Amido Pincer Complexes of Nickel(II): Synthesis, Structure, and Reactivity

Lan-Chang Liang,*,[†] Pin-Shu Chien,[†] Jia-Ming Lin,[†] Mei-Hui Huang,[†] Yu-Lun Huang,[†] and Ju-Hsiou Liao[‡]

Department of Chemistry and Center for Nanoscience & Nanotechnology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan, Republic of China, and Department of Chemistry and Biochemistry, National Chung Cheng University, Chia-Yi 621, Taiwan, Republic of China

Received November 2, 2005

A series of diamagnetic divalent nickel complexes supported by a tridentate amido diphosphine ligand $[N(o-C_6H_4PR_2)_2]^-$ ([R-PNP]⁻; R = Ph, ^{*i*}Pr, Cy) have been prepared and characterized. Deprotonation of H[Ph-PNP], H[Pr-PNP], and H[Cy-PNP] with n-BuLi in ethereal solutions at -35 °C produced the lithium complexes [Ph-PNP]Li(THF)₂, ['Pr-PNP]Li(solv) (solv = THF, Et₂O), and [Cy-PNP]Li(solv) (solv = THF, Et₂O), respectively. The reactions of [R-PNP]Li(solv)_n with NiCl₂(DME) in THF at -35°C generated [R-PNP]NiCl, which was then reacted with a variety of Grignard reagents to afford the corresponding hydrocarbyl complexes [R-PNP]NiR' (R = Ph, R' = Me, Et, n-Bu, i-Bu, n-hexyl, CH₂-SiMe₃, Ph; R = Pr, R' = Me, Et, *n*-Bu; R = Cy, R' = Me, Et, *n*-Bu). Of particular interest among the compounds isolated are alkyl complexes that contain β -hydrogen atoms. Treatment of the hydrocarbyl complexes with halogenated hydrocarbons such as dichloromethane, benzyl bromide, and phenyl iodide produced the corresponding nickel halide derivatives. The chloride complexes [Ph-PNP]NiCl, [Pr-PNP]-NiCl, and [Cy-PNP]NiCl are all active catalyst precursors for Kumada coupling reactions, including those of alkyls containing β -hydrogen atoms. In addition to spectroscopic data for all new compounds, X-ray structures of [Cy-PNP]Li(OEt₂), [Ph-PNP]NiCl, [Ph-PNP]NiBr, [Ph-PNP]NiMe, [Ph-PNP]Ni(n-Bu), [Ph-PNP]NiCH₂SiMe₃, ['Pr-PNP]NiCl, ['Pr-PNP]NiMe, ['Pr-PNP]Ni(*n*-Bu), and [Cy-PNP]NiMe are presented.

Introduction

 β -Hydrogen elimination is one of the primary decomposition pathways for organometallic complexes.^{1,2} The search for appropriate methods to effectively control the stability and reactivity of transition metal alkyl complexes that contain β -hydrogen atoms has thus played an essential role in organometallic chemistry. These compounds are often key intermediates that determine reaction mechanisms and scopes such as those found in catalytic olefin polymerization³⁻⁶ and crosscoupling reactions⁷⁻¹⁴ mediated by late transition metals. Recent

- (2) Collman, J. P.; Hegedus, L. S.; Norton, J. R.; Finke, R. G. Principles and Applications of Organotransition Metal Chemistry; University Science Books: Mill Valley, 1987; pp 386-389.
- (3) Ittel, S. D.; Johnson, L. K.; Brookhart, M. Chem. Rev. 2000, 100, 1169 - 1203.
- (4) Britovsek, G. J. P.; Gibson, V. C.; Wass, D. F. Angew. Chem., Int. Ed. 1999, 38, 429-447.
- (5) Jenkins, J. C.; Brookhart, M. J. Am. Chem. Soc. 2004, 126, 5827-5842
- (6) Hicks, F. A.; Jenkins, J. C.; Brookhart, M. Organometallics 2003, 22, 3533-3545.
- (7) Netherton, M. R.; Fu, G. C. Adv. Synth. Catal. 2004, 346, 1525-1532.
- (8) Zhou, J. R.; Fu, G. C. J. Am. Chem. Soc. 2003. 125, 12527-12530. (9) Luh, T.-Y.; Leung, M.-K.; Wong, K.-T. Chem. Rev. 2000, 100, 3187-3204
- (10) Cardenas, D. J. Angew. Chem., Int. Ed. 1999, 38, 3018-3020.
- (11) Netherton, M. R.; Dai, C. Y.; Neuschutz, K.; Fu, G. C. J. Am. Chem.

Soc. 2001, 123, 10099-10100.

work in our laboratory has focused on the preparation and reactivity exploration of new amido phosphine complexes of both main group¹⁵⁻¹⁷ and transition metals.¹⁸⁻²⁰ In particular, we found that nickel complexes of the tridentate amido phosphine ligand $[N(o-C_6H_4PPh_2)_2]^-$, including alkyl complexes that contain β -hydrogen atoms, are thermally stable.²¹ In contrast, analogous compounds of the bidentate [o-(2,6- ${}^{i}Pr_{2}C_{6}H_{3}N)C_{6}H_{4}PPh_{2}]^{-}$ and $[o-(2,6-Me_{2}C_{6}H_{3}N)C_{6}H_{4}PPh_{2}]^{-19}$ were not synthetically accessible.²² Notably, NiEt[N(o-C₆H₄- PPh_{2} is the only ethyl complex reported thus far among these and the closely related $[N(SiMe_2CH_2PPh_2)_2]^{-23}$ ligand systems. We were thus interested in organometallic chemistry involving ligands of the general type $[N(o-C_6H_4PR_2)_2]^-$ ([R-PNP]⁻; R =

- (13) Terao, J.; Watanabe, H.; Ikumi, A.; Kuniyasu, H.; Kambe, N. J. Am. Chem. Soc. 2002, 124, 4222-4223.
- (14) Terao, J.; Ikumi, A.; Kuniyasu, H.; Kambe, N. J. Am. Chem. Soc. 2003, 125, 5646-5647.
 - (15) Lee, W.-Y.; Liang, L.-C. Dalton Trans. 2005, 1952-1956.
- (16) Liang, L.-C.; Huang, M.-H.; Hung, C.-H. Inorg. Chem. 2004, 43, 2166 - 2174.
- (17) Liang, L.-C.; Lee, W.-Y.; Hung, C.-H. Inorg. Chem. 2003, 42, 5471-5473.
- (18) Chien, P.-S.; Liang, L.-C. Inorg. Chem. 2005, 44, 5147-5151.
- (19) Liang, L.-C.; Lee, W.-Y.; Yin, C.-C. Organometallics 2004, 23, 3538 - 3547
- (20) Liang, L.-C.; Chien, P.-S.; Huang, M.-H. Organometallics 2005, 24, 353-357
- (21) Liang, L.-C.; Lin, J.-M.; Hung, C.-H. Organometallics 2003, 22, 3007-3009.

(22) We note that attempts to prepare NiEt[o-(2,6-iPr₂C₆H₃N)C₆H₄PPh₂] from the reaction of {NiCl[o-(2,6-iPr₂C₆H₃N)C₆H₄PPh₂]}₂ with EtMgCl in

THF at -35 °C led to intractable materials: Lee, W.-Y. Unpublished result. (23) Fryzuk, M. D.; Macneil, P. A.; Rettig, S. J.; Secco, A. S.; Trotter, J. Organometallics 1982, 1, 918-930.

^{*} Corresponding author. E-mail: lcliang@mail.nsysu.edu.tw. Fax: +886-7-5253908.

National Sun Yat-sen University.

[‡] National Chung Cheng University.

⁽¹⁾ Crabtree, R. H. The Organometallic Chemistry of the Transition Metals, 4th ed.; Wiley-Interscience: Hoboken, 2005; pp 199-200.

⁽¹²⁾ Jensen, A. E.; Knochel, P. J. Org. Chem. 2002, 67, 79-85.

Scheme 1. Preparation of Amido Pincer Ligand Precursors

aryl or alkyl). These ligands fall into the category of the popular pincer compounds that are currently under extensive investigation.^{24–29} Herein we describe the preparation and characterization of nickel complexes of [Ph-PNP]⁻, [ⁱPr-PNP]⁻, and [Cy-PNP]⁻ and the reactivity studies of these molecules with respect to catalytic Kumada coupling reactions.

Results and Discussion

Preparation of Ligand Precursors. The preparation of H[Ph-PNP] has been reported independently by Kaska³⁰ and us²¹ with different synthetic approaches. With various substituents at the phosphorus donors, the amido pincer ligands [R-PNP]⁻ are anticipated to exhibit distinct steric and electronic properties. One elegant precedent in a related ligand system is the silvlderived $[N(SiMe_2CH_2PR_2)_2]^-$ (R = aryl or alkyl) established by Fryzuk and co-workers.³¹ Scheme 1 summarizes two strategies for the preparation of the ligand precursors H[Ph-PNP], H[iPr-PNP], and H[Cy-PNP]. Other similar compounds³²⁻³⁵ are now available since the preparation of H[Ph-PNP] was reported. Both o-fluoro- and o-bromo-substituted biphenyl amines were prepared quantitatively from the palladiumcatalyzed aryl amination reactions^{36,37} of either 2-fluoroaniline with 2-bromofluorobenzene or 2-bromoaniline with 2-bromoiodobenzene. Subsequent reaction of di(2-fluorophenyl)amine with potassium diphenylphosphide in refluxing 1,4-dioxane produced H[Ph-PNP]. Sequential addition of *n*-BuLi and R₂-PCl (R = Ph, iPr, Cy) to a diethyl ether solution of di(2bromophenyl)amine at -35 °C generated the corresponding H[R-PNP] after anaerobic aqueous workup. These halogenated and phosphanylated diaryl amines were all fully characterized by multinuclear NMR spectroscopy and elemental analysis. The phosphine compounds were all isolated as colorless crystalline solids.

