A Bimetallic Complex Spanned by the C₄H Ligand: Synthesis of $[Cl(CO)_2L_2RuC \equiv CCH = C = RuL_2(\eta - C_5H_5)]PF_6$ $(L = PPh_3)$

Michael J. Bartlett, Anthony F. Hill,* and Matthew K. Smith

Research School of Chemistry, Institute of Advanced Studies, Australian National University, Canberra, Australian Capital Territory, Australia

Received September 16, 2005

Summary: The synthesis of the first example of a bimetallic complex spanned by the C_4H alkynylvinylidene ligand, $[Cl(CO)_2L_2RuC \equiv CCH = C = RuL_2(\eta - C_5H_5)]PF_6$ ($L = PPh_3$), is reported: the reaction of $[Ru(CO)_2L_3]$ with butadiyne provides $[RuH(C \equiv CC \equiv CH)(CO)_2L_2]$, which is converted to the chloro derivative $[RuCl(C \equiv CC \equiv CH)-(CO)_2L_2]$ by N-chlorosuccinimide. Subsequent treatment with $[Ru(thf)L_2(\eta - C_5H_5)]PF_6$ provides $[Cl(CO)_2L_2RuC \equiv CCH = C = RuL_2(\eta - C_5H_5)]PF_6$, deprotonation of which affords $[Cl(CO)_2L_2RuC \equiv CC \equiv CRuL_2(\eta - C_5H_5)]$.

While there has been enormous and rapid progress in recent times in the synthesis of dimetalated butadiynes, $L_nM-(C\equiv C)_2-ML_n$,¹ far less is known about how partially reduced carbon chains, e.g., C_4H or C_4H_2 , might bridge two metal centers. For C₄H Chart 1 presents how one might envisage possible coordination modes on the basis of the number of valence electrons [x,y] provided to each metal terminus and the position of the single-proton substituent. One complex in which two metals are spanned by a C₄H ligand has been reported from the reaction of $[W(C \equiv CC \equiv CH)(CO)_3(\eta C_5H_5$)] with [Pt(η -C₂H₄)(PPh₃)₂], in which the unstable product is suggested to adopt coordination mode e.² Protonation of the complexes $[Fe_2(\mu-C_4)(CO)_2(R_2PCH_2 CH_2PR_2(\eta-C_5Me_5)_2$] (R = Ph, ^{*i*}Pr) has been suggested to provide examples of the butatrienylidene form d,³ although spectroscopic data and the facile deprotonation are also consistent with form e. Of the various possibilities shown in Chart 1, it is the alkynyl-vinylidene form (a) with which this paper is concerned. Such a coordination mode is likely as an intermediate in the doubledeprotonation reactions that have been reported for a range of bis(vinylidenes);⁴ however, isolated examples have yet to be described. We report herein the multistep synthesis of one such complex.

The complex $[\operatorname{Ru}(\operatorname{CO})_2(\operatorname{PPh}_3)_3]$ (1)⁵ is known to π -coordinate internal alkynes⁶ and diynes,⁷ to cyclocodimerize α, ω -diynes with CO,⁸ and to cleave one *single* C–C bond of dimetallaoctatetraynes.⁹ However, with termi-

^{*a*} L = PPh₃. Legend: (i) $[Bu_4N]F/H_2O$; (ii) *N*-chlorosuccinimide; (iii) $[Ru(THF)(CO)_2(\eta$ -C₅H₅)]PF₆; (iv) Et₂NH; (v) HPF₆.

 $[\]ast$ To whom correspondence should be addressed. E-mail: a.hill@ anu.edu.au.

 ^{(1) (}a) Bruce, M. I.; Low, P. J. Adv. Organomet. Chem. 2004, 50,
(b) Low, P. J.; Bruce, M. I. Adv. Organomet. Chem. 2002, 48, 71.
(2) Bruce, M. I.; Low, P. J.; Ke, M.; Kelly, B. D.; Skelton, B. W.;

Smith, M. E.; White, A. H.; Witton, N. B. Aust. J. Chem. 2001, 54, 453.

⁽³⁾ Coat, F.; Guillemot, M.; Paul, F.; Lapinte, C. J. Organomet. Chem. **1999**, 578, 76.

