Zwitterionic $\lambda^5 Si$ -Silicates with an SiS₄C or SiS₂O₂C Skeleton, Compounds Containing a Square-Pyramidal or **Trigonal-Bipyramidal Si-Coordination Polyhedron**

Oliver Seiler, Matthias Büttner, Martin Penka, and Reinhold Tacke*

Institut für Anorganische Chemie, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany

Received June 8, 2005

Summary: Treatment of [2-(dimethylamino)phenyl]silane (8) with 2 molar equivs of benzene-1,2-dithiol or 2-mercaptoacetic acid yields bis[benzene-1,2-dithiolato-(2-)][2-(dimethylammonio)phenyl]silicate (6) and [2-(dimethylammonio) phenyl] bis [2-mercaptoe than oato (2-)-O,S]silicate (7), respectively. The zwitterionic λ^5 Sisilicates were structurally characterized by solid-state NMR spectroscopy (¹³C, ¹⁵N, ²⁹Si) and single-crystal X-ray diffraction. Compound 6 is the first zwitterionic λ^5 Si-silicate with Si-S bonds that contains a squarepyramidal Si-coordination polyhedron.

In almost all cases reported so far, pentacoordination of silicon is accomplished by strongly electronegative ligand atoms, such as fluorine, oxygen, nitrogen, and chlorine atoms, as well as carbon atoms (for reviews dealing with higher-coordinate silicon compounds, see ref 1). We have recently reported on the synthesis of the zwitterionic $\lambda^5 Si$ -silicates 1, ² 2, ² 3·CH₃CN, ³ 4, ⁴ and 5,⁴ demonstrating that sulfur atoms can also act as ligand atoms in pentacoordinate silicon compounds. The

(1) Selected reviews dealing with compounds of higher-coordinate silicon: (a) Sheldrick, W. S. In *The Chemistry of Organic Silicon* Compounds; Patai, S., Rappoport, Z., Eds.; Wiley: Chichester, U.K., 1989; Part 1, pp 227-303. (b) Bassindale, A. R.; Taylor, P. G. In The Chemistry of Organic Silicon Compounds; Patai, S., Rappoport, Z., Eds.; Wiley: Chichester, U.K., 1989; Part 1, pp 839-892. (c) Corriu, R. J. P.; Young, J. C. In The Chemistry of Organic Silicon Compounds; Patai, S., Rappoport, Z., Eds.; Wiley: Chichester, U.K., 1989; Part 2, pp 1241–1288. (d) Holmes, R. R. Chem. Rev. **1990**, 90, 17–31. (e) Chuit, 137, 233-295. (i) Tacke, R.; Dannappel, O. In Tailor-made Silicon-Oxygen Compounds-From Molecules to Materials; Corriu, R., Jutzi, P., Eds.; Vieweg: Braunschweig-Wiesbaden, Germany, 1996; pp 75-86. (j) Lukevics, E.; Pudova, O. A. Chem. Heterocycl. Compd (Engl. Transl.) 1996, 32, 1381-1418. (k) Holmes, R. R. Chem. Rev. 1996, 96, 927-950. (1) Kost, D.; Kalikhman, I. In The Chemistry of Organic Silicon Compounds; Rappoport, Z., Apeloig, Y., Eds.; Wiley: Chichester, U.K., 1998; Vol. 2, Part 2, pp 1339–1445. (m) Pestunovich, V.; Kirpichenko, S.; Voronkov, M. In *The Chemistry of Organic Silicon Compounds*; Rappoport, Z., Apeloig, Y., Eds.; Wiley: Chichester, U.K., 2000 1998; Vol. 2, Part 2, pp 1447-1537. (n) Chuit, C.; Corriu, R. J. P.; Reye, C. In Chemistry of Hypervalent Compounds; Akiba, K.-y., Ed.; Wiley-VCH: New York, 1999; pp 81-146. (o) Tacke, R.; Pülm, M.; Wagner, B. Adv. Organomet. Chem. 1999, 44, 221-273. (p) Brook, M. A. Silicon in Organic, Organometallic, and Polymer Chemistry; Wiley: New York, 2000; pp 97-114. (q) Tacke, R.; Seiler, O. In Silicon Chemistry: From VCH: Weinheim, Germany, 2003; pp 324–337. (r) Kost, D.; Kalikhman, I. Adv. Organomet. Chem. **2004**, 50, 1–106.

