Formation of CH₂=TiF₂ by C–F Activation and α **-F Transfer**

Jonathan T. Lyon and Lester Andrews*

Department of Chemistry, University of Virginia, P.O. Box 400319, Charlottesville, Virginia 22904-4319

*Recei*V*ed January 6, 2006*

Summary: Laser-ablated titanium atoms react with CH2F2 to form the methylidene complex $CH_2=TiF_2$ *, which is symmetrical and shows no agostic distortion, in contrast to the analogous methylidene complexes* $CH_2=THF$ *and* $CH_2=THF_2$ *.*

Reactions with carbon-fluorine functional groups are a major challenge and opportunity for organometallic chemistry. Chlorofluorocarbons (or Freons) are detrimental to the ozone layer,¹ and perfluoroalkanes are effective greenhouse gases.² Although activation of C-F bonds is difficult, because they are the strongest single carbon bonds, 3 this reaction is necessary for the remediation of pollutant molecules. Hence, reactions of fluorocarbons to form disposable compounds is an important research goal. Most C-F bond activation methods involve transition metal centers and $C-F$ oxidative addition reactions.⁴⁻⁷

Transition metal alkylidenes $(M=CR_1R_2)$ are industrially important for their role in catalytic processes. $8-10$ In particular, titanium alkylidene complexes have been proposed as intermediate species in a number of reactions. $9-12$ However, stable group 4 alkylidenes are rare.9 Recently we have investigated titanium atom reactions with methane and methyl halides. $13-15$ In these studies, the major products, the methylidene complexes $CH₂=TiHR$ (R = H, F, Cl, Br), were formed by C-R bond activation followed by α -H transfer. These complexes exhibit strong agostic $H-C=Ti$ interactions, which distort the molecule. Agostic bonding helps to stabilize the complex, and recently this interaction was computed to have strengths comparable to hydrogen bonds.¹⁶ We now react CH_2F_2 with titanium for comparison with three motivating questions in mind. First, which

* To whom correspondence should be addressed. E-mail: lsa@ virginia.edu.

- (1) Molina, M. J.; Rowland, F. S. *Nature* **1974**, *249*, 810.
- (2) (a) Victor, D. G.; MacDonald, G. J. *Climatic Change* **1999**, *42*, 633. (b) Timms, P. L. *J. Chem. Soc., Dalton Trans*. **1999**, 815.
- (3) Strauss, S. H. *Chem. Re*V*.* **¹⁹⁹³**, *⁹³*, 927.
- (4) Kiplinger, J. L.; Richmond, T. G.; Osterberg, C. E. *Chem. Re*V*.* **¹⁹⁹⁴**, *94*, 373.
- (5) Burdeniuc, J.; Jedlicka, B.; Crabtree, R. H. *Chem. Ber.* **1997**, *130*, 145.
- (6) Edelbach, B. L.; Rahman, A. K. F.; Lachicotte, R. J.; Jones, W. D. *Organometallics* **1999**, *18*, 3170.
- (7) Reinhold, M.; McGrady, J. E.; Perutz, R. N. *J. Am. Chem. Soc.* **2004**, *126*, 5268.
- (8) Buchmeiser, M. R. *Chem. Re*V*.* **²⁰⁰⁰**, *¹⁰⁰*, 1565.
- (9) Schrock, R. R. *Chem. Re*V*.* **²⁰⁰²**, *¹⁰²*, 145.
- (10) Wada, K.; Pamplin, C. B.; Legzdins, P. *J. Am. Chem. Soc.* **2002**, *124*, 9680.
- (11) Weng, W.; Yang, L.; Foxman, B. M.; Ozerov, O. V. *Organometallics* **2004**, *23*, 4700.
- (12) Bailey, B. C.; Fan, H.; Baum, E. W.; Huffman, J. C.; Baik, M.-H., Mindiola, D. J. *J. Am. Chem. Soc*. **2005**, *127*, 16016.
- (13) Andrews, L.; Cho, H.-G.; Wang, X. *Inorg. Chem.* **2005**, *44*, 4834 $(Ti + CH_4)$.
- (14) (a) Cho, H.-G.; Andrews, L. *J. Phys. Chem. A* **2004**, *108*, 6294 (Ti $+$ CH₃F). (b) The CH₂=TiHF complex was recalculated here using the $6-311++G(2d, p)$ basis set for all atoms.
- (15) Cho, H.-G.; Andrews, L. *Inorg. Chem.* **²⁰⁰⁵**, *⁴⁴*, 979 (Ti ⁺ CH3- Cl, CH₃Br).
- (16) von Frantzius, G.; Streubel, R.; Brandhorst, K.; Grunenberg, J. *Organometallics* **2006**, *25*, 118.