- (24) Albrecht, M.; van Koten, G. Angew. Chem., Int. Ed. 2001, 40, 3750-3781.
- (25) Gossage, R. A.; Van De Kuil, L. A.; Van Koten, G. Acc. Chem. Res. 1998, 31, 423-431.
- (26) Peris, E.; Crabtree, R. H. Coord. Chem. Rev. 2004, 248, 2239-2246
- (27) Slagt, M. Q.; van Zwieten, D. A. P.; Moerkerk, A.; Gebbink, R.; van Koten, G. Coord. Chem. Rev. 2004, 248, 2275-2282.
- (28) van der Boom, M. E.; Milstein, D. Chem. Rev. 2003, 103, 1759-1792.
- (29) Whitcombe, N. J.; Hii, K. K.; Gibson, S. E. Tetrahedron 2001, 57, 7449-7476.
- (30) Winter, A. M.; Eichele, K.; Mack, H. G.; Potuznik, S.; Mayer, H. A.; Kaska, W. C. J. Organomet. Chem. 2003, 682, 149-154.
 - (31) Fryzuk, M. D. Can. J. Chem. 1992, 70, 2839-2845.
 - (32) Fan, L.; Ozerov, O. V. *Chem. Commun.* 2005, 4450–4452.
 (33) Weng, W.; Guo, C. Y.; Moura, C.; Yang, L.; Foxman, B. M.;
- Ozerov, O. V. Organometallics 2005, 24, 3487-3499. (34) Bailey, B. C.; Huffman, J. C.; Mindiola, D. J.; Weng, W.; Ozerov,
- O. V. Organometallics 2005, 24, 1390-1393. (35) Harkins, S. B.; Peters, J. C. J. Am. Chem. Soc. 2005, 127, 2030-
- 2031. (36) Wolfe, J. P.; Wagaw, S.; Marcoux, J. F.; Buchwald, S. L. Acc. Chem.
- Res. 1998, 31, 805-818.
- (37) Hartwig, J. F. Acc. Chem. Res. 1998, 31, 852-860.

Scheme 2. Preparation of Lithium Complexes

n-BuLi, solv HIR-PNP1 [R-PNP]Li(solv)n R = Ph, solv = THF, n = 2 $R = {}^{i}Pr$, solv = THF or Et₂O, n = 1 R = Cy, solv = THF or Et₂O, n = 1

Synthesis and Characterization of Lithium Complexes. Lithium amides are convenient starting materials for metathetical reactions with metal halides. Addition of 1 equiv of n-BuLi to H[R-PNP] in ethereal solutions at -35 °C produced the corresponding lithium complexes (Scheme 2). The ¹H NMR spectra of these lithium derivatives indicate the presence of coordinated solvent molecules. Consistent with the anticipated steric and electronic properties of substituents at the phosphorus donors, the phenyl-substituted amido pincer complex adopts more coordinated solvent molecules than the isopropyl and cyclohexyl counterparts. While [Pr-PNP]Li(OEt2) and [Cy-PNP]-Li(OEt₂) are considerably stable under reduced pressure, the coordinated ether molecule is notably labile and may be readily replaced by THF, as indicated by ¹H NMR spectroscopy.

Table 1 summarizes the selected NMR spectroscopic data. The phosphorus donors in these lithium complexes appear as a signal that is shifted relatively downfield as compared to that of the corresponding ligand precursor. As illustrated in Figure 1, the internuclear coupling observed in the ${}^{31}P{}^{1}H$ and ⁷Li{¹H} NMR spectra of the THF adducts is indicative of the coordination of two chemically equivalent phosphorus donors to the quadrupolar lithium-7 center (I = 3/2, natural abundance 92.6%).³⁸ The coupling constant ¹J_{PLi} of 34 Hz for [Ph-PNP]-Li(THF)₂ is comparable to those found for lithium phosphine complexes such as [Li(THF)₂][*o*-(2,6-^{*i*}Pr₂C₆H₃N)C₆H₄PPh₂] (38 Hz)¹⁹ and [Li(THF)₂][o-(2,6-Me₂C₆H₃N)C₆H₄PPh₂] (34 Hz)¹⁹ and the lithium phosphide derivatives [Li(tmeda)]₂[1,2-C₆H₄-(PPh)₂] (35 Hz)³⁹ and [Li(tmeda)]₂[1,2-C₆H₄(PSiMe₃)₂] (38 Hz),³⁹ whereas those of [iPr-PNP]Li(THF) (46 Hz) and [Cy-PNP]Li(THF) (48 Hz) are somewhat larger but similar to that of $Li[N(2-P^{i}Pr_{2}-4-Me-C_{6}H_{3})_{2}](THF)$ (48 Hz).⁴⁰ These values, however, are all notably smaller than that reported for Li[N(o- $C_6H_4P^iBu_2_2$ (61 Hz), which does not incorporate any coordinating solvent molecules.³⁵ The increasing tendency of ${}^{1}J_{PLi}$ following the order [Ph-PNP]Li(THF)2, [Pr-PNP]Li(THF), and [Cy-PNP]Li(THF) is perhaps a consequence of distinct electronic properties of the substituents at the phosphorus donors or a result of different electrophilicity of the four- and fivecoordinate lithium center due to various amounts of coordinated ethereal molecules.

An X-ray crystallographic study of [Cy-PNP]Li(OEt₂) established the solid-state structure of this molecule. The crystal-

(40) Weng, W.; Yang, L.; Foxman, B. M.; Ozerov, O. V. Organometallics 2004, 23, 4700-4705.

⁽³⁸⁾ A broad signal rather than a multiplet resonance is observed in C_6D_6 at room temperature for the phosphorus donor and the lithium center of [Ph-PNP]Li(THF)2 and [Pr-PNP]Li(THF).

⁽³⁹⁾ Hitchcock, P. B.; Lappert, M. F.; Leung, W.-P.; Yin, P. J. Chem. Soc., Dalton Trans. 1995, 3925-3932.

Table 1. Selected NMR Spectroscopic Data ^a							
$\delta_{ m P}$	$\delta_{ m Li}$	$^{1}J_{\mathrm{PLi}}$	$\delta_{ m Hlpha}$	$^{3}J_{\mathrm{PH\alpha}}$	$\delta_{\mathrm{C}lpha}$	$^{2}J_{\mathrm{PC}lpha}$	
-18.62							
-13.60	3.14	34.18					
18.77							
23.72							
33.09							
27.61			0.13	8.50	-15.37	21.87	
26.42			1.07		-2.80	19.48	
27.06			1.07		5.24	19.10	
26.80			1.22		18.53	19.54	
26.78			1.12		6.72	18.85	
23.90			-0.08	12.00	-12.97	18.83	
24.45					151.00	28.15	
-13.31							
-3.95	2.32	46.15					
-5.07	2.52	NA^d					
34.68							
35.47			-0.31	9.0	-25.41	25.39	
32.07			0.84	11.0^{e}	-14.97	22.5	
32.50			0.76		-6.50	22.0	
-22.04							
-12.20	2.41	48.17					
-12.54	3.00	NA^d					
26.77							
28.16			-0.13	9.0	-23.60	24.76	
24.59			1.03	11.0^{e}	-13.24	22.40	
25.08			$\mathbf{N}\mathbf{A}^{f}$	$\mathbf{N}\mathbf{A}^{f}$	-4.67	22.2	
	$\begin{array}{c} & & & \\ & & & \\ \hline \\ \hline$	$\begin{tabular}{ c c c c }\hline Table 1. Selec \\ \hline \hline $\delta_{\rm P}$ & $\delta_{\rm Li}$ \\ \hline -18.62 \\ \hline -13.60 & 3.14 \\ \hline 18.77 \\ 23.72 \\ 33.09 \\ 27.61 \\ 26.42 \\ 27.06 \\ 26.42 \\ 27.06 \\ 26.60 \\ 26.78 \\ 23.90 \\ 24.45 \\ \hline -13.31 \\ \hline -3.95 & 2.32 \\ \hline -5.07 & 2.52 \\ 34.68 \\ 35.47 \\ 32.07 \\ 32.50 \\ \hline -22.04 \\ \hline -12.20 & 2.41 \\ \hline -12.54 & 3.00 \\ 26.77 \\ 28.16 \\ 24.59 \\ 25.08 \\ \end{tabular}$	Table 1. Selected NMR Spect $\delta_{\rm P}$ $\delta_{\rm Li}$ $^1J_{\rm PLi}$ -18.62-13.603.1434.1818.7723.7233.0923.7233.0927.6126.4227.0626.8026.7823.9024.45-13.31-3.952.32-5.072.52NAd34.6835.4732.0732.50-22.04-12.20-12.202.4148.17-12.543.00NAd26.7728.1624.5925.0825.0825.08	Table 1. Selected NMR Spectroscopic Data $\delta_{\rm P}$ $\delta_{\rm Li}$ ${}^1J_{\rm PLi}$ $\delta_{\rm H\alpha}$ -18.62 -13.60 3.14 34.18 18.77 23.72 33.09 -0.13 23.72 33.09 -0.13 -0.13 26.42 1.07 -0.76 -0.08 24.45 -13.31 -0.08 -0.08 24.45 -13.31 -0.08 -0.31 32.07 2.52 NA ^d 34.68 35.47 -0.31 0.84 -22.04 -12.20 2.41 48.17 -12.54 3.00 NA ^d -0.13 -0.13 26.77 28.16 -0.13 -0.13	Table 1. Selected NMR Spectroscopic Data ⁴ $\delta_{\rm P}$ $\delta_{\rm Li}$ $^1J_{\rm PLi}$ $\delta_{\rm H\alpha}$ $^3J_{\rm PH\alpha}$ -18.62 -13.60 3.14 34.18	Table 1. Selected NMR Spectroscopic Data ⁴ $\delta_{\rm P}$ $\delta_{\rm Li}$ $^1J_{\rm PLi}$ $\delta_{\rm H\alpha}$ $^3J_{\rm PH\alpha}$ $\delta_{\rm C\alpha}$ -18.62-13.603.1434.18	

^{*a*} Unless otherwise noted, all spectra were recorded in C_6D_6 at room temperature, chemical shifts in ppm, coupling constants in Hz. ^{*b*} Spectra recorded in toluene-*d*₈. ^{*c*} Data selected from ref 21. ^{*d*} Not available; a broad singlet rather than a multiplet resonance was observed. ^{*e*} Obtained by selective decoupling of β -hydrogen atoms. ^{*f*} Not available; the assignment was hampered due to overlap with cyclohexyl signals.