^{(4) (}a) Bruce, M. I.; Ellis, B. G.; Low, P. J.; Skelton, B. W.; White, A. H. Organometallics **2003**, 22, 3184. (b) Bruce, M. I.; Hall, B. C.; Kelly, B. D.; Low, P. J.; Skelton, B. W.; White, A. H. J. Chem. Soc., Dalton Trans. **1999**, 3719. (c) Bruce, M. I.; Hinterding, P.; Tiekink, E. R. T.; Skelton, B. W.; White, A. H. J. Organomet. Chem. **1993**, 450, 209. (d) Bruce, M. I.; Ellis, B. G.; Gaudio, M.; Lapinte, C.; Melino, G.; Paul, F.; Skelton, B. W.; Smith, M. E.; Toupet, L.; White, A. H. Dalton Trans. **2004**, 1601.

Figure 1. Molecular geometry of **2** in a crystal of $2 \cdot C_6H_6$ (phenyl groups simplified, 50% displacement ellispsoids). Selected bond distances (Å) and angles (deg): Ru1-C3 = 2.063(3), Ru1-P1 = 2.3557(9), Ru1-P2 = 2.3560(10), C3-C4 = 1.210(4), C5-C6 = 1.176(4), C5-C4 = 1.386(4), Ru1-H1 = 1.57(4), C6-H6 = 0.95(2); P1-Ru1-P2 = 168.00(3), C4-C3-Ru1 = 177.2(3), C6-C5-C4 = 178.7(3), C3-C4-C5 = 178.1(4).

nal alkynes C–H activation occurs with oxidative addition to provide hydrido–alkynyl derivatives of ruthenium(II).⁵ We have therefore investigated the reaction of **1** with butadiyne (generated in situ from Me₃SiC₄-SiMe₃ and moist [Bu₄N]F, "TBAF"), which proceeds to provide the complex [RuH(C=CC=CH)(CO)₂(PPh₃)₂] (**2**) in 85% yield. Notably, there was no indication of the formation of the bimetallic derivative (μ -C₄)[RuH(CO)₂-(PPh₃)₂]₂ and isolated **2** did not react with a further equivalent of **1**. The characterization of **2**¹⁰ included a crystallographic analysis, the results of which are summarized in Figure **1**. The geometry at the octahedral ruthenium center is unremarkable, other than to con-

(9) Dewhurst, R. D.; Hill, A. F.; Rae, A. D.; Willis, A. C. Organometallics **2005**, 24, 4703.

(10) 2: to Me₃SiC₄SiMe₃ (2.47 g, 12.7 mmol) in ethanol (20 mL) was added [Bu₄N]F (50.4 mL, 50.4 mmol, 1.00 mol L⁻¹ in THF, Aldrich) and the mixture stirred for 15 min before an arobic cannula transfer to a suspension of 1 (6.00 g, 6.35 mmol)^{5b} in THF (100 mL). The mixture was stirred for 15 min and then concentrated to ca. 20 mL. The resulting white solid was isolated by filtration and recrystallized from CH₂Cl₂/EtOH to yield pale brown crystals. Yield: 3.96 g (85%). IR (CH₂Cl₂): 2143 ($\nu_{C=C}$), 2040, 1987 (ν_{CO}), 1999 (ν_{RuH}) cm⁻¹. IR (Nujol): 2141 ($\nu_{C=C}$), 2040, 1987 (ν_{CO}), 2004 (ν_{RuH}) cm⁻¹. NMR (C6D₆, 25 °C): ¹H, δ_{H} – 5.30 (t, 1H, RuH, ²J_{HP} = 20.0), 1.21 (t, 1H, -C=CH, ⁶J_{HP} = 1.2 Hz), 6.97, 7.92 (m × 2, 30H, C6H₅); ³¹P{¹H} δ_{P} 44.1 ESI-MS: m/z 772.8 [M + H + NCMe]⁺. Anal. Found: C, 68.87; H, 4.79; N, 0.00. Calcd for C4₂H₃₂O₂P₂Ru: C, 68.84; H, 4.40; N, 0.00. Crystal data for **2**·C₆H₆: C4₈H₃₈O₂P₂Ru, M_w =809.79, *P*I (No. 2), triclinic, *a* = 10.010-(2) Å, *b* = 13.520(3) Å, *c* = 15.669(3) Å, *a* = 100.96(3)°, *β* = 93.85(3)°, γ = 106.40(3)°, V = 1980.7(7) Å³, Z = 2, ρ_{calcd} = 1.358 Mg m⁻³, T = 200(2) K, colorless prism, F^2 refinement, R1 = 0.045, wR2 = 0.122, for 9060 independent observed absorption corrected reflections ($I \ge 2\sigma(I)$, $2\theta_{max} = 49.68°$), 478 parameters, CCDC 247962. firm the stereochemistry inferred from spectroscopic data. Of the two C=C triple bonds, that adjacent to ruthenium (C1-C2 = 1.210(4) Å) is somewhat longer (ca. 9σ) than the terminal one (C3-C4 = 1.176(4) Å), consistent with a retrodative role for the ruthenium center, despite the disposition of a carbonyl ligand trans to C1.