bond is activated: C-H or C-F? Second, does α -H or α -F transfer subsequently occur? Third, what is the role of agostic bonding in the methylidene complex so formed?

Laser-ablated Ti atoms were condensed with CH_2F_2 in excess argon, as described in detail elsewhere.13-15,17 Theoretical computations were carried out with the *Gaussian 98* program to confirm vibrational assignments and product identification.¹⁸ The B3LYP hybrid functional was employed,¹⁹ and the $6-311++G(2d,p)$ basis set was used for all atoms.²⁰ All reported frequencies (not scaled) were computed analytically, and energy values include zero-point vibrational corrections.

When atomic titanium was reacted with CH_2F_2 , four major product bands were observed at 612.9, 695.4, 705.8, and 740.3 cm^{-1} . All four absorptions increased together in intensity upon photolysis with a Pyrex filter $(\lambda > 290 \text{ nm})$ and with full arc irradiation $(\lambda > 220 \text{ nm})$ and remained nearly unchanged on annealing. Hence, all four new absorptions belong to a common product. The strongest absorption at 740.3 cm^{-1} shows only slight isotopic shifts (0.4 cm^{-1 13}C and 1.6 cm⁻¹ D), indicating that this mode corresponds to a Ti-F stretch. The satellite splittings observed on this peak arise from natural-abundance isotopic titanium and demonstrate that this product molecule contains only one titanium atom.14,21 This absorption is observed at almost the same frequency as the antisymmetric Ti-^F stretching mode of the TiF_2 molecule.²¹ However, our product absorption shows 13C and D isotopic shifts and must be assigned to a species also containing carbon and hydrogen. The second absorption at 705.8 cm⁻¹ red-shifts 10.3 cm⁻¹ upon carbon-13 isotopic substitution and 54.0 cm^{-1} with CD_2F_2 (Figure 1). Such a large 13 C shift identifies this peak as a mostly C=Ti stretching mode. The next absorption at 695.4 cm^{-1} shows the largest deuterium shift (138.6 cm⁻¹) and a small carbon-13 shift (6.0) cm^{-1}), which characterize a CH₂ wagging motion. Finally, the weaker fourth absorption at 612.9 cm^{-1} also reveals natural titanium isotopic splittings, has only a small carbon-13 shift, and can be assigned to a second Ti-F stretching mode. The deuterium counterpart of this absorption was not observed, indicating that the infrared intensity for this mode decreases substantially on D isotopic substitution. Hence, the observed infrared spectra arise from TiF₂, CH₂, and C=Ti subgroups in a new molecule.

The four observed vibrational modes (symmetric and antisymmetric Ti-F stretches, CH_2 wag, and C=Ti stretch) identify the $CH_2=TiF_2$ complex with certainty. The excellent correlation between these observed fundamentals and those computed for

⁽¹⁷⁾ Andrews, L. *Chem. Soc. Re*V*.* **²⁰⁰⁴**, *³³*, 123.