(2) Tacke, R.; Mallak, M.; Willeke, R. Angew. Chem. **2001**, 113, 2401–2403; Angew. Chem., Int. Ed. **2001**, 40, 2339–2341.

(3) Bertermann, R.; Biller, A.; Kaupp, M.; Penka, M.; Seiler, O.;
 Tacke, R. Organometallics 2003, 22, 4104–4110.
 (4) Willeke, R.; Tacke, R. Z. Anorg. Allg. Chem. 2001, 627, 1537–

1541.

electronegativity of sulfur is similar to that of carbon (Allred-Rochow values: S, 2.44; C, 2.50) but significantly lower than those of fluorine (4.10), oxygen (3.50), nitrogen (3.07), and chlorine (2.83). As shown by singlecrystal X-ray diffraction, the Si-coordination polyhedra of 1, 2, 3·CH₃CN, and 4 are somewhat distorted trigonal bipyramids, with the carbon atom and two sulfur atoms in the three equatorial positions. In all cases, the carbon ligand atoms are characterized by sp³-hybridization, with Si-C bond distances ranging from 1.906(2) to 1.939(4) Å. We have now succeeded in synthesizing the first pentacoordinate silicon compounds with SiS₄C and SiS₂O₂C skeletons that contain an sp²-hybridized carbon ligand atom, the zwitterionic $\lambda^5 Si$ -silicates **6** and **7**. Both compounds were characterized by solid-state NMR spectroscopy and single-crystal X-ray diffraction.

The zwitterionic $\lambda^5 Si$ -silicates **6** and **7** were synthesized according to Scheme 1 by treatment of [2-(dimethylamino)phenyl]silane (8) with 2 molar equivs of benzene-1,2-dithiol or 2-mercaptoacetic acid at 20 °C in acetonitrile. The products were isolated as crystalline solids (yields: 6, 89%; 7, 62%), and their identities were established by elemental analyses (C, H, N), solid-state VACP/MAS NMR experiments (13C, 15N, 29Si), and single-crystal X-ray diffraction.

^{*} To whom correspondence should be addressed. E-mail: r.tacke@ mail.uni-wuerzburg.de.

The solid-state ¹³C, ¹⁵N, and ²⁹Si NMR data of compounds **6** and **7** are compatible with their molecular structures in the crystal (for details, see Experimental Section). The isotropic chemical shift obtained in the ²⁹Si VACP/MAS NMR studies of **6** ($\delta = -50.2$) is similar to those of compounds **1** ($\delta = -53.0$), **2** ($\delta = -57.2$), and **3**·CH₃CN ($\delta = -64.1$), which all contain an SiS_4C skeleton. The isotropic ²⁹Si chemical shift of **7** ($\delta =$ -73.4) is similar to that of **5** ($\delta = -69.8$), but these values differ significantly from that of **4** ($\delta = -98.5$), although compounds **4**, **5**, and **7** contain an SiS_2O_2C skeleton. These differences might be explained by the different sizes of the five- (**5**, **7**) and six-membered (**4**) chelate rings of these zwitterions (in this context, see ref 5).

The crystal data and the experimental parameters used for the crystal structure analyses of **6** and **7** are given in Table 1. The molecular structures in the crystal are shown in Figures 1 and 2; selected bond distances and angles are given in the respective Figure legends.