The complex 2 was found to decompose¹¹ during the time required for the acquisition of ${}^{13}C{}^{1}H$ NMR data; however, the more stable derivative [RuCl(C=CC=CH)- $(CO)_2(PPh_3)_2$] (3)¹² could be obtained via the reaction of 2 with N-chlorosuccinimide (NCS). Spectrocopic data for **3** are conclusive but generally unremarkable. Treating **3** with a filtered solution of $[Ru(THF)(PPh_3)_2(\eta - C_5H_5)]$ -PF₆ (generated in situ from [RuCl(PPh₃)₂(η -C₅H₅)] and AgPF₆ in THF) provides the salt $[Cl(CO)_2L_2RuC = CCH =$ $C=RuL_2(\eta-C_5H_5)]PF_6$ (4-PF₆),¹³ in which two ruthenium centers are linked in an unprecedented manner by the C_4H ligand bound to one ruthenium as a σ -alkynyl species and the other as a vinylidene (Scheme 1). The ¹³C{¹H} NMR spectrum proved most diagnostic, revealing two alkynyl resonances ($\delta_{\rm C}$: 95.3; 127.7, t, ${}^{2}J_{\rm PC} \approx$ 5.1 Hz) in addition to those for the two carbons of the vinylidene linkage ($\delta_{\rm C}$: 120.3; 335.1, t, ${}^{3}J_{\rm PC} = 10.9$ Hz). The vinylidene proton resonance was not directly observed in the ¹H NMR spectrum due to coincidence with the plethora of phenyl resonances; however, it could be identified ($\delta_{\rm H}$ 7.26) by HMQC NMR measurements, which revealed a correlation with the resonance at $\delta_{\rm C}$ 120.3

In principle, the proton (the acidity of which is demonstrated below) could reside on either of the two carbons β to a ruthenium center (Chart 2). Vinylidene/ 1-alkyne tautomerism is particularly facile at divalent ruthenium centers, and it may therefore be assumed

(12) 3: N-chlorosuccinimide (0.04 g, 0.3 mmol) and 2 (0.18 g, 0.25 mmol) were dissolved in THF (30 mL) and the mixture stirred for 5 min. Ethanol was added, and the solvents were reduced to provide a pale yellow solid, which was isolated by filtration and recrystallized from CH₂Cl₂/EtOH to provide straw-colored crystals. Yield: 0.16 g (85%). IR (CH₂Cl₂): 2150 ($\nu_{C=C}$), 2058, 1999 (ν_{CO}) cm⁻¹. IR (Nujol): 2147 ($\nu_{C=C}$), 2057, 1997 (ν_{CO}) cm⁻¹. NMR (C₆D₆, 25 °C): ¹H, $\delta_{\rm H}$ 1.43 (t, 1 H, C=CH, $^{6}J_{\rm HP}$ = 1.2 Hz), 6.97, 8.19 (m \times 30 H, C₆H₅); ^{13C}(¹H₁, $\delta_{\rm C}$ 58.3 (C=CH), 71.9 (C=CH), 97.3 (RuC=C), 104.0 (t, ²J_{CP} = 19.7, RuC=C), 128.5 (vt, J_{CP} = 4.98, C^{3.5} (C₆H₅)), 130.7 (C⁴ (C₆H₅)), 132.9 (vt, J_{CP} = 24.21, C¹ (C₆H₅)), 134.4 (vt, J_{CP} = 5.32, C^{2.6} (C₆H₅)), 191.7 (t, ²J_{CP} = 8.98, CO), 193.8 (t, ²J_{CP} = 10.6 Hz, CO); ³¹P{¹H}, $\delta_{\rm P}$ 22.1. ESI-MS: *m/z* 806.8 (M + NCMe]⁴. Anal. Found: C, 62.65; H, 4.04; N, 0.00. Calcd for C₄₂H₃₁ClO₂P₂Ru·0.66CH₂Cl₂: C, 62.32; H, 3.97; N, 0.00 (CH₂Cl₂ estimated by ¹H NMR integration).