Figure 1. The ⁷Li{¹H} NMR (194 MHz) spectra of (a) [Ph-PNP]Li(THF)₂ (toluene- d_8 , 25 °C), (b) [Ph-PNP]Li(THF)₂ (toluene- d_8 , 10 °C), (c) [Pr-PNP]Li(THF) (toluene- d_8 , 25 °C), and (d) [Cy-PNP]Li(THF) (toluene- d_8 , 25 °C) and the ³¹P{¹H} NMR (202 MHz) spectra of (e) [Ph-PNP]Li(THF)₂ (toluene- d_8 , 25 °C), (f) [Ph-PNP]Li(THF)₂ (toluene- d_8 , 10 °C), (g) [Pr-PNP]Li(THF) (toluene- d_8 , 25 °C), and (h) [Cy-PNP]Li(THF) (toluene- d_8 , 25 °C).

lographic data are summarized in Table 2. Consistent with the solution structure determined by NMR spectroscopy, [Cy-PNP]-Li(OEt₂) is a four-coordinate species in the solid state (Figure 2). The geometry of the lithium center is best described as distorted tetrahedral with angles ranging from $79.06(11)^{\circ}$ to $139.30(13)^{\circ}$ (Table 3). As a result, the dihedral angle between two N-Li-P planes of 143.1° in [Cy-PNP]Li(OEt₂) is notably

smaller than that of 174.6° found in the meridional, fivecoordinate [Ph-PNP]Li(THF)₂.²¹ The Li–P bond distances of [Cy-PNP]Li(OEt₂) are slightly shorter than those of [Ph-PNP]-Li(THF)₂. The remaining parameters are unexceptional and closely similar to those of Li[N(2-PⁱPr₂-4-Me-C₆H₃)₂](THF).⁴⁰

Synthesis and Characterization of Nickel Complexes. Addition of the amido pincer lithium complexes to NiCl₂-

Table 2. Crystallographic Data for [Cy-PNP]Li(OEt₂), [Ph-PNP]NiCl, [Pr-PNP]NiCl, [Ph-PNP]NiMe, [Pr-PNP]NiMe, [Pr-PNP]Ni(*n*-Bu), [Pr-PNP]Ni(*n*-Bu), [Ph-PNP]NiCH₂SiMe₃, and [Ph-PNP]NiBr

