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Summary: The title compounds were prepared and were
found to undergo ring opening and molecular rearrange-
ment under mild conditions and no catalysis, forming
a carbon-carbon bond and closing a new chelate ring.
The rearrangement product depends on whether R-pro-
tons are present. Reactants and products are character-
ized by crystal structures.

This communication describes the preparation of
hexacoordinate silacyclobutane complexes and their
facile uncatalyzed ring opening and skeletal rearrange-
ment under mild conditions. The rearrangement leads
to a neutral pentacoordinate silicon complex, involving
carbon-carbon bond formation and closure of a new
chelate-ring. Silacyclobutane chemistry1 is of consider-
able interest, due to its facile ring opening and conse-
quent reactivity in anionic polymerization.2 Its thermal3
and photochemical3a,4,5 reactivity has been reported,
forming silenes and disilacyclobutanes.3 Silacyclo-
butanes undergo reactions with carbenes,6 aldehydes,

and epoxides.7 However, all of these reactions require
strong bases, thermolysis at elevated temperatures, or
photochemical initiation. In contrast, the present work
reports facile spontaneous silacyclobutane ring expan-
sion.

The transsilylation reaction8 of 1,1-dichlorosilacyclo-
butane (1) with O-(trimethylsilyl)-N-(alkylideneimino)-
hydrazides (2;9,10 eq 1) in chloroform solution at room
temperature leads smoothly to the neutral hexacoordi-
nate silacyclobutane complexes 3.11 To the best of our

knowledge there has only been one previous report of a
hexacoordinate silacyclobutane compound, with a sub-
stantially different structure (four phosphorus ligands).12

Under mild conditions (7 h in boiling acetonitrile or
several days at room temperature in chloroform) 3a,b
rearrange, respectively, to 4a,b, neutral pentacoordinate
complexes with a new carbon-carbon bond closing a
new chelate ring, while the four-membered ring opens
and forms an n-propyl ligand (eq 2).13 This remarkable
rearrangement, which proceeds without any catalysis,
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is reminiscent of a previously reported rearrangement
which takes place in pentacoordinate siliconium ion
salts, initiated by proton abstraction by the halide
counterion (eq 3).14 The close resemblance of these two

reactions suggested that they might proceed by similar
routes, i.e., initial ring opening and formation of a
silapropyl carbanion, followed by R-proton abstraction
and nucleophilic attack on the neighboring imino carbon
to close a six-membered chelate ring. However, the
possibility of a radical reaction cannot be ignored at this
point. The mechanistic ambiguity is under investigation
and will be reported later.

In the absence of protons in positions R to the imino
carbon, such as in the benzaldimino complexes 3c,d, no
proton abstraction is possible, and hence a different
rearrangement takes place: silacyclobutane ring open-
ing leads to a γ-silapropyl intermediate (whether radical
or carbanion), which attacks the most electrophilic atom
in the system, the imino carbon, adds to the double
bond, and closes a new six-membered chelate ring (eq
4).

This reaction involves ring expansion of the sila-
cyclobutane to a six-membered azasilacyclohexane ring,
accompanied by transformation of one of the dative
NfSi bonds to a regular covalent bond.

The evidence for these findings is as follows: crystal
structures have been determined for a representative
silacyclobutane complex and rearrangement products
(3a, 4b, and 7c),15 and the resulting molecular struc-
tures are depicted in Figures 1-3. The results of
microanalyses and spectral data are given in the Sup-
porting Information.

3 is of interest also because it is the first reported
hydrazide-based hexacoordinate complex with two mono-
dentate carbon ligands.8 The nitrogens in 3 are cis and
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Figure 1. Molecular structure of 3a in the crystal,
depicted at the 50% probability level. Hydrogen atoms are
omitted for clarity. Selected bond lengths (Å) and angles
(deg): Si-O, 1.8051(12); Si-N, 1.9919(16); Si-C, 1.9016(19);
O-Si-O, 164.39(9); N-Si-N, 86.39(9); C-Si-C, 78.53(12),
O-Si-N2, 88.65(6); O-Si-N2A, 79.95(6).
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the oxygens trans relative to each other, in contrast to
numerous previously analyzed SiO2N2XY hexacoordi-
nate compounds, in which nitrogens were in trans
positions.9,16 Further evidence for the hexacoordination
of compounds 3a-d in solution is found in their 29Si
NMR spectra (Table 1): the 29Si chemical shifts fall well
within the range of hexacoordinate complexes with
similar ligand frameworks, with either X or Y being a
halogen.8,9,16 3b shows significant temperature depend-
ence of the 29Si chemical shift (δ -123.1 ppm at 257 K
and -112.6 ppm at 330 K, in CDCl3 solution), suggest-
ing that some N-Si dissociation may take place in an
equilibrium between hexa- and pentacoordinate com-
plexes.17

The various solution NMR spectra (1H, 13C, and 29Si)
of the rearrangement products 4 agree with the crystal

structure of 4b, proving the identity of the compounds
in the crystal and in solution. Thus, the appearance of
the 1H and 13C NMR signals typical of the n-propyl
group provide evidence for the structure of 4. Likewise,
the conversion of one of the C-methyl groups in 3a,b to
a CH2 group in 4 is apparent in the NMR spectra and
is evidence for the structure of 4 in solution.

The two rearrangement reactions described above
feature unusually facile ring opening, accompanied by
carbon-carbon bond formation and chelate ring expan-
sion, and may offer new synthetic routes for organic and
organosilicon compounds.
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Figure 2. Molecular structure of 4b in the crystal,
depicted at the 50% probability level. Hydrogen atoms are
omitted for clarity. Selected bond lengths (Å) and angles
(deg): Si-O1, 1.733(3); Si-O2, 1.746(3); Si-N2, 1.755(3);
Si-N3, 1.981(3); Si-C, 1.868(4); N2-C8, 1.467(5);
N3-C10, 1.289(4); O1-Si-N3, 160.63(13); O2-Si-N2,
133.68(14), N2-Si-N3, 89.31(13); O1-Si-O2, 89.66(12);
O1-Si-C, 101.45(17); O2-Si-C, 108.49(16); N2-Si-C,
117.56(17); N3-Si-C, 97.34(17).

Table 1. 29Si Chemical Shifts (ppm) for
Compounds 3a-d, 4a,b, and 7c,d in CDCl3 Solution

at 300 K
3a 3b 3c 3d 4a 4b 7c 7d

δ(29Si) -134.7 -119.0 -131.3 -132.1 -86.6 -86.9 -74.6 -70.6

Figure 3. Molecular structure of 7c in the crystal,
depicted at the 50% probability level. Hydrogen atoms are
omitted for clarity. Selected bond lengths (Å) and angles
(deg) (corresponding to one of the two independent mol-
ecules in the unit cell): Si1-O1, 1.7248(12); Si1-O2,
1.7017(12); Si1-N1, 2.0438(15); Si1-N4, 1.7579(15); Si1-
C15, 1.8637(17); N1-Si1-N4, 169.45(6); O1-Si1-O2,
113.57(6); O1-Si1-C15, 113.18(7), O2-Si1-C15, 131.17(7).

5788 Organometallics, Vol. 24, No. 24, 2005 Communications