(13) 4-PF₆: [RuCl(PPh₃)₂(η -C₅H₅)] (0.10 g, 0.14 mmol) and AgPF₆ (0.035 g, 0.14 mmol) were stirred in THF (25 mL) for 10 min, the mixture was then transferred, via filter cannula, to a flask containing **3** (0.11 g, 0.14 mmol), and the resulting mixture was stirred for 10 min. The solvent volume was then reduced in vacuo and ethanol added to precipitate the orange-brown product, which was recrystallized from THF/ethanol as a THF monosolvate (¹H NMR). Yield: 0.17 g (75%). IR (CH₂Cl₂): 2052, 1994 (ν_{CO}), 1969 ($\nu_{C=C=Ru}$) cm⁻¹. IR (Nuj0)): 2046, 1986 (ν_{CO}) 1967 ($\nu_{C=C=Ru}$) cm⁻¹. NMR (CHCl₃, 25 °C): ¹H, δ_{H} 4.66 (s, 5H, C₅H₅), 7.11, 7.73, 7.78 (m × 3, 61 H, C₆H₅), sp 3.3 (RuC=C), 120.3 (Ru=C=CH), 127.7 (t, ²J_{PC} = 5.1, RuC=C), 128.5 (vt, J_{CP} = 4.00, Ru_{CO} C^{3.5} (C₆H₅)), 131.3 (Ru_{Cp} C⁴ (C₆H₅)), Ru_{Cp} C¹ (C₆H₅)), 133.3 (vt, J_{CP} = 5.13, Ru_{CO} C^{2.6} (C₆H₅)), 191.9 (CO), 195.1 (CO), 335.1 (t, ²J_{CP} = 10.9 Hz, Ru=C=CH); ³¹P{¹H}, δ_{P} 23.4, 47.1. ESI-MS: *m/z* 1422.8 [M - PF₆ - Cl]⁺ Anal. Found: C, 62.78; H, 4.43; N, 0.00.

⁽⁵⁾ Cavit, B. E.; Grundy, K. R.; Roper, W. R. Chem. Commun. **1972**, 60. (b) Preparative details: Hill, A. F.; Tocher, D. J.; White, A. J. P.; Williams, D. J.; Wilton-Ely, J. D. E. T. Organometallics **2005**, 24, om050514c.

⁽⁶⁾ Hill, A. F.; Schultz, M.; Willis, A. C. Organometallics **2004**, 23, 5729.

⁽⁷⁾ Alcock, N. W.; Hill, A. F.; Melling, R. P.; Thompsett, A. R. Organometallics **1993**, *12*, 641.

^{(8) (}a) Hill, A. F.; Rae, A. D.; Schultz, M.; Willis, A. C. Organometallics **2004**, 23, 81. (b) Hill, A. F.; Schultz, M.; Willis, A. C. Organometallics **2005**, 24, 2027.

⁽¹¹⁾ If left to stand in solution under air, the complex **2** provides $[\operatorname{Ru}(\eta^2-O_2)(\operatorname{CO})_2(\operatorname{PPh}_3)_2]$, while under anaerobic conditions in the presence of PhC=CPh the complex $[\operatorname{Ru}(\eta^2-\operatorname{PhC}=\operatorname{CPh})(\operatorname{CO})_2(\operatorname{PPh}_3)_2]$ slowly forms. Since these complexes are also the products of the reactions of **1** with air⁵ and PhC=CPh,⁶ respectively, we conclude that **2** decomposes via reversible reductive elimination of butadiyne.

