s, $CH₂SiMe₃$ *cis* to pyridyl group). ¹³C{¹H} NMR (75.5 MHz, 293 K, C₆D₆): δ 160.3 (2-C5H4N), 150.2 (6-C5H4N), 138.1 (4-C5H4N), 122.4 (5- $\rm{C_5H_4N}),$ $\rm{120.3}$ $\rm{(3-C_5H_4N)},$ $\rm{80.8}$ $\rm{(CMe_2)},$ $\rm{76.5}$ $\rm{(NCH_2CMe_2)},$ $\rm{66.7}$ (NC5H4N*C*H2), 47.6 (*C*H2SiMe3 *trans* to pyridyl group), 45.0 (*C*H2SiMe3 *cis* to pyridyl group), 32.4 (C*Me*2), 29.1 (C*Me*2), 4.6 (CH2Si*Me*³ *cis* to pyridyl group), 4.2 (CH2Si*Me*³ *trans* to pyridyl group). IR (Nujol mull): *ν* 1604 (w), 1574 (w), 1302 (w), 1287 (w), 1249 (w), 1238 (w), 1204 (w), 1185 (m), 1089 (w), 1060 (w), 1002 (w), 950 (w), 872 (m), 853 (m), 824 (w), 763 (m), 741 (w), 677 (w), 637 (w) cm⁻¹. MS-EI: m/z 499 (5%), [M - CH₃]⁺; 427 (100%), $[M - CH_2SiMe_3]^+$. Anal. Found (calcd for $C_{22}H_{44}N_2O_2Si_2Zr$: C, 50.4; (51.2); H, 8.8 (8.6); N, 5.4 (5.4).

 $[\mathbf{Zr}(CH_2SiMe_3)(THF)(O_2NN')][Me_3SiCH_2BArF_3]~(28\text{-Me}_3 \text{SiCH}_2\text{BAr}^{\text{F}}_3$). A solution of $\text{Bar}_{3}^{\text{F}}$ (0.070 g, 0.136 mmol) in

 $a R_1 = \sum ||F_o| - |F_c||\sum |F_o|; R_w = \sqrt{\sum w(|F_o| - |F_c|)^2/\sum (w|F_o|^2)}.$

 CH_2Cl_2 (3 mL) was added at room temperature to $Zr(CH_2-$ SiMe₃)₂(O₂NN') (27) (0.071 g, 0.138 mmol) in CH₂Cl₂ (4 mL) in the presence of THF $(12 \mu L, 0.139 \text{ mmol})$. After 90 min at room temperature, the volatiles were removed under reduced pressure to yield 28-Me₃SiCH₂BAr^F₃ as a white powder. Yield: 0.13 g (87%).

¹H NMR (500.0 MHz, 293 K, CD₂Cl₂): δ 8.94 (1 H, d, ³*J* 5.2 Hz, 6-C5H4N), 8.11 (1 H, ddd, ³*J* 7.6, 8.0 Hz, ⁴*J* 1.7 Hz, 4-C5H4N), 7.62 (1 H, dd, ³*J* 5.2, 7.6 Hz, 5-C5H4N), 6.19 (1 H, d, ³*J* 8.0 Hz, 3-C5H4N), 4.41 (2 H, s, NC5H4NC*H*2), 4.38 (4 H, br m, O(C*H*2CH2)2), 3.22 (2 H, part A of an AB system, ²*J* 13.7 Hz, NCH₂CMe₂), 3.12 (2 H, part B of an AB system, ²J 13.7 Hz, NC H_2 CMe₂), 2.10 (4 H, br m, O(CH₂CH₂)₂), 1.33 (6 H, s, C*Me*2), 1.05 (6 H, s, C*Me*2), 0.51 (2 H, br s, BC*H*2SiMe3), 0.31 $(2 \text{ H, s, } CH_2 \text{SiMe}_3 \text{ } cis \text{ to pyridyl group}), -0.08 (9 \text{ H, s, } CH_2$ -SiMe₃ *cis* to pyridyl group), -0.39 (s, 2 H, BCH₂SiMe₃). ¹³C-{1H} NMR (125.7 MHz, 293 K, CD2Cl2): *δ* 159.6 (2-C5H4N), 151.5 (6-C5H4N), 148.7 (1*J* 232 Hz, *o*-C6F5), 142.4 (4-C5H4N), 137.9 (¹*J* 243 Hz, *p*-C₆F₅), 136.7 (¹*J* 268 Hz, m-C₆F₅), 128.9 (v br, B*C*), 125.1 (5-C5H4N), 124.1 (3-C5H4N), 82.6 (*C*Me2), 75.6 (O(CH₂CH₂)₂), 73.9 (NCH₂CMe₂), 64.3 (NC₅H₄NCH₂), 48.0 (*C*H2SiMe3 *cis* to pyridyl group), 32.7 (C*Me*2), 30.4 (C*Me*2), 25.7 (O(CH2*C*H2)2), 9.0 (v br, B*C*H2SiMe3), 2.7 (CH2Si*Me*³ *cis* to pyridyl group), 1.1 (CH2Si*Me*³ *trans* to pyridyl group). 19F NMR (282 MHz, CD2Cl2, 293 K): *^δ* -132.17 (6 F, d, ³*^J* 19.8 Hz, *^o*-C6F5), -165.25 (3 F, t, ³*^J* 20.2 Hz, *^p*-C6F5), -167.91 (6 F, m, *m*-C6F5). IR (Nujol mull, KBr plates): *ν* 1638 (m), 1612 (m), 1572 (w), 1559 (w), 1542 (w), 1510 (s), 1175 (m), 1127 (vw), 1079 (s), 861 (w), 827 (m), 782 (m), 767 (w), 670 (w), 627 (w) cm⁻¹. Anal. Found (calcd for $C_{44}H_{52}BF_{15}N_2O_3Si_2Zr$ ^{-0.6CH₂-} $Cl₂$: C 46.2 (46.5), H 5.0 (4.7), N 2.6 (2.4).