		{[Ph-PNP]NiCl}-				
	[Cy-PNP]Li(OEt ₂)	$(C_6H_6)_5$	[ⁱ Pr-PNP]NiCl	[Ph-PNP]NiMe	[ⁱ Pr-PNP]NiMe	[Cy-PNP]NiMe
CCDC ref number	276347	276348	2763/19	276350	276351	276352
formula	$C_40H_2UiNOP_2$ $C_4CH_{so}CINNiP_2$		CarHarCINNiPa	CarHatNNiPa	CacHaoNNiPa	CarHeeNNiPa
fw	641.79 1021.23		494 64	610.28	474 22	634 47
D_{colo} (g cm ⁻³)	1 124 1 193		1.325	1.365	1.256	1.212
cryst syst	triclinic	monoclinic	monoclinic	orthorhombic	monoclinic	orthorhombic
space group	$P\overline{1}$	$P2_1/n$	$P2_1/c$	F2dd	$P2_1/c$	Pnca
a(Å)	10.28900(10)	18.004(3)	12.26400(10)	9.8780(3)	12.2610(3)	18.2850(5)
b (Å)	10.9240(2)	12.8101(18)	9.9710(2)	18.3870(5)	9.9350(2)	18.2850(5)
<i>c</i> (Å)	19.3070(3)	26.044(4)	20.3710(3)	32.6920(10)	20.7080(7)	10.4020(5)
α (deg)	82.5160(10)	90	90	90	90	90
β (deg)	76.7630(10)	108.826(2)	95.6750(10)	90	96.0020(10)	90
γ (deg)	63.9670(10)	90	90	90	90	90
$V(A^3)$	1896.98(5)	5685.3(14)	2478.84(6)	5937.7(3)	2508.68(12)	3477.8(2)
Z	2	4	4	8	4	4
$T(\mathbf{K})$	200(2)	298(2)	100(2)	150(2)	200(2)	293(2)
diffractometer	Kappa CCD	SMART CCD	Kappa CCD	Kappa CCD	Kappa CCD	Kappa CCD
radiation, λ (A)	Mo Kα, 0./10/3	Mo K α , 0./10/3	Mo Kα, 0./10/3	Mo Kα, 0./10/3	Μο Κα, 0./10/3	Μο Κα, 0./10/3
$2\theta_{\rm max}$ (deg)	21504	30.82 62.576	50.00 19.172	50.00	50.02	50.04 10.226
total no. of refins	21304	12 606	10 1/2	2225	13 441	10 550
	0.0471	0.0704	4338	0.0416	4409	0.0733
$\Lambda_{\rm int}$	0.145	0.0704	1.030	0.0410	0.0770	0.675
no of data/	6680/0/407	13696/0/640	4338/0/258	2325/1/187	4409/0/263	3004/0/188
restraints/	0000,0,107	10000000000	1000,0,200	2020/1/10/	1103/0/200	500 101 100
params						
goodness of fit	1.053	1.018	1.124	1.090	1.098	0.978
final R indices	R1 = 0.0456	R1 = 0.0543	R1 = 0.0324	R1 = 0.0529	R1 = 0.0583	R1 = 0.0609
$[I > 2\sigma(I)]$						
	wR2 = 0.1183	wR2 = 0.1261	wR2 = 0.0867	wR2 = 0.1429	wR2 = 0.1330	wR2 = 0.1518
R indices (all data)	R1 = 0.0574	R1 = 0.1454	R1 = 0.0368	R1 = 0.0584	R1 = 0.0957	R1 = 0.1025
	wR2 = 0.1338	wR2 = 0.1748	wR2 = 0.0956	wR2 = 0.1539	wR2 = 0.1581	wR2 = 0.1931
					ECH.	(IDh DNDINGDa)
	[Dh DNI	DINi(n Bu)		[Ph-PNP]N SiMe	liCH ₂ -	{[Ph-PNP]NiBr}-
	[Ph-PNI	P]Ni(<i>n</i> -Bu)	[ⁱ Pr-PNP]Ni(<i>n</i> -Bu)	[Ph-PNP]N SiMe	NiCH ₂ -	$ \{ [Ph-PNP]NiBr \} - \\ (C_6H_6)_2 $
CCDC ref number	[Ph-PNI 276353	P]Ni(<i>n</i> -Bu)	[ⁱ Pr-PNP]Ni(<i>n</i> -Bu) 276354	[Ph-PNP]N SiMe 276355	liCH ₂ - 3	{[Ph-PNP]NiBr}- (C ₆ H ₆) ₂ 276356
CCDC ref number formula	[Ph-PNF 276353 C40H37	P]Ni(n-Bu)	[^{<i>i</i>} Pr-PNP]Ni(<i>n</i> -Bu) 276354 C ₂₈ H ₄₅ NNiP ₂	[Ph-PNP]N SiMe 276355 C ₄₀ H ₃₉ NN	ViCH ₂ - 3 PP ₂ Si	{[Ph-PNP]NiBr}- (C ₆ H ₆) ₂ 276356 C ₄₈ H ₄₀ BrNNiP ₂
CCDC ref number formula fw	[Ph-PNI 276353 C ₄₀ H ₃₇] 652.40	P]Ni(n-Bu) NNiP2	[^{<i>i</i>} Pr-PNP]Ni(<i>n</i> -Bu) 276354 C ₂₈ H ₄₅ NNiP ₂ 516.30	[Ph-PNP]N SiMe 276355 C ₄₀ H ₃₉ NN: 682.503	liCH2- 3 iP2Si	{[Ph-PNP]NiBr}- (C ₆ H ₆) ₂ 276356 C ₄₈ H ₄₀ BrNNiP ₂ 831.37
CCDC ref number formula fw D _{calc} (g cm ⁻³)	[Ph-PNI 276353 C ₄₀ H ₃₇] 652.40 1.290	P]Ni(n-Bu) 3 NNiP ₂ 1	[^{<i>i</i>} Pr-PNP]Ni(<i>n</i> -Bu) 276354 C ₂₈ H ₄₅ NNiP ₂ 516.30 1.199 monocelinic	[Ph-PNP]N SiMe 276355 C ₄₀ H ₃₉ NN: 682.503 1.269 triclinia	liCH2- 3 IP2Si	{[Ph-PNP]NiBr}- (C ₆ H ₆) ₂ 276356 C ₄₈ H ₄₀ BrNNiP ₂ 831.37 1.379 manaclinia
CCDC ref number formula fw D_{calc} (g cm ⁻³) cryst syst	[Ph-PNI 276353 C ₄₀ H ₃₇] 652.40 1.290 monocl P2 (2	P]Ni(n-Bu) 3 NNiP ₂ 1 linic	[^{<i>i</i>} Pr-PNP]Ni(<i>n</i> -Bu) 276354 C ₂₈ H ₄₅ NNiP ₂ 516.30 1.199 monoclinic P2/(2	[Ph-PNP]N SiMe 276355 C ₄₀ H ₃₉ NN 682.503 1.269 triclinic Pī	liCH2- 3 IP2Si	{[Ph-PNP]NiBr}- (C ₆ H ₆) ₂ 276356 C ₄₈ H ₄₀ BrNNiP ₂ 831.37 1.379 monoclinic C ² /c
CCDC ref number formula fw D_{calc} (g cm ⁻³) cryst syst space group $a_{i}(\hat{b})$	[Ph-PNI 276353 C ₄₀ H ₃₇ / 652.40 1.290 monocl P2 ₁ /a 17 157	P]Ni(<i>n</i> -Bu) 3 NNiP ₂ 1 linic	[i Pr-PNP]Ni(<i>n</i> -Bu) 276354 C ₂₈ H ₄₅ NNiP ₂ 516.30 1.199 monoclinic <i>P</i> 2 ₁ / <i>a</i> 18.0840(3)	[Ph-PNP]N SiMe 276355 C ₄₀ H ₃₉ NN 682.503 1.269 triclinic PI 10.9794(2)	liCH2- 3 IP2Si	{[Ph-PNP]NiBr}- (C ₆ H ₆) ₂ 276356 C ₄₈ H ₄₀ BrNNiP ₂ 831.37 1.379 monoclinic C ² /c 24 2880(7)
CCDC ref number formula fw D_{calc} (g cm ⁻³) cryst syst space group a (Å) b (Å)	[Ph-PNI 276353 C40H37 652.40 1.290 monocl P2 ₁ /a 17.157 ⁹ 9.4672	P]Ni(<i>n</i> -Bu) 3 NNiP ₂ 1 linic 9(4)	[^{<i>i</i>} Pr-PNP]Ni(<i>n</i> -Bu) 276354 C ₂₈ H ₄₅ NNiP ₂ 516.30 1.199 monoclinic <i>P</i> 2 ₁ / <i>a</i> 18.0840(3) 8.5850(2)	$[Ph-PNP]N \\SiMe \\276355 \\C_{40}H_{39}NN \\682.503 \\1.269 \\triclinic \\P\bar{1} \\10.9794(2) \\15.7917(4)$	liCH2- 3 IP2Si	$\{ [Ph-PNP]NiBr \}- (C_6H_6)_2 \\ 276356 \\ C_{48}H_{40}BrNNiP_2 \\ 831.37 \\ 1.379 \\ monoclinic \\ C2/c \\ 24.2880(7) \\ 9 \\ 7320(3) \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
CCDC ref number formula fw D_{calc} (g cm ⁻³) cryst syst space group a (Å) b (Å) c (Å)	[Ph-PNI 276353 C40H37 652.40 1.290 monocl P2 ₁ /a 17.157 9.46720 22.070	P]Ni(<i>n</i> -Bu) 3 NNiP ₂ 1 linic 9(4) (2) 1(6)	$[^{i}Pr-PNP]Ni(n-Bu)$ 276354 C ₂₈ H ₄₅ NNiP ₂ 516.30 1.199 monoclinic <i>P</i> 2 ₁ / <i>a</i> 18.0840(3) 8.5850(2) 19.3230(4)	$[Ph-PNP]N \\SiMe \\276355 \\C_{40}H_{39}NN: \\682.503 \\1.269 \\triclinic \\P\bar{1} \\10.9794(2) \\15.7917(4) \\20.8066(4) \\20.8066(4) \\$	liCH2- 3 IP2Si	$\{ [Ph-PNP]NiBr \}- (C_6H_6)_2 \\ 276356 \\ C_{48}H_{40}BrNNiP_2 \\ 831.37 \\ 1.379 \\ monoclinic \\ C2/c \\ 24.2880(7) \\ 9.7320(3) \\ 18.4090(7) \\ \end{tabular}$
CCDC ref number formula fw D_{calc} (g cm ⁻³) cryst syst space group a (Å) b (Å) c (Å) a (deg)	[Ph-PNI 276353 $C_{40}H_{37}$ 652.40 1.290 monocl $P2_{1/a}$ 17.1579 9.46720 22.070 90	P]Ni(<i>n</i> -Bu) 3 NNiP ₂ 1 linic 9(4) (2) 1(6)	[i Pr-PNP]Ni(<i>n</i> -Bu) 276354 C ₂₈ H ₄₅ NNiP ₂ 516.30 1.199 monoclinic <i>P</i> 2 ₁ / <i>a</i> 18.0840(3) 8.5850(2) 19.3230(4) 90	$[Ph-PNP]N \\SiMe \\276355 \\C_{40}H_{39}NN: \\682.503 \\1.269 \\triclinic \\P\bar{1} \\10.9794(2) \\15.7917(4) \\20.8066(4) \\96.604(2) \\$	liCH2- 3 IP2Si	$\{ [Ph-PNP]NiBr \}- (C_6H_6)_2 \\ 276356 \\ C_{48}H_{40}BrNNiP_2 \\ 831.37 \\ 1.379 \\ monoclinic \\ C2/c \\ 24.2880(7) \\ 9.7320(3) \\ 18.4090(7) \\ 90 \\ \end{bmatrix}$
CCDC ref number formula fw D_{calc} (g cm ⁻³) cryst syst space group a (Å) b (Å) c (Å) α (deg) β (deø)	[Ph-PNI 276353 $C_{40}H_{37}$ 652.40 1.290 monocl $P_{21/a}$ 17.1579 9.46720 22.070 90 110.48	P]Ni(<i>n</i> -Bu) NNiP ₂ 1 linic 9(4) (2) 1(6) 89(9)	$[^{i}Pr-PNP]Ni(n-Bu)$ 276354 $C_{28}H_{45}NNiP_2$ 516.30 1.199 monoclinic $P2_{1/a}$ 18.0840(3) 8.5850(2) 19.3230(4) 90 107.5760(10)	$[Ph-PNP]N \\SiMe \\276355 \\C_{40}H_{39}NN: \\682.503 \\1.269 \\triclinic \\P\bar{1} \\10.9794(2) \\15.7917(4) \\20.8066(4) \\96.604(2) \\94.5042(14) \\$	liCH ₂ - 3 iP ₂ Si	$\{ [Ph-PNP]NiBr \}- (C_6H_6)_2 \\ 276356 \\ C_{48}H_{40}BrNNiP_2 \\ 831.37 \\ 1.379 \\ monoclinic \\ C2/c \\ 24.2880(7) \\ 9.7320(3) \\ 18.4090(7) \\ 90 \\ 113.0520(10) \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