that the adopted isomer in which Ru-C multiple bonding occurs specifically to the $Ru(PPh_3)_2(\eta-C_5H_5)$ end $(4^+ \text{ vs iso-}4^+)$, represents the thermodynamic preference. This has been further confirmed by the observation that protonation of the butadivnediyl complex $[Cl(CO)_2(Ph_3P)_2RuC \equiv CC \equiv CRu(PPh_3)_2(\eta - C_5H_5)]$ (5; vide infra) with HPF_6 exclusively (re)generates 4-PF₆, with no evidence for the transient intermediacy of $iso-4^+$ being detectable within the time required to measure the ³¹P NMR spectrum. Notably, the spectroscopic data associated with the $RuCl(CO)_2(PPh_3)_2$ terminus are essentially invariant in the sequence $3 \rightarrow 4^+$, (δ_P : 22.1 \rightarrow 23.4); indeed, the mean $\nu_{\rm CO}$ value actually decreases marginally (mean $\nu_{\rm CO}$: 2027 \rightarrow 2023 cm⁻¹), inconsistent with the formation of a cationic $[(Ph_3P)_2-$ Cl(CO)₂Ru=CR₂]⁺ terminus.¹⁴ Thus, structural changes may be assumed to be remote from the CO-ligated end of the metallacumulene. We have previously shown that the addition of CO trans to the vinylidene ligand in $[RuCl_2 = C = C(Se^iPr)Ph (PPh_3)_2]$ results in rapid formation of [RuCl₂(CO)₂(PPh₃)₂] (ttt isomer) and free PhC≡CSe^{*i*}Pr.¹⁵ In a similar manner, it has been noted that the reactions of electrophiles with the complex $[RuCl(C \equiv CPh)(CO)_2(PPh_3)_2]$ (an analogue of 3) do not result in the formation of vinylidene derivatives, while HCl results in liberation of the alkyne and formation of [RuCl₂(CO)₂(PPh₃)₂] (cct isomer).¹⁶ Thus, any putative intermediate in which the superlatively π -acidic vinylidene ligand is coordinated trans to a carbonyl ligand at an octahedral ruthenium(II) center would appear to be destabilized due to competitive π -acceptance. Rearrangement of the vinylidene to an alkyne tautomer would alleviate this. However, this in turn introduces a further labilization resulting from the repulsive interaction of the filled alkyne bonding orbital (orthogonal to the RuC₂R₂ coordination plane) with the occupied $(t_{2g})^6$ set of metal orbitals. Thus, the stability of 4^+ and isomeric preference (cf. $iso-4^+$) may be traced to the disparate electronic natures of the two chemically distinct ruthenium termini.

We have not yet succeeded in obtaining crystallographic grade crystals of 4-PF₆; however, further support for its formulation is provided by the simple deprotonation reaction that is typical of vinylidenes of the form $[Ru(=C=CHR)(PPh_3)_2(\eta-C_5H_5)]^+$ to provide the

Figure 2. Molecular geometry of **5** in a crystal of $\mathbf{5} \cdot 3C_6H_6$ (phenyl groups simplified, 50% displacement ellispsoids). Selected bond distances (Å) and angles (deg): Ru1-C2 = 1.864(5), Ru1-C1 = 1.927(6), Ru1-C3 = 2.065(4), Ru1-P2 = 2.4071(13), Ru1-P1 = 2.4112(14), Ru1-Cl1 = 2.4564-(13), Ru2-C6 = 2.020(5), Ru2-P4 = 2.2824(14), Ru2-P3 = 2.2924(14), C3-C4 = 1.220(6), C4-C5 = 1.370(6), C5-C6 = 1.224(6); C6-Ru2-P4 = 85.16(13), C6-Ru2-P3 = 88.74(14), P4-Ru2-P3 = 102.85(5), C4-C3-Ru1 = 177.1-(4), C3-C4-C5 = 178.8(5), C6-C5-C4 = 174.5(5), C5-C6-Ru2 = 176.0(4).

 σ -alkynyls [Ru(C=CR)(PPh_3)_2(\eta-C₅H₅)].¹⁷ Thus, treating a solution of 4-PF₆ in THF with diethylamine provides the neutral bimetallic butadiynediyl complex [Cl(CO)₂- $(Ph_3P)_2RuC \equiv CC \equiv CRu(PPh_3)_2(\eta - C_5H_5)]$ (5), the characterization of which included a crystallographic analysis.¹⁸ Figure 2 depicts the molecular geometry of the bimetallic complex, while Table S1 (Supporting Information) collates structural data for the range of known 1,4-diruthenated butadiynes. All of these are symmetrically substituted, with identical ligand sets at either end comprising one η^5 -C₅R₅ (R = H, Me) and two phosphine donors: i.e., strongly π -basic ruthenium termini. Complex **5** provides a rare opportunity to assess the effects of varying coligands while keeping the metal termini the same. Metal-alkynyl bonding is considered to include a modest π -retrodative component that appears maximized for octahedral d⁶-metal centers devoid of competitive π -acidic co-ligands—a situation exemplified by the $Ru(PPh_3)_2(\eta - C_5H_5)$ terminus in 5. In contrast,

⁽¹⁴⁾ The comparable conversion of [OsCl{C(H)=S}(CO)₂(PPh₃)₂]] to [OsCl{=C(H)SCH₃}(CO)₂(PPh₃)₂]⁺ is accompanied by an expected increase in mean ν_{C0} from 2010 to 2023 cm⁻¹: Collins, T. J.; Roper, W. R. J. Organomet. Chem. **1978**, 159, 73.