[Zr2(CH2SiMe3)2(O2NN′**)2][Me3SiCH2BArF3]2 (29-Me3Si-** CH_2BArF_3). A solution of $BArF_3$ (0.099 g, 0.193 mmol) in benzene (15 mL) was added to $Zr(CH_2SiMe_3)_2(O_2NN')$ (27) $(0.100 \text{ g}, 0.193 \text{ mmol})$ in benzene (15 mL) with cooling using

an ice/water bath. The mixture was allowed to warm to room temperature, and the stirring was continued for a further 30 min. The volatiles were removed under reduced pressure to yield a colorless oily compound, which was triturated with Et2O. The compound **29** was obtained as a white powder after removal of the volatiles under reduced pressure. Yield: 0.11 g (90%).

¹H NMR (500.0 MHz, 293 K, CD₂Cl₂): δ 8.86 (1 H, d, ³*J* 5.2 Hz, 6-C5H4N), 8.31 (1 H, ddd, ³*J* 7.5, 8.1 Hz, ⁴*J* 1.5 Hz, $4-C_5H_4N$), 7.90 (1 H, dd, $3J$ 5.2, 7.5 Hz, $5-C_5H_4N$), 7.77 (1 H, d, ³*J* 8.1 Hz, 3-C5H4N), 4.94 (2 H, d, ²*J* 16.4 Hz, NC5H4NC*H*2), 4.35 (2 H, d, ²*J* 16.4 Hz, NC5H4NC*H*2), 3.85 (2 H, d, ²*J* 14.4 Hz, NC*H*2CMe2), 3.58 (2 H, d, ²*J* 14.4 Hz, NC*H*2CMe2), 3.07 (2 H, d, ²*J* 14.3 Hz, NC*H*2CMe2), 2.73 (2 H, d, ²*J* 14.3 Hz, NC*H*2- CMe2), 1.84 (6 H, s, C*Me*2), 1.70 (6 H, s, C*Me*2), 1.49 (6 H, s, C*Me*2), 1.41 (6 H, s, C*Me*2), 0.87 (2 H, part A of an AB system, 2 *J* 11.7 Hz, CH₂SiMe₃), 0.80 (2 H, part B of an AB system, 2 *J* 11.7 Hz, CH₂SiMe₃), 0.51 (2 H, br s, BCH_2SiMe_3), -0.31 and -0.36 (2 × 9 H, 2 × s, CH₂SiMe₃ and BCH₂SiMe₃). ¹³C{¹H} NMR (125.7 MHz, 293 K, CD₂Cl₂): δ 155.9 (2-C₅H₄N), 148.9 (6-C₅H₄N), 148.5 (d, ¹J 242 Hz, o-C₆F₅), 144.1 (4-C₅H₄N), 138.6 (d, ¹*J* 245 Hz, *p*-C6F5), 136.6 (d, ¹*J* 234 Hz, *m*-C6F5), 126.2 (3- C₅H₄N), 126.1 (5-C₅H₄N), 88.1 (*CMe₂)*, 87.0 (*CMe₂)*, 75.2 (NCH₂CMe₂), 69.1 (NCH₂CMe₂), 67.4 (CH₂SiMe₃), 63.5 (NC₅-H4N*C*H2), 33.0 (C*Me*2), 32.9 (C*Me*2), 31.8 (C*Me*2), 29.8 (C*Me*2), 15.4 (B*C*H2SiMe3), 1.6 (CH2Si*Me*3), 1.1 (CH2Si*Me*3). 19F NMR $(282 \text{ MHz}, 293 \text{ K}, \text{CD}_2\text{Cl}_2): \delta -132.10 \text{ (6 F, d, }^3J, o-C_6\text{F}_5),$ -165.06 (3 F, t, ³J 20.6 Hz, p-C₆F₅), -167.74 (6 F, m, m-C₆F₅). IR (Nujol mull): *ν* 1646 (m), 1614 (m), 1571 (w), 1559 (w), 1542 (w), 1510 (s), 1305 (vw), 1128 (vw), 1079 (s), 910 (w), 848 (w), 828 (m), 768 (m), 687 (w), 644 (w), 625 (w) cm-1. Anal. Found (calcd for $C_{40}H_{44}BF_{15}N_2O_2Si_2Zr$): C, 46.9 (46.8); H, 4.8 (4.3); N, 2.8 (2.7).%.