CCDC ref number formula fw D_{calc} (g cm ⁻³) cryst syst space group a (Å) b (Å) c (Å) α (deg) β (deg) γ (deg)	[Ph-PNI 276353 $C_{40}H_{37}$ 652.40 1.290 monocl $P2_{1/a}$ 17.1579 9.46720 22.070 90 110.483 90	P]Ni(<i>n</i> -Bu) NNiP ₂ 1 linic 9(4) (2) 1(6) 89(9)	$[^{i}Pr-PNP]Ni(n-Bu)$ 276354 C ₂₈ H ₄₅ NNiP ₂ 516.30 1.199 monoclinic P2 ₁ /a 18.0840(3) 8.5850(2) 19.3230(4) 90 107.5760(10) 90	$[Ph-PNP]N \\SiMe \\276355 \\C_{40}H_{39}NN: \\682.503 \\1.269 \\triclinic \\P\bar{1} \\10.9794(2) \\15.7917(4) \\20.8066(4) \\96.604(2) \\94.5042(14) \\90.5390(8) \\$	liCH2- 3 iP2Si 4)	$\{ [Ph-PNP]NiBr \}- (C_6H_6)_2 \\ 276356 \\ C_{48}H_{40}BrNNiP_2 \\ 831.37 \\ 1.379 \\ monoclinic \\ C2/c \\ 24.2880(7) \\ 9.7320(3) \\ 18.4090(7) \\ 90 \\ 113.0520(10) \\ 90 \\ \end{tabular}$
CCDC ref number formula fw D_{calc} (g cm ⁻³) cryst syst space group a (Å) b (Å) c (Å) α (deg) β (deg) γ (deg) V (Å ³)	[Ph-PNI 276353 $C_{40}H_{37}$ 652.40 1.290 monocl $P_{2_{1}/a}$ 17.1579 9.46720 22.070 90 110.483 90 3358.22	P]Ni(<i>n</i> -Bu) NNiP ₂ 1 linic 9(4) (2) 1(6) 89(9) 2(14)	[^{<i>i</i>} Pr-PNP]Ni(<i>n</i> -Bu) 276354 C ₂₈ H ₄₅ NNiP ₂ 516.30 1.199 monoclinic <i>P</i> 2 ₁ / <i>a</i> 18.0840(3) 8.5850(2) 19.3230(4) 90 107.5760(10) 90 2859.87(10)	$[Ph-PNP]N\\SiMe\\276355\\C_{40}H_{39}NN:\\682.503\\1.269\\triclinic\\P\bar{1}\\10.9794(2)\\15.7917(4)\\20.8066(4)\\96.604(2)\\94.5042(14)\\90.5390(8)\\3571.89(13)$	liCH ₂ - 3 iP ₂ Si (1)	$\{ [Ph-PNP]NiBr \}- (C_6H_6)_2 \\ 276356 \\ C_{48}H_{40}BrNNiP_2 \\ 831.37 \\ 1.379 \\ monoclinic \\ C2/c \\ 24.2880(7) \\ 9.7320(3) \\ 18.4090(7) \\ 90 \\ 113.0520(10) \\ 90 \\ 4003.9(2) \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
CCDC ref number formula fw D_{calc} (g cm ⁻³) cryst syst space group a (Å) b (Å) c (Å) c (Å) α (deg) β (deg) γ (deg) γ (deg) V (Å ³) Z	$[Ph-PNH] 276353 \\ C_{40}H_{37}] \\ 652.40 \\ 1.290 \\ monocl \\ P2_{1/a} \\ 17.1579 \\ 9.46720 \\ 22.070 \\ 90 \\ 110.483 \\ 90 \\ 3358.22 \\ 4$	P]Ni(<i>n</i> -Bu) NNiP ₂ 1 linic 9(4) (2) 1(6) 89(9) 2(14)	$[^{i}Pr-PNP]Ni(n-Bu)$ 276354 C ₂₈ H ₄₅ NNiP ₂ 516.30 1.199 monoclinic P2 ₁ /a 18.0840(3) 8.5850(2) 19.3230(4) 90 107.5760(10) 90 2859.87(10) 4	$[Ph-PNP]N\\SiMe\\276355\\C_{40}H_{39}NN:\\682.503\\1.269\\triclinic\\P\bar{1}\\10.9794(2)\\15.7917(4)\\20.8066(4)\\96.604(2)\\94.5042(14)\\90.5390(8)\\3571.89(15)\\4$	liCH ₂ - 3 IP ₂ Si () ()	$\{ [Ph-PNP]NiBr \}- (C_6H_6)_2 \\ 276356 \\ C_{48}H_{40}BrNNiP_2 \\ 831.37 \\ 1.379 \\ monoclinic \\ C2/c \\ 24.2880(7) \\ 9.7320(3) \\ 18.4090(7) \\ 90 \\ 113.0520(10) \\ 90 \\ 4003.9(2) \\ 4 \\ \end{bmatrix}$
CCDC ref number formula fw D_{calc} (g cm ⁻³) cryst syst space group a (Å) b (Å) c (Å) c (Å) α (deg) β (deg) γ (deg) γ (deg) V (Å3) Z T (K)	$[Ph-PNI] 276353 \\ C_{40}H_{37}] \\ 652.40 \\ 1.290 \\ monocl \\ P2_{1}/a \\ 17.1574 \\ 9.46724 \\ 22.070 \\ 90 \\ 110.483 \\ 90 \\ 3358.27 \\ 4 \\ 298(2) \\ \end{tabular}$	P]Ni(<i>n</i> -Bu) NNiP ₂ 1 linic 9(4) (2) 1(6) 89(9) 2(14)	$[{}^{i}Pr-PNP]Ni(n-Bu)$ 276354 C ₂₈ H ₄₅ NNiP ₂ 516.30 1.199 monoclinic P2 ₁ /a 18.0840(3) 8.5850(2) 19.3230(4) 90 107.5760(10) 90 2859.87(10) 4 200(2)	$[Ph-PNP]N\\SiMe\\276355\\C_{40}H_{39}NN:\\682.503\\1.269\\triclinic\\P\bar{1}\\10.9794(2)\\15.7917(4)\\20.8066(4)\\96.604(2)\\94.5042(14)\\90.5390(8)\\3571.89(13)\\4\\298(2)$	liCH ₂ - 3 P ₂ Si () ()	$\{ [Ph-PNP]NiBr \}- (C_6H_6)_2 \\ 276356 \\ C_{48}H_{40}BrNNiP_2 \\ 831.37 \\ 1.379 \\ monoclinic \\ C2/c \\ 24.2880(7) \\ 9.7320(3) \\ 18.4090(7) \\ 90 \\ 113.0520(10) \\ 90 \\ 4003.9(2) \\ 4 \\ 293(2) \\ \end{tabular}$
CCDC ref number formula fw D_{calc} (g cm ⁻³) cryst syst space group a (Å) b (Å) c (Å) c (Å) α (deg) β (deg) γ (deg) γ (deg) V (Å3) Z T (K) diffractometer	$[Ph-PNI] 276353 \\ C_{40}H_{37}] \\ 652.40 \\ 1.290 \\ monocl \\ P_{21}/a \\ 17.157' \\ 9.4672i \\ 22.070 \\ 90 \\ 110.48i \\ 90 \\ 3358.2i \\ 4 \\ 298(2) \\ Kappa \\]$	P]Ni(<i>n</i> -Bu) NNiP ₂ 1 linic 9(4) (2) 1(6) 89(9) 2(14) CCD	$[{}^{i}Pr-PNP]Ni(n-Bu)$ 276354 $C_{28}H_{45}NNiP_{2}$ 516.30 1.199 monoclinic $P2_{1/a}$ 18.0840(3) 8.5850(2) 19.3230(4) 90 107.5760(10) 90 2859.87(10) 4 200(2) Kappa CCD	$[Ph-PNP]N \\SiMe \\276355 \\C_{40}H_{39}NN: \\682.503 \\1.269 \\triclinic \\P\bar{1} \\10.9794(2) \\15.7917(4) \\20.8066(4) \\96.604(2) \\94.5042(14) \\90.5390(8) \\3571.89(15) \\4 \\298(2) \\Kappa CCI \\$	liCH ₂ - 3 P ₂ Si 4) 3)	$\{ [Ph-PNP]NiBr \}- (C_6H_6)_2 \\ 276356 \\ C_{48}H_{40}BrNNiP_2 \\ 831.37 \\ 1.379 \\ monoclinic \\ C2/c \\ 24.2880(7) \\ 9.7320(3) \\ 18.4090(7) \\ 90 \\ 113.0520(10) \\ 90 \\ 4003.9(2) \\ 4 \\ 293(2) \\ Kappa CCD \\ \end {tabular}$
CCDC ref number formula fw D_{calc} (g cm ⁻³) cryst syst space group a (Å) b (Å) c (Å) c (Å) α (deg) β (deg) γ (deg) V (Å3) Z T (K) diffractometer radiation, λ (Å)	$[Ph-PNI] 276353 \\ C_{40}H_{37}] \\ 652.40 \\ 1.290 \\ monocl \\ P2_1/a \\ 17.157' \\ 9.4672i \\ 22.070 \\ 90 \\ 110.48i \\ 90 \\ 3358.2i \\ 4 \\ 298(2) \\ Kappa \\ Mo Ko$	P]Ni(<i>n</i> -Bu) NNiP ₂ 1 linic 9(4) (2) 1(6) 89(9) 2(14) CCD 5, 0.71073	[^{i} Pr-PNP]Ni(<i>n</i> -Bu) 276354 C ₂₈ H ₄₅ NNiP ₂ 516.30 1.199 monocclinic <i>P</i> 2 ₁ / <i>a</i> 18.0840(3) 8.5850(2) 19.3230(4) 90 107.5760(10) 90 2859.87(10) 4 200(2) Kappa CCD Mo Kα, 0.71073	$[Ph-PNP]N\\SiMe\\276355\\C_{40}H_{39}NN:\\682.503\\1.269\\triclinic\\P\bar{1}\\10.9794(2)\\15.7917(4)\\20.8066(4)\\96.604(2)\\94.5042(14)\\90.5390(8)\\3571.89(13)\\4\\298(2)\\Kappa CCI\\Mo K\alpha, 0.\\$	liCH ₂ - 3 P ₂ Si 4) 3) D 71073	$\{ [Ph-PNP]NiBr \}- (C_6H_6)_2 \\ 276356 \\ C_{48}H_{40}BrNNiP_2 \\ 831.37 \\ 1.379 \\ monoclinic \\ C2/c \\ 24.2880(7) \\ 9.7320(3) \\ 18.4090(7) \\ 90 \\ 113.0520(10) \\ 90 \\ 4003.9(2) \\ 4 \\ 293(2) \\ Kappa CCD \\ Mo K\alpha, 0.71073 \\ \end{bmatrix}$
CCDC ref number formula fw D_{calc} (g cm ⁻³) cryst syst space group a (Å) b (Å) c (Å) α (deg) β (deg) γ (deg) V (Å ³) Z T (K) diffractometer radiation, λ (Å) $2\theta_{max}$ (deg)	[Ph-PNI 276353 C ₄₀ H ₃₇] 652.40 1.290 monocl <i>P</i> 2 ₁ /a 17.157' 9.4672(22.070 90 110.48(90 3358.2) 4 298(2) Kappa Mo Ko 50.06	P]Ni(<i>n</i> -Bu) NNiP ₂ 1 linic 9(4) (2) 1(6) 89(9) 2(14) CCD 5, 0.71073	[^{i} Pr-PNP]Ni(<i>n</i> -Bu) 276354 C ₂₈ H ₄₅ NNiP ₂ 516.30 1.199 monoclinic <i>P</i> 2 ₁ / <i>a</i> 18.0840(3) 8.5850(2) 19.3230(4) 90 107.5760(10) 90 2859.87(10) 4 200(2) Kappa CCD Mo Kα, 0.71073 50.06	$[Ph-PNP]N \\SiMe \\276355 \\C_{40}H_{39}NN: \\682.503 \\1.269 \\triclinic \\P\bar{1} \\10.9794(2) \\15.7917(4) \\20.8066(4) \\96.604(2) \\94.5042(14) \\90.5390(8) \\3571.89(15) \\4 \\298(2) \\Kappa CCI \\Mo K\alpha, 0. \\50.06 \\1.001 \\$	FiCH ₂ - 3 P ₂ Si () () () () () () () () () ()	$\{ [Ph-PNP]NiBr \}- (C_6H_6)_2 \\ 276356 \\ C_{48}H_{40}BrNNiP_2 \\ 831.37 \\ 1.379 \\ monoclinic \\ C2/c \\ 24.2880(7) \\ 9.7320(3) \\ 18.4090(7) \\ 90 \\ 113.0520(10) \\ 90 \\ 4003.9(2) \\ 4 \\ 293(2) \\ Kappa CCD \\ Mo K\alpha, 0.71073 \\ 50.00 \\ 1000 \\$