⁽¹⁸⁾ Frisch, M. J. et al. *Gaussian 98*, Revision A.11.4; Gaussian, Inc.: Pittsburgh, PA, 2002, and references therein. (19) (a) Becke, A. D. *J. Chem. Phys.* **1993**, *98*, 5648. (b) Lee, C.; Yang,

Y.; Parr, R. G. *Phys. Re*V*. B* **¹⁹⁸⁸**, *³⁷*, 785.

⁽²⁰⁾ Frisch, M. J.; Pople, J. A.; Binkley, J. S*. J. Chem. Phys.* **1984**, *80*, 3265.

⁽²¹⁾ Hastie, J. W.; Hauge, R. H.; Margrave, J. L. *J. Chem. Phys.* **1969**, *51*, 2648.

Figure 1. IR spectra in the $750-550$ cm⁻¹ region recorded after titanium atoms were reacted with (a) CH_2F_2 , (b) ¹³CH₂F₂, and (c) CD_2F_2 using 1% reagent concentrations in argon at 8 K. All spectra recorded after full-arc irradiation. Arrows denote the $CH_2=TiF_2$ product absorptions, and **i** indicates the CH_2F-TiF insertion product.

Table 1. Observed and Calculated Fundamental Frequencies of $CH_2=TiF_2^a$

approx mode	$CH2=TiF2$		$^{13}CH_2=TiF_2$		$CD = TiF$	
	obsd	calcd (int)	obsd	calcd (int.)	obsd	calcd (int)
HCTiF dist		79.1 (57)		78.8 (57)		76.5 (54)
CTiF bend		183.9(4)		182.8(1)		151.9(0)
TiF ₂ scis		184.7(6)		184.0(8)		183.1(9)
CH ₂ rock		365.8(1)		360.8(1)		315.1(1)
CH ₂ twist		517.4(0)		517.4(0)		368.9(0)
$Ti-F$ str	612.9	637.4(62)	605.4	633.7(52)		617.5(18)
$C=Ti str$	705.8	743.0 (91)	695.5	730.3 (100)	651.8	686.0 (119)
CH ₂ wag	695.4	748.5 (145)	689.4	741.1 (142)	556.8	592.3 (111)
$Ti-F str$	740.3	763.9 (269)	739.9	763.5 (268)	738.7	761.7 (265)
CH ₂ scis		1325.8 (18)		1316.4 (17)		1040.5 (32)
CH str		3052.5(0)		3046.9(0)		2214.1(1)
CH str		3143.4(3)		3131.3 (4)		2332.6(1)

 a B3LYP calculations using the 6-311++G(2d,p) basis sets for all atoms. All frequencies are in cm^{-1} , and computed infrared intensities are in $km/$ mol.

the stable $CH_2=TiF_2$ complex is demonstrated in Table 1. Frequencies computed at the B3LYP level typically are slightly higher than observed values.²²

It is of interest to discuss how this product forms. Initially, a titanium atom can insert into either a C-H or a C-F bond. Computations on the latter led to an optimized triplet $CH₂(\mu$ -F)TiF structure with a bridging fluorine atom, which is predicted to be 74 kcal/mol more stable than the energy sum of the two reactants and 60 kcal/mol more stable than another possible CHF(*µ*-F)TiH product complex. Primary insertion into either bond leaves the complex positioned in such a way that a single fluorine atom is initially bridging the $C-Ti$ bond. The electrondeficient nature of the titanium metal center favors this configuration to achieve some overlap with fluorine lone electron pairs. Next we consider the lower energy structure, and either α -H or α -F transfer can occur. A possible triplet CHF-TiHF complex is 21 kcal/mol higher in energy, whereas the triplet CH_2 -TiF₂ complex is 40 kcal/mol lower. From this triplet excited state, relaxation to the singlet $CH_2=TiF_2$ complex readily occurs. This final very stable methylidene product lies 139 kcal/ mol lower in energy than the sum of the initial reactant energies.