Crystal Structure Determinations of Zr(CH2Ph)2- (N2NN′**) (3), ZrCl(CH2Ph)(N2NN**′**) (6), Ti(NAr)(N2NN**′**) (15),**

Zr(NHt Bu)(NC5H10)(N2NN′**) (19), Ta(Nt Bu)Cl(N2NN**′**) (21), H2O2NN**′ **(22), and Zr(CH2SiMe3)2(O2NN**′**) (27).** Crystal data collection and processing parameters are given in Table 8. Crystals were mounted on a glass fiber using perfluoropolyether oil and cooled rapidly in a stream of cold N_2 . Diffraction data were measured using an Enraf-Nonius DIP2000 or KappaCCD diffractometer. Intensity data were processed using the DENZO-SMN package.³⁵ The structures were solved using the direct-methods program SIR92,³⁶ which located all non-hydrogen atoms. Subsequent full-matrix least-squares refinement was carried out using the CRYSTALS program suite.37 Coordinates and anisotropic thermal parameters of all non-hydrogen atoms were refined. Hydrogen atoms were positioned geometrically with the exception of H(1) in **19** and the O-bound atoms in **22**, which were located from Fourier difference maps and positionally refined. Minor disorder in **6** and **15** was satisfactorily modeled. Weighting schemes were

applied as appropriate. Full listings of atomic coordinates, bond lengths and angles, and displacement parameters have been deposited at the Cambridge Crystallographic Data Center. See Notice to Authors, Issue No. 1.

Acknowledgment. We thank the EPSRC, Leverhulme Trust, and European Commision (Marie Curie Fellowship) for support of this work. We thank Dr. A. C. Hillier for the low-temperature NMR spectra for **13**- $PhCH₂BAr^F₃$ and DSM Research for samples of $Bar^F₃$.

Supporting Information Available: X-ray crystallographic files in CIF format for the structure determinations of Zr(CH2Ph)2(N2NN′) (**3**), ZrCl(CH2Ph)(N2NN′) (**6**), Ti(NAr)- (N2NN′) (**15**), Zr(NHt Bu)(NC5H10)(N2NN′) (**19**), Ta(Nt Bu)Cl(N2- NN′) (**21**), H2O2NN′ (**22**), and Zr(CH2SiMe3)2(O2NN′) (**27**). This material is available free of charge via the Internet at http://pubs.acs.org.

OM0506365 (35) Otwinowski, Z.; Minor, W. *Processing of X-ray Diffraction Data Collected in Oscillation Mode, Methods in Enzymology*; Academic Press: New York, 1997.

⁽³⁶⁾ Altomare, A.; Cascarano, G.; Giacovazzo, G.; Guagliardi, A.; Burla, M. C.; Polidori, G.; Camalli, M. *J. Appl. Crystallogr.* **1994**, *27*, 435.

⁽³⁷⁾ Watkin, D. J.; Prout, C. K.; Carruthers, J. R.; Betteridge, P. W.; Cooper, R. I. *CRYSTALS, issue 11*; Chemical Crystallography Laboratory: Oxford, U.K., 2001.