CCDC ref number formula fw D_{calc} (g cm ⁻³) cryst syst space group a (Å) b (Å) c (Å) a (deg) β (deg) γ (deg) γ (deg) V (Å ³) Z T (K) diffractometer radiation, λ (Å) $2\theta_{max}$ (deg) total no. of reflns	[Ph-PNI 276353 C ₄₀ H ₃₇] 652.40 1.290 monocl <i>P</i> 2 ₁ /a 17.157' 9.4672(22.070 90 110.48(90 3358.2) 4 298(2) Kappa Mo Ko 50.06 24 984	P]Ni(<i>n</i> -Bu) NNiP ₂ 1 linic 9(4) (2) 1(6) 89(9) 2(14) CCD 5, 0.71073	[^{<i>i</i>} Pr-PNP]Ni(<i>n</i> -Bu) 276354 $C_{28}H_{45}NNiP_2$ 516.30 1.199 monoclinic <i>P</i> 2 ₁ / <i>a</i> 18.0840(3) 8.5850(2) 19.3230(4) 90 107.5760(10) 90 2859.87(10) 4 200(2) Kappa CCD Mo Kα, 0.71073 50.06 29.443 2051	$[Ph-PNP]N \\SiMe \\276355 \\C_{40}H_{39}NN: \\682.503 \\1.269 \\triclinic \\P\bar{1} \\10.9794(2) \\15.7917(4) \\20.8066(4) \\96.604(2) \\94.5042(14) \\90.5390(8) \\3571.89(12) \\4 \\298(2) \\Kappa CCI \\Mo K\alpha, 0. \\50.06 \\33 801 \\14 202 \\$	liCH ₂ - 3 P ₂ Si () () () () () () () () () ()	$\{ [Ph-PNP]NiBr \}- (C_6H_6)_2 \\ 276356 \\ C_{48}H_{40}BrNNiP_2 \\ 831.37 \\ 1.379 \\ monoclinic \\ C2/c \\ 24.2880(7) \\ 9.7320(3) \\ 18.4090(7) \\ 90 \\ 113.0520(10) \\ 90 \\ 4003.9(2) \\ 4 \\ 293(2) \\ Kappa CCD \\ Mo K\alpha, 0.71073 \\ 50.00 \\ 10 438 \\ 4000 \\ 10 438 \\ 1000 \\ 10 438 \\ 1000 \\ 10 438 \\ 1000 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\$
CCDC ref number formula fw D_{calc} (g cm ⁻³) cryst syst space group a (Å) b (Å) c (Å) α (deg) β (deg) γ (deg) γ (deg) V (Å ³) Z T (K) diffractometer radiation, λ (Å) $2\theta_{max}$ (deg) total no. of reflns no. of indep reflns	[Ph-PNI 276353 C ₄₀ H ₃₇] 652.40 1.290 monocl <i>P</i> 2 ₁ /a 17.157! 9.4672(22.070 90 110.48 90 3358.2 4 298(2) Kappa Mo Ko 50.06 24 984 5870	P]Ni(n-Bu) NNiP2 1 linic 9(4) (2) 1(6) 89(9) 2(14) CCD 5, 0.71073	[^{<i>i</i>} Pr-PNP]Ni(<i>n</i> -Bu) 276354 $C_{28}H_{45}NNiP_2$ 516.30 1.199 monoclinic <i>P</i> 2 ₁ / <i>a</i> 18.0840(3) 8.5850(2) 19.3230(4) 90 107.5760(10) 90 2859.87(10) 4 200(2) Kappa CCD Mo Kα, 0.71073 50.06 29.443 5051 9.0770	$[Ph-PNP]N \\SiMe \\276355 \\C_{40}H_{39}NN: \\682.503 \\1.269 \\triclinic \\P\bar{1} \\10.9794(2) \\15.7917(4) \\20.8066(4) \\96.604(2) \\94.5042(14) \\90.5390(8) \\3571.89(12) \\4 \\298(2) \\Kappa CCI \\Mo K\alpha, 0. \\50.06 \\33 801 \\14 222 \\0.272 \\$	ViCH ₂ - 3 P ₂ Si () () () () () () () () () ()	$\{ [Ph-PNP]NiBr \}- (C_6H_6)_2 \\ 276356 \\ C_{48}H_{40}BrNNiP_2 \\ 831.37 \\ 1.379 \\ monoclinic \\ C2/c \\ 24.2880(7) \\ 9.7320(3) \\ 18.4090(7) \\ 90 \\ 113.0520(10) \\ 90 \\ 4003.9(2) \\ 4 \\ 293(2) \\ Kappa CCD \\ Mo K\alpha, 0.71073 \\ 50.00 \\ 10 438 \\ 3497 \\ 0 0.0522 \\ 1000 \\ 10 400 \\ 10 $
CCDC ref number formula fw D_{calc} (g cm ⁻³) cryst syst space group a (Å) b (Å) c (c (c)) c (c)	[Ph-PNI 276353 C4 ₀ H ₃₇] 652.40 1.290 monocl P2 ₁ /a 17.157 ⁹ 9.4672(22.070 90 110.48 90 3358.2 4 298(2) Kappa Mo Kα 50.06 24 984 5870 0.044	P]Ni(n-Bu) NNiP2 1 linic 9(4) (2) 1(6) 89(9) 2(14) CCD ., 0.71073	[^{<i>i</i>} Pr-PNP]Ni(<i>n</i> -Bu) 276354 $C_{28}H_{45}NNiP_2$ 516.30 1.199 monoclinic $P2_{1/a}$ 18.0840(3) 8.5850(2) 19.3230(4) 90 107.5760(10) 90 2859.87(10) 4 200(2) Kappa CCD Mo K α , 0.71073 50.06 29.443 5051 0.0779 2.996	$[Ph-PNP]N \\SiMe \\276355 \\C_{40}H_{39}NN: \\682.503 \\1.269 \\triclinic \\P\bar{1} \\10.9794(2) \\15.7917(4) \\20.8066(4) \\96.604(2) \\94.5042(14) \\90.5390(8) \\3571.89(13) \\4 \\298(2) \\Kappa CCI \\Mo K\alpha, 0. \\50.06 \\33 801 \\14 222 \\0.070 \\0 \le 0$	ViCH ₂ - 3 P ₂ Si () () () () () () () () () ()	$\{ [Ph-PNP]NiBr \}_{(C_6H_6)_2} \\ 276356 \\ C_{48}H_{40}BrNNiP_2 \\ 831.37 \\ 1.379 \\ monoclinic \\ C2/c \\ 24.2880(7) \\ 9.7320(3) \\ 18.4090(7) \\ 90 \\ 113.0520(10) \\ 90 \\ 4003.9(2) \\ 4 \\ 293(2) \\ Kappa CCD \\ Mo K\alpha, 0.71073 \\ 50.00 \\ 10 438 \\ 3497 \\ 0.0563 \\ 1.607 \\ 1$
CCDC ref number formula fw D_{calc} (g cm ⁻³) cryst syst space group a (Å) b (Å) c (Å) c (Å) c (Å) α (deg) β (deg) γ (deg) V (Å ³) Z T (K) diffractometer radiation, λ (Å) $2\theta_{max}$ (deg) total no. of reflns no. of indep reflns R_{int} abs coeff (mm ⁻¹)	[Ph-PNI 276353 C40H37 652.40 1.290 monocl P21/a 17.157 ⁹ 9.46720 22.070 90 110.483 90 3358.2 4 298(2) Kappa Mo Ko 50.06 24.984 5870 0.044 0.702	P]Ni(<i>n</i> -Bu) NNiP ₂ 1 linic 9(4) (2) 1(6) 89(9) 2(14) CCD 5, 0.71073	[^{<i>i</i>} Pr-PNP]Ni(<i>n</i> -Bu) 276354 $C_{28}H_{45}NNiP_2$ 516.30 1.199 monoclinic <i>P</i> 2 ₁ / <i>a</i> 18.0840(3) 8.5850(2) 19.3230(4) 90 107.5760(10) 90 2859.87(10) 4 200(2) Kappa CCD Mo Kα, 0.71073 50.06 29.443 5051 0.0779 0.806 5051 (0/200)	$[Ph-PNP]N \\SiMe \\276355 \\C_{40}H_{39}NN: \\682.503 \\1.269 \\triclinic \\P\bar{1} \\10.9794(2) \\15.7917(4) \\20.8066(4) \\96.604(2) \\94.5042(14) \\90.5390(8) \\3571.89(13) \\4 \\298(2) \\Kappa CCI \\Mo K\alpha, 0. \\50.06 \\33 \ 801 \\14 \ 222 \\0.070 \\0.69 \\(529)0(9)0(9) \\(529)0(9) \\(529)0(9) \\(5$	ViCH ₂ - 3 P ₂ Si () () () () () () () () () ()	$\{ [Ph-PNP]NiBr \}_{(C_6H_6)_2} \\ 276356 \\ C_{48}H_{40}BrNNiP_2 \\ 831.37 \\ 1.379 \\ monoclinic \\ C2/c \\ 24.2880(7) \\ 9.7320(3) \\ 18.4090(7) \\ 90 \\ 113.0520(10) \\ 90 \\ 4003.9(2) \\ 4 \\ 293(2) \\ Kappa CCD \\ Mo K\alpha, 0.71073 \\ 50.00 \\ 10 438 \\ 3497 \\ 0.0563 \\ 1.597 \\ 2407(0)242 \\ 100000000000000000000000000000000000$
CCDC ref number formula fw D_{calc} (g cm ⁻³) cryst syst space group a (Å) b (Å) c (Å) c (Å) c (Å) α (deg) β (deg) γ (deg) γ (deg) V (Å ³) Z T (K) diffractometer radiation, λ (Å) $2\theta_{max}$ (deg) total no. of reflns no. of indep reflns R_{int} abs coeff (mm ⁻¹) no. of data/restraints	[Ph-PNI 276353 C40H37 652.40 1.290 monocl P21/a 17.157 ⁹ 9.46720 22.070 90 110.483 90 3358.2 4 298(2) Kappa Mo Ko 50.06 24.984 5870 0.044 0.702 s/ 5870/0	P]Ni(n-Bu) NNiP2 1 linic 9(4) (2) 1(6) 89(9) 2(14) CCD 2, 0.71073 /397	[^{<i>i</i>} Pr-PNP]Ni(<i>n</i> -Bu) 276354 $C_{28}H_{45}NNiP_2$ 516.30 1.199 monoclinic $P_{2_1/a}$ 18.0840(3) 8.5850(2) 19.3230(4) 90 107.5760(10) 90 2859.87(10) 4 200(2) Kappa CCD Mo K α , 0.71073 50.06 29.443 5051 0.0779 0.806 5051/0/290	$[Ph-PNP]N \\SiMe \\ 276355 \\ C_{40}H_{39}NN: \\682.503 \\ 1.269 \\ triclinic \\P\bar{1} \\ 10.9794(2) \\ 15.7917(4) \\ 20.8066(4) \\ 96.604(2) \\ 94.5042(14) \\ 90.5390(8) \\ 3571.89(13) \\ 4 \\ 298(2) \\ Kappa CCI \\ Mo K\alpha, 0. \\ 50.06 \\ 33 801 \\ 14 222 \\ 0.070 \\ 0.69 \\ 6528/0/842 \\ 14 \\ 222 \\ 0.074 \\ 14 \\ 222 \\ 0.070 \\ 0.69 \\ 14 \\ 228 \\ 14 \\ 228 \\ 14 \\ 228 \\ 14 \\ 14 \\ 228 \\ 14 \\ 14 \\ 228 \\ 14 \\ 14 \\ 14 \\ 14 \\ 14 \\ 14 \\ 14 \\ 1$	ViCH ₂ - 3 P ₂ Si () () () () () () () () () ()	$\{ [Ph-PNP]NiBr \}- (C_6H_6)_2 \\ 276356 \\ C_{48}H_{40}BrNNiP_2 \\ 831.37 \\ 1.379 \\ monoclinic \\ C2/c \\ 24.2880(7) \\ 9.7320(3) \\ 18.4090(7) \\ 90 \\ 113.0520(10) \\ 90 \\ 4003.9(2) \\ 4 \\ 293(2) \\ Kappa CCD \\ Mo K\alpha, 0.71073 \\ 50.00 \\ 10 438 \\ 3497 \\ 0.0563 \\ 1.597 \\ 3497/0/242 \\ \end{bmatrix}$