The Si-coordination polyhedron of 6 can be described as a slightly distorted square pyramid (Berry distortion, 96.2%,⁶ with each of the two benzene-1,2-dithiolato(2-) ligands spanning two of the four basal sites and the carbon atom of the aryl group occupying the apical site. To the best of our knowledge, this is the first pentacoordinate silicon compound with Si-S bonds that has been reported to have a square-pyramidal Si-coordination polyhedron. The Si-S bond lengths of 6 range from 2.2251(7) to 2.2558(6) Å. These Si-S distances are longer than the equatorial (2.1588(9)-2.1728(9) Å) and shorter than the axial (2.2871(7)-2.3475(8) Å) Si-S bonds in compounds 1-4, which all contain a trigonalbipyramidal Si-coordination polyhedron. The Si-coordination polyhedron of 7 is also best described as a distorted trigonal bipyramid (Berry distortion, 25.6%),⁶ with each of the two 2-mercaptoethanoato(2-) ligands spanning one axial (O1, O2) and one equatorial (S1, S2)

Table 1. Crystal Data and ExperimentalParameters for the Crystal Structure Analyses of 6and 7

	6	7
empirical formula	$C_{20}H_{19}NS_4Si$	$C_{12}H_{15}NO_4S_2Si$
formula mass, g mol ⁻¹	429.69	329.46
collection T, K	173(2)	173(2)
λ(Mo Kα), Å	0.71073	0.71073
cryst syst	monoclinic	monoclinic
space group (No.)	$P2_{1}/c$ (14)	$P2_1/n$ (14)
a, Å	10.0162(15)	12.8836(19)
b, Å	13.5118(17)	7.3143(9)
c, Å	15.4322(19)	16.792(2)
β , deg	105.046(16)	108.268(16)
V, Å ³	2016.9(5)	1502.6(4)
Z	4	4
$D(\text{calc}), \text{g cm}^{-3}$	1.415	1.456
μ, mm^{-1}	0.535	0.445
F(000)	896	688
cryst dimens, mm	0.5 imes 0.5 imes 0.1	0.5 imes 0.4 imes 0.3
2θ range, deg	5.18 - 53.94	6.12 - 52.80
index ranges	$-12 \le h \le 12,$	$-16 \leq h \leq 16$,
_	$-17 \leq k \leq 17$,	$-9 \le k \le 9$,
	$-19 \le l \le 19$	$-20 \le l \le 20$
no. of collected reflns	$21 \ 992$	21546
no. of indep reflns	4341	3059
$R_{ m int}$	0.0872	0.0502
no. of reflns used	4341	3059
no. of params	240	186
\mathbf{S}^{a}	1.063	1.051
weight params a/b^b	0.0567/0.3816	0.0522/0.1908
$R1^c [I > 2\sigma(I)]$	0.0359	0.0298
$wR2^d$ (all data)	0.0974	0.0815
max./min. residual	+0.429/-0.373	+0.299/-0.235
electron density, e Å ⁻³		

 $\label{eq:started_st$

Figure 1. Molecular structure of 6 in the crystal (probability level of displacement ellipsoids 50%). Selected bond lengths (Å) and angles (deg): Si-S1 2.2558(6), Si-S2 2.2251(6), Si-S3 2.2374(6), Si-S4 2.2343(6), Si-C1 1.9032(15); S1-Si-S2 88.84(2), S1-Si-S3 82.41(2), S1-Si-S4 152.24(2), S1-Si-C1 103.52(5), S2-Si-S3 150.08(2), S2-Si-S4 85.42(2), S2-Si-C1 103.96(5), S3-Si-S4 89.15(2), S3-Si-C1 105.89(5), S4-Si-C1 104.23(5). The dashed lines indicate the presence of an intramolecular bifurcate N-H···S1/S3 hydrogen bond: N-H 0.91(2), H···S1 2.58(2), N···S1 3.3142(15), H···S3 2.48(2), N···S3 3.2474(15); N-H···S1 138.7(17), N-H···S3 142.2(17), S1···H···S3 71.7(6).7

site. The Si-S distances amount to 2.1474(6) and 2.1632(6) Å, and the Si-O distances range from 1.7821(11) to 1.8074(11) Å. The Si-C distances of compounds **6** and **7** (sp²-hybridization of the carbon ligand atom) amount to 1.9032(15) and 1.8938(14) Å, respectively, indicating a shortening compared to the Si-C distances of **1**, **2**, **3**·CH₃CN, and **4** (1.906(2)-