⁽¹⁵⁾ Hill, A. F.; Hulkes, A. G.; White, A. J. P.; Williams, D. J. Organometallics **2000**, *19*, 371.

⁽¹⁶⁾ Bedford, R. B.; Hill, A. F.; Thompsett, A. R.; White, A. J. P.; Williams, D. J. J. Chem. Soc., Chem. Commun. **1996**, 1059.

⁽¹⁷⁾ Davies, S. G.; McNally, J. P.; Smallridge, A. J. Adv. Organomet. Chem. **1990**, 30, 1.

^{(18) 5:} diethylamine (1 mL) was added to a solution of 4-PF₆ (0.10 g, 0.06 mmol) in THF (20 mL) and the mixture stirred for 20 min. Concentration under reduced pressure precipitated the lemon yellow product, which was recrystallized from CH₂Cl₂/EtOH as an ethanol monosolvate (analysis) or a benzene solvate from benzene (X-ray). Yield: 0.06 g (66%). IR (CH₂Cl₂): 2048, 1987 (ν_{CO}) cm⁻¹. IR (Nujol): 2044, 1983 (ν_{CO}) cm⁻¹. NMR (C₆D₆, 25 °C): ¹H, δ_H 4.43 (s, 5H, C₅H₅), 6.94, 7.04, 7.73, 8.36 (m × 4, 60 H, C₆H₅); ¹³C{¹H}, δ_C 80.3 (br, C≡CRu(Cp)), 85.9 (C₅H₅), 95.7 (br, (OC)RuC≡C), 102.1 ((OC)-RuC≡C), 106.5 (C≡CRu(Cp)), the phenyl region was obscured by the solvent peak, no unambiguous assignments could be made, 192.1 (CO), 195.8 (CO); ³¹P{¹H}, δ_P 21.8, 51.3. ESI-MS: *m/z* 1461.7 [M − Cl + NCMe]⁺, 1420.6 [M − Cl]⁺ Anal. Found: C, 67.89; H, 4.89; N, 0.00. Calcd for C₈₃H₆₅ClO₂P₄Ru₂·EtOH: C, 67.90; H, 4.76; N, 0.00. Crystal data for **5**·3C₆H₆: C₁₀₁H₈₃ClO₂P₄Ru₂, *M*_w = 1690.14, monoclinic, *P*₂₁/*n*, *a* = 13.189(3) Å, *b* = 25.805(5) Å, *c* = 24.164(5) Å, *β* = 90.13(3)°, V = 8224(3) Å³, *Z* = 4, ρ_{calcd} = 1.365 Mg m⁻³, *T* = 200(2) K, yellow prisms, R1 = 0.064, wR2 = 0.151, for 14 527 independent, observed, absorption-corrected reflections (*I* > 2*σ*(*I*), 2*θ*_{max} = 44.30°), 1084

Ru1 is ligated by two strong π -acids, one of which interacts with both of the t_{2g} -type orbitals that might otherwise be exploited for retrodonation to the C₄ ligand. This is reflected in the significant (9 σ) lengthening of Ru1-C3 relative to Ru2-C6, the former being the longest in Table S1. The cis Ru1(CO)₂ arrangement allows an internally referenced indication of the trans influence of the C₄ ligand relative to chloride. The Ru1-C1 bond is markedly (12 σ) lengthened relative to Ru1-C2, possibly suggesting a degree of competitive π -acidity on the part of the C₄ ligand. Acknowledgment. We are grateful to one reviewer for identifying an erroneous spectroscopic assignment of the ${}^{13}C{}^{1}H$ NMR data for 4^+ .

Supporting Information Available: Full details of the crystal structure determinations of $2 \cdot C_6 H_6$ (CCDC 247962) and $5 \cdot 3C_6 H_6$ (CCDC 284088) in CIF format and Table S1, collating structural data for **5** and diruthenated butadiynes. This material is available free of charge via the Internet at http://pubs.acs.org.

OM050800O