CCDC ref number formula fw D_{calc} (g cm ⁻³) cryst syst space group a (Å) b (Å) c (Å) c (Å) c (Å) α (deg) β (deg) γ (deg) γ (deg) V (Å ³) Z T (K) diffractometer radiation, λ (Å) $2\theta_{max}$ (deg) total no. of reflns no. of indep reflns R_{int} abs coeff (mm ⁻¹) no. of data/restraints params growthese of fit	[Ph-PNI 276353 C4 ₀ H ₃₇ / 652.40 1.290 monocl P2 ₁ /a 17.157 ⁹ 9.46720 22.070 90 110.483 90 3358.2 4 298(2) Kappa Mo Kα 50.06 24 984 5870 0.044 0.702 \$/ 5870/0.	P]Ni(n-Bu) NNiP ₂ linic 9(4) (2) 1(6) 89(9) 2(14) CCD 5, 0.71073 /397	[ⁱ Pr-PNP]Ni(<i>n</i> -Bu) 276354 $C_{28}H_{45}NNiP_2$ 516.30 1.199 monoclinic <i>P</i> 2 ₁ / <i>a</i> 18.0840(3) 8.5850(2) 19.3230(4) 90 107.5760(10) 90 2859.87(10) 4 200(2) Kappa CCD Mo Kα, 0.71073 50.06 29.443 5051 0.0779 0.806 5051/0/290 1.194	$[Ph-PNP]N \\SiMe \\ 276355 \\ C_{40}H_{39}NN: \\682.503 \\ 1.269 \\ triclinic \\ P\bar{1} \\ 10.9794(2) \\ 15.7917(4) \\ 20.8066(4) \\ 96.604(2) \\ 94.5042(14) \\ 90.5390(8) \\ 3571.89(13) \\ 4 \\ 298(2) \\ Kappa CCI \\ Mo K\alpha, 0. \\ 50.06 \\ 33 801 \\ 14 222 \\ 0.070 \\ 0.69 \\ 6528/0/842 \\ 2.962 \\ \end{bmatrix}$	ViCH ₂ - 3 P ₂ Si () () () () () () () () () ()	$\{ [Ph-PNP]NiBr \}_{(C_6H_6)_2} \\ 276356 \\ C_{48}H_{40}BrNNiP_2 \\ 831.37 \\ 1.379 \\ monoclinic \\ C2/c \\ 24.2880(7) \\ 9.7320(3) \\ 18.4090(7) \\ 90 \\ 113.0520(10) \\ 90 \\ 4003.9(2) \\ 4 \\ 293(2) \\ Kappa CCD \\ Mo K\alpha, 0.71073 \\ 50.00 \\ 10 \\ 438 \\ 3497 \\ 0.0563 \\ 1.597 \\ 3497/0/242 \\ 1 \\ 214 \\ 1 \\ 214 \\ 1 \\ 214 \\ 1 \\ 21 \\ 2$
CCDC ref number formula fw D_{calc} (g cm ⁻³) cryst syst space group a (Å) b (Å) c (Å) c (Å) α (deg) β (deg) γ (deg) γ (deg) V (Å ³) Z T (K) diffractometer radiation, λ (Å) $2\theta_{max}$ (deg) total no. of refIns no. of indep refIns R_{int} abs coeff (mm ⁻¹) no. of data/restraints params goodness of fit final <i>R</i> indices	$\begin{tabular}{ l l l l l l l l l l l l l l l l l l l$	P]Ni(n-Bu) NNiP ₂ linic 9(4) (2) 1(6) 89(9) 2(14) CCD , 0.71073 /397	[^{<i>i</i>} Pr-PNP]Ni(<i>n</i> -Bu) 276354 $C_{28}H_{45}NNiP_2$ 516.30 1.199 monoclinic $P_{21/a}$ 18.0840(3) 8.5850(2) 19.3230(4) 90 107.5760(10) 90 2859.87(10) 4 200(2) Kappa CCD Mo Ka, 0.71073 50.06 29.443 5051 0.0779 0.806 5051/0/290 1.194 B1 = 0.0532	$[Ph-PNP]N \\SiMe \\276355 \\C_{40}H_{39}NN: \\682.503 \\1.269 \\triclinic \\P\bar{1} \\10.9794(2) \\15.7917(4) \\20.8066(4) \\96.604(2) \\94.5042(14) \\90.5390(8) \\3571.89(13) \\4 \\298(2) \\Kappa CCI \\Mo K\alpha, 0. \\50.06 \\33 801 \\14 222 \\0.070 \\0.69 \\6528/0/842 \\2.962 \\R1 = 0.06 \\$	ViCH ₂ - 3 P ₂ Si () () () () () () () () () ()	$\{ [Ph-PNP]NiBr \}_{(C_6H_6)_2} \\ 276356 \\ C_{48}H_{40}BrNNiP_2 \\ 831.37 \\ 1.379 \\ monoclinic \\ C2/c \\ 24.2880(7) \\ 9.7320(3) \\ 18.4090(7) \\ 90 \\ 113.0520(10) \\ 90 \\ 4003.9(2) \\ 4 \\ 293(2) \\ Kappa CCD \\ Mo K\alpha, 0.71073 \\ 50.00 \\ 10 \\ 438 \\ 3497 \\ 0.0563 \\ 1.597 \\ 3497/0/242 \\ 1.214 \\ R1 = 0 0654 \\ \end{bmatrix}$
CCDC ref number formula fw D_{calc} (g cm ⁻³) cryst syst space group a (Å) b (Å) c (Å) c (Å) α (deg) β (deg) γ (deg) γ (deg) γ (deg) V (Å ³) Z T (K) diffractometer radiation, λ (Å) $2\theta_{max}$ (deg) total no. of reflns no. of indep reflns no. of indep reflns R_{int} abs coeff (mm ⁻¹) no. of data/restraints params goodness of fit final <i>R</i> indices [$I > 2\alpha(h)$]	[Ph-PNI 276353 C ₄₀ H ₃₇] 652.40 1.290 monocl P2 ₁ /a 17.157 ⁴ 9.46720 22.070 90 110.48 90 3358.2 ⁷ 4 298(2) Kappa Mo Kα 50.06 24 984 5870 0.044 0.702 s/ 5870/0. 0.997 R1 = 0	P]Ni(n-Bu) NNiP ₂ linic 9(4) (2) 1(6) 89(9) 2(14) CCD , 0.71073 /397 1.0419	[ⁱ Pr-PNP]Ni(<i>n</i> -Bu) 276354 $C_{28}H_{45}NNiP_2$ 516.30 1.199 monoclinic $P_{21/a}$ 18.0840(3) 8.5850(2) 19.3230(4) 90 107.5760(10) 90 2859.87(10) 4 200(2) Kappa CCD Mo Ka, 0.71073 50.06 29.443 5051 0.0779 0.806 5051/0/290 1.194 R1 = 0.0532	$[Ph-PNP]N \\SiMe \\ 276355 \\ C_{40}H_{39}NN: \\682.503 \\ 1.269 \\ triclinic \\P\bar{1} \\ 10.9794(2) \\ 15.7917(4) \\ 20.8066(4) \\ 96.604(2) \\ 94.5042(14) \\ 90.5390(8) \\ 3571.89(12) \\ 4 \\ 298(2) \\ Kappa CCI \\ Mo K\alpha, 0. \\ 50.06 \\ 33 801 \\ 14 222 \\ 0.070 \\ 0.69 \\ 6528/0/842 \\ 2.962 \\ R1 = 0.06 \\ \end{tabular}$	ViCH ₂ - 3 P ₂ Si 4 9 5 7 7	$\{ [Ph-PNP]NiBr \}- (C_6H_6)_2 \\ 276356 \\ C_{48}H_{40}BrNNiP_2 \\ 831.37 \\ 1.379 \\ monoclinic \\ C2/c \\ 24.2880(7) \\ 9.7320(3) \\ 18.4090(7) \\ 90 \\ 113.0520(10) \\ 90 \\ 4003.9(2) \\ 4 \\ 293(2) \\ Kappa CCD \\ Mo K\alpha, 0.71073 \\ 50.00 \\ 10 \\ 438 \\ 3497 \\ 0.0563 \\ 1.597 \\ 3497/0/242 \\ 1.214 \\ R1 = 0.0654 \\ \end{cases}$
CCDC ref number formula fw D_{calc} (g cm ⁻³) cryst syst space group a (Å) b (Å) c (Å) c (Å) α (deg) β (deg) γ (deg) γ (deg) γ (deg) V (Å ³) Z T (K) diffractometer radiation, λ (Å) $2\theta_{max}$ (deg) total no. of reflns no. of indep reflns R_{int} abs coeff (mm ⁻¹) no. of data/restraints params goodness of fit final <i>R</i> indices [$I > 2\sigma(I)$]	$\begin{tabular}{ l l l l l l l l l l l l l l l l l l l$	P]Ni(n-Bu) NNiP ₂ linic 9(4) (2) 1(6) 89(9) 2(14) CCD , 0.71073 /397 .0419 0.1269	[ⁱ Pr-PNP]Ni(<i>n</i> -Bu) 276354 $C_{28}H_{45}NNiP_2$ 516.30 1.199 monoclinic $P_{21/a}$ 18.0840(3) 8.5850(2) 19.3230(4) 90 107.5760(10) 90 2859.87(10) 4 200(2) Kappa CCD Mo Ka, 0.71073 50.06 29.443 5051 0.0779 0.806 5051/0/290 1.194 R1 = 0.0532 wR2 = 0.1235	$[Ph-PNP]N \\SiMe \\276355 \\C_{40}H_{39}NN: \\682.503 \\1.269 \\triclinic \\P\overline{1} \\10.9794(2) \\15.7917(4) \\20.8066(4) \\96.604(2) \\94.5042(14) \\90.5390(8) \\3571.89(12) \\4 \\298(2) \\Kappa CCI \\Mo K\alpha, 0. \\50.06 \\33 801 \\14 222 \\0.070 \\0.69 \\6528/0/842 \\2.962 \\R1 = 0.06' \\wR2 = 0.1$	ViCH ₂ - 3 P ₂ Si () () () () () () () () () ()	$\{ [Ph-PNP]NiBr \}_{(C_6H_6)_2} \\ 276356 \\ C_{48}H_{40}BrNNiP_2 \\ 831.37 \\ 1.379 \\ monoclinic \\ C2/c \\ 24.2880(7) \\ 9.7320(3) \\ 18.4090(7) \\ 90 \\ 113.0520(10) \\ 90 \\ 4003.9(2) \\ 4 \\ 293(2) \\ Kappa CCD \\ Mo K\alpha, 0.71073 \\ 50.00 \\ 10 \\ 438 \\ 3497 \\ 0.0563 \\ 1.597 \\ 3497/0/242 \\ 1.214 \\ R1 = 0.0654 \\ wR2 = 0.1418 \\ \end{bmatrix}$
CCDC ref number formula fw D_{calc} (g cm ⁻³) cryst syst space group a (Å) b (Å) c (Å) c (Å) α (deg) β (deg) γ (deg) γ (deg) V (Å ³) Z T (K) diffractometer radiation, λ (Å) $2\theta_{max}$ (deg) total no. of reflns no. of indep reflns R_{int} abs coeff (mm ⁻¹) no. of data/restraints params goodness of fit final <i>R</i> indices [$I \ge 2\sigma(I)$] <i>R</i> indices (all data)	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	P]Ni(n-Bu) NNiP ₂ linic 9(4) (2) 1(6) 89(9) 2(14) CCD , 0.71073 /397 .0419 0.1269 .0617	[ⁱ Pr-PNP]Ni(<i>n</i> -Bu) 276354 $C_{28}H_{45}NNiP_2$ 516.30 1.199 monoclinic $P_{21/a}$ 18.0840(3) 8.5850(2) 19.3230(4) 90 107.5760(10) 90 2859.87(10) 4 200(2) Kappa CCD Mo Ka, 0.71073 50.06 29.443 5051 0.0779 0.806 5051/0/290 1.194 R1 = 0.0532 wR2 = 0.1235 R1 = 0.0804	$[Ph-PNP]N \\SiMe \\276355 \\C_{40}H_{39}NN: \\682.503 \\1.269 \\triclinic \\P\overline{1} \\10.9794(2) \\15.7917(4) \\20.8066(4) \\96.604(2) \\94.5042(14) \\90.5390(8) \\3571.89(12) \\4 \\298(2) \\Kappa CCI \\Mo K\alpha, 0. \\50.06 \\33 801 \\14 222 \\0.070 \\0.69 \\6528/0/842 \\2.962 \\R1 = 0.06' \\wR2 = 0.1 \\R1 = 0.150 \\wR2 = 0$	ViCH ₂ - 3 P ₂ Si () () () () () () () () () ()	$\{ [Ph-PNP]NiBr \}_{(C_6H_6)_2} \\ 276356 \\ C_{48}H_{40}BrNNiP_2 \\ 831.37 \\ 1.379 \\ monoclinic \\ C2/c \\ 24.2880(7) \\ 9.7320(3) \\ 18.4090(7) \\ 90 \\ 113.0520(10) \\ 90 \\ 4003.9(2) \\ 4 \\ 293(2) \\ Kappa CCD \\ Mo K\alpha, 0.71073 \\ 50.00 \\ 10 438 \\ 3497 \\ 0.0563 \\ 1.597 \\ 3497/0/242 \\ 1.214 \\ R1 = 0.0654 \\ wR2 = 0.1418 \\ R1 = 0.1015 \\ \end{tabular}$