The resulting singlet $CH_2=TiF_2$ complex is computed to have near- C_{2v} symmetry and to show no agostic distortion (Figure 2), in contrast to the case for CH_2 =TiH₂ and CH₂=TiHF.^{13,14} The C=Ti bond length, 1.853 Å, is longer than that of the

Figure 2. Structures of the $CH_2=TiF_2$ and $CH_2=TiHF$ complexes calculated at the B3LYP/6-311++G(2d,p) level of theory. All bond lengths are in angstroms, and bond angles are in degrees. Mulliken charges are given in parentheses.

analogous $CH_2=THF$ complex (1.813 Å), and the C-H bond length, 1.092 Å, is slightly *shorter* than the average (1.101 Å) of CH_2 =TiHF.^{14b} The titanium-fluorine distances were computed to be 1.798 Å, almost the same as in CH_2 =TiHF (1.795) \AA) and slightly longer than earlier results for this complex.²³ Mulliken atomic charges for the carbon (-0.55) , hydrogen (0.14) , and fluorine (-0.34) atoms in this complex are nearly identical with those computed for the $CH_2=THF$ complex, but here the titanium atom has a considerably larger positive charge (0.95), owning to the additional electron density donated to the second fluorine atom, as compared to titanium (0.75) with one fluoride (-0.36) balanced by hydride (-0.15) in the monofluoride complex. Despite this larger positive charge on Ti, there is no agostic distortion in $CH_2=TiF_2$. The obvious difference from $CH₂=TiHF$ is the balance of lone-pair repulsions from two fluorine atoms to prevent agostic CH₂ distortion in CH₂ $=$ TiF2.

To help explain the symmetrical structure of $CH_2=TiF_2$, two single-point energy calculations were done. First, the $CH₂$ subgroup was distorted and fixed at the angles and bond lengths first reported¹⁴ for $CH_2=THF$ with the other parameters calculated for symmetrical $CH_2=TiF_2$ (all using SDD for Ti), and the energy increased 3.0 kcal/mol. Second, $CH_2=THF$ was recalculated fixed in the cis-agostic structure, and the energy increased 3.4 kcal/mol relative to the optimized trans-agostic structure,¹⁴ although the agostic H to Ti distance was not changed. These results show that F-lone-pair repulsion for the agostic H *destabilizes* the cis-agostic CH₂=TiHF structure and likewise prevents agostic distortion of CH_2 =TiF₂.²⁴

We also have evidence for the $CH₂(\mu-F)$ TiF primary insertion product in a weak absorption at 649.1 cm^{-1} (7.0 and 13.7 cm⁻¹) 13C and D shifts, respectively, marked **i** in Figure 1). Although there is only one vibration observed for this product, it is in good agreement with a strong, mostly C-F stretching mode predicted for the triplet insertion product with a single bridging fluorine atom (654.0 cm⁻¹; 11.7 and 11.3 cm^{-1 13}C and D isotopic shifts, respectively), which lies 65 kcal/mol higher in energy than the $CH_2=TiF_2$ complex.

We have shown that excited titanium atoms react with methylene fluoride to form the $CH_2=TiF_2$ complex as the major

⁽²³⁾ Dobbs, K. D.; Hehre, W. J. *J. Am. Chem. Soc.* **1986**, *108*, 4663. (24) Similar calculations for the CHF=TiF₂ complex also show no evidence of agostic distortion.

product, which has near- C_{2v} symmetry. DFT frequency calculations and isotopic substitution of the CH_2F_2 precursor confirm this assignment. This product is formed by $C-F$ bond activation
with titanium followed by $C-F$ transfer. The computed symwith titanium followed by α -F transfer. The computed sym-
metrical CH₂=TiE₂ structure shows no evidence of agostic metrical $CH_2=TiF_2$ structure shows no evidence of agostic interaction, as fluorine lone-pair repulsions effectively prevent CH2 distortion in this methylidene complex, in contrast to the

case for the analogous $CH_2=TH_2$ and $CH_2=THF$ complexes.13,14

Acknowledgment is made to the donors of the Petroleum Research Fund, administered by the American Chemical Society, for support of this research.

OM060019W