^{(5) (}a) Kemmitt, T.; Milestone, N. B. Aust. J. Chem. 1995, 48, 93–102. (b) Tacke, R.; Heermann, J.; Pülm, M.; Richter, I. Organometallics 1998, 17, 1663–1668. (c) Narula, S. P.; Shankar, R.; Meenu; Anand, R. D. Polyhedron 1999, 18, 2055–2059. (d) Seiler, O.; Burschka, C.; Penka, M.; Tacke, R. Silicon Chem. 2002, 1, 355–365.

^{(6) (}a) Muetterties, E. L.; Guggenberger, L. J. J. Am. Chem. Soc. 1974, 96, 1748-1756. (b) Holmes, R. R.; Deiters, J. A. J. Am. Chem. Soc. 1977, 99, 3318-3326. (c) The degree of distortion was calculated by using the dihedral angle method described in refs 6a,b. All nine dihedral angles and the values for the reference geometry of the ideal square pyramid given in ref 6a were considered for this calculation.

Figure 2. Molecular structure of **7** in the crystal (probability level of displacement ellipsoids 50%). Selected bond lengths (Å) and angles (deg): Si-S1 2.1474(6), Si-S2 2.1632(6), Si-O1 1.8074(11), Si-O2 1.7821(11), Si-C1 1.8938(14); S1-Si-S2 128.92(2), S1-Si-O1 89.96(4), S1-Si-O2 87.46(4), S1-Si-C1 115.01(5), S2-Si-O1 85.34(4), S2-Si-O2 90.37(4), S2-Si-C1 116.03(5), O1-Si-O2 171.97(5), O1-Si-C1 93.16(5), O2-Si-C1 94.83(6). The dashed lines indicate the presence of an intramolecular bifurcate N-H···S2/O1 hydrogen bond: N-H 0.84(2), H···S2 2.62(2), N···S2 3.4064(14), H···O1 2.339(19), N···O1 2.9069(18); N-H···S2 156.1(18), N-H···O1 125.4(13), S2···H···O1 65.7(5).⁷

1.939(4) Å, sp³-hybridization of the carbon ligand atoms).

The zwitterion **6** forms an intramolecular bifurcate $N-H\cdots S1/S3$ hydrogen bond in the crystal,⁷ resulting in slightly longer Si-S1/S3 distances compared to the Si-S2/S4 distances. Compound **7** forms an intramolecular bifurcate $N-H\cdots S2/O1$ hydrogen bond,⁷ resulting in an elongation of the Si-S2 and Si-O1 bonds compared to the Si-S1 and Si-O2 bonds.

The Berry pseudorotation process is a major feature in the stereodynamics of pentacoordinate silicon compounds (in this context, see for example refs 1d,o and the relevant literature cited therein). Almost nothing is known about the dynamic behavior of $\lambda^5 Si$ -silicates with SiS₄C skeletons in solution, due to solubility and/ or stability problems with the compounds of this type known so far.^{2,3} The Si-coordination polyhedra of 1-3in the crystal are best described as trigonal bipyramids, suggesting that this particular structure is the energetically most stable one. However, the existence of the square-pyramidal Si-coordination polyhedron of 6 in the crystal clearly indicates that the energy difference between the trigonal-bipyramidal and square-pyramidal structure must be rather small. Thus, it is likely that the stereodynamics of $\lambda^5 Si$ -silicates with SiS_4C frameworks in solution can also be described in terms of a Berry-type process (with the square-pyramidal structure as the transition state), as it is well established for structurally related pentacoordinate silicon compounds with SiO₄C skeletons. However, further investigations are necessary to confirm this hypothesis, whereby the synthesis of compounds with an SiS_4C framework that are suitable for solution NMR studies remains the major goal.

Experimental Section

General Procedures. The syntheses were carried out under dry nitrogen. The organic solvents used were dried and purified according to standard procedures and stored under nitrogen. Melting points were determined with a Büchi Melting Point B-540 apparatus using samples in sealed capillaries. The ¹H, ¹³C, and ²⁹Si solution NMR spectra were recorded at 23 °C on a Bruker DRX-300 NMR spectrometer (1H, 300.1 MHz; ${}^{13}C$, 75.5 MHz; ${}^{29}Si$, 59.6 MHz) using C₆D₆ as the solvent. Chemical shifts (ppm) were determined relative to internal $C_{6}HD_{5}$ (1H, δ 7.28), internal $C_{6}D_{6}$ (13C, δ 128.0), or external TMS (²⁹Si, δ 0). Assignment of the ¹³C NMR data was supported by DEPT 135 experiments. Solid-state ¹³C, ¹⁵N, and ²⁹Si VACP/MAS NMR spectra were recorded at 22 °C on a Bruker DSX-400 NMR spectrometer with bottom layer rotors of ZrO₂ (diameter, 7 mm) containing ca. 300 mg of sample (¹³C, 100.6 MHz; ¹⁵N, 40.6 MHz; ²⁹Si, 79.5 MHz; external standard, TMS (¹³C, ²⁹Si; δ 0) or glycine (¹⁵N, δ –342.0); spinning rate, 5-6 kHz; contact time, 1 ms (¹³C), 3 ms (¹⁵N), or 5 ms (²⁹Si); 90° ¹H transmitter pulse length, 3.6 $\mu s;$ repetition time, 4 s).

Preparation of Bis[benzene-1,2-dithiolato(2–)][2-(dimethylammonio)phenyl]silicate (6). Compound 8 (200 mg, 1.32 mmol) was added at 20 °C to a stirred solution of benzene-1,2-dithiol (376 mg, 2.64 mmol) in acetonitrile (10 mL), and the mixture was stirred at 20 °C for 30 min (evolution of hydrogen) and then kept undisturbed at 20 °C for 16 h. The resulting precipitate was isolated by filtration, washed with *n*-pentane (10 mL), and dried in vacuo (0.01 mbar, 20 °C, 2 h) to give **6** in 89% yield as a colorless crystalline solid (504 mg, 1.17 mmol); mp 210 °C. ¹³C VACP/MAS NMR: δ 49.8 (2 C, NCH₃), 120.5–146.5 (18 C, *C*₆H₄). ¹⁵N VACP/MAS NMR: δ –324.3. ²⁹Si VACP/MAS NMR: δ –50.2. Anal. Calcd for C₂₀H₁₉-NS₄Si (429.7): C, 55.90; H, 4.46; N, 3.26. Found: C, 56.01; H, 4.56; N, 3.24.

Preparation of [2-(Dimethylammonio)phenyl]bis[2mercaptoethanoato(2-)-O,S]silicate (7). Compound 8 (200 mg, 1.32 mmol) was added at 20 °C to a stirred solution of 2-mercaptoacetic acid (243 mg, 2.64 mmol) in acetonitrile (10 mL), and the mixture was stirred at 20 °C for 3 h (evolution of hydrogen). The solution was then concentrated to a volume of ca. 1 mL, and the resulting precipitate was isolated by filtration, washed with *n*-pentane (10 mL), and dried in vacuo (0.01 mbar, 20 °C, 2 h) to give 7 in 62% yield as a colorless crystalline solid (268 mg, 813 $\mu mol);$ mp 166 °C (dec). $^{13}\mathrm{C}$ VACP/MAS NMR: § 31.5 (CH2), 33.6 (CH2), 47.3 (NCH3), 47.8 (NCH₃), 118.7, 130.0, 131.3, 136.3, 136.6, and 146.9 (C₆H₄), 169.4 (C=O), 170.9 (C=O). ¹⁵N VACP/MAS NMR: δ -322.7. ²⁹Si VACP/MAS NMR: δ -73.4. Anal. Calcd for C₁₂H₁₅NO₄S₂Si (329.5): C, 43.75; H, 4.59; N, 4.25. Found: C, 43.72; H, 4.61; N. 4.55.

Preparation of [2-(Dimethylamino)phenyl]silane (8). A solution of [2-(dimethylamino)phenyl]trimethoxysilane⁸ (5.00 g, 20.7 mmol) in diethyl ether (20 mL) was added dropwise at 0 °C over a period of 1 h to a stirred suspension of lithium aluminum hydride (786 mg, 20.7 mmol) in diethyl ether (20 mL). The resulting mixture was stirred at 20 °C for 18 h and then under reflux for a further 4 h. The remaining solid was filtered off and washed with diethyl ether (15 mL) and was then discarded. The filtrate and the wash solution were combined, the solvent was removed at 40 °C under normal pressure, and the residue was distilled under reduced pressure to give 8 in 79% yield as a colorless liquid (2.48 g, 16.4 mmol); bp 45–47 °C/6 mbar. ¹H NMR (C₆D₆): δ 2.56 (s, 6 H, NCH₃), 4.55 (s, 3 H, SiH), 6.98-7.71 (m, 4 H, C₆H₄). ¹³C NMR (C₆D₆): δ 45.5 (NCH₃), 119.7, 124.4, 126.9, 131.9, 138.3, and 161.2 $(C_6\mathrm{H_4}).$ $^{29}\mathrm{Si}$ NMR $(C_6\mathrm{D_6}):~\delta$ –63.9. Anal. Calcd for $C_8\mathrm{H_{13}NSi}$ (151.3): C, 63.52; H, 8.66; N, 9.26. Found: C, 63.78; H, 8.33; N, 9.01.

⁽⁸⁾ Tacke, R.; Wiesenberger, F.; Lopez-Mras, A.; Sperlich, J.; Mattern, G. Z. Naturforsch. **1992**, 47b, 1370–1376.

Crystal Structure Analyses. Suitable single crystals of **6** and **7** were isolated directly from the respective reaction mixtures. The crystals were mounted in inert oil (perfluoro-alkyl ether, ABCR) on a glass fiber and then transferred to the cold nitrogen gas stream of the diffractometer (Stoe IPDS diffractometer; graphite-monochromated Mo K α radiation, $\lambda = 0.71073$ Å). The structures were solved by direct methods.⁹ The non-hydrogen atoms were refined anisotropically.¹⁰ A riding model was employed in the refinement of the *CH* hydrogen atoms. The *NH* hydrogen atoms were localized in difference Fourier syntheses and refined freely.

Crystallographic data (excluding structure factors) for the structures reported in this paper have been deposited with the

Cambridge Crystallographic Data Centre as supplementary publications nos. CCDC-286582 (**6**) and CCDC-286583 (**7**). Copies of the data can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (fax: (+44) 1223/336033; e-mail: deposit@ccdc.cam.ac.uk).

Acknowledgment. This work was supported by the Fonds der Chemischen Industrie.

Supporting Information Available: Tables of atomic coordinates and equivalent isotropic displacement parameters, anisotropic displacement parameters, experimental details of the X-ray diffraction studies, and bond lengths and angles for **6** and **7**. This material is available free of charge via the Internet at http://pubs.acs.org.

OM058032O

⁽⁹⁾ Sheldrick, G. M. SHELXS-97; University of Göttingen: Göttingen, Germany, 1997. Sheldrick, G. M. Acta Crystallogr., Sect. A 1990, 46, 467–473.

⁽¹⁰⁾ Sheldrick, G. M. SHELXL-97; University of Göttingen: Göttingen, Germany, 1997.