 $(DME)^{41}$ suspended in THF at $-35\,$ °C resulted in slow dissolution of NiCl_2(DME) to give a homogeneous green solution, from which diamagnetic [Ph-PNP]NiCl, [Pr-PNP]NiCl, and [Cy-PNP]NiCl were isolated as emerald crystals in high yield (Scheme 3). All three chloride complexes are air- and

water-stable in both solution and solid state. The ${}^{31}P{}^{1}H$ NMR spectra of these chloride derivatives reveal a singlet resonance that is shifted downfield from the corresponding ligand precursors and lithium complexes. The ${}^{13}C{}^{1}H$ NMR spectra exhibit virtual triplet⁴² resonances for the *o*-phenylene carbon atoms, consistent with a square-planar geometry for these molecules.

⁽⁴¹⁾ Masotti, H.; Wallet, J. C.; Peiffer, G.; Petit, F.; Mortreux, A.; Buono, G. J. Organomet. Chem. **1986**, 308, 241–252.

Figure 2. Molecular structure of [Cy-PNP]Li(OEt₂) with thermal ellipsoids drawn at the 35% probability level.

Table 3. Comparison of Selected Bond Distances (Å) and Angles (deg) for the Amido Phosphine Complexes of Lithium

compound	[Cy-PNP]Li(OEt ₂)	[Ph-PNP]Li(THF)2 ^a
Li-N	1.979(3)	2.039(5)
Li-P	2.578(3), 2.502(3)	2.779(5), 2.824(5)
Li-O	1.979(3)	1.955(5), 1.969(5)
N-Li-P	83.50(12), 79.06(11)	73.35(15), 73.09(15)
P-Li-P	139.30(13)	146.01(18)
P-Li-O	109.17(15), 108.91(14)	105.4(2), 95.26(18),
		106.85(19), 94.92(18)
N-Li-O	136.04(19)	118.0(2), 139.7(3)
O-Li-O		102.3(2)

^a Data selected from ref 21.

Emerald crystals of [Ph-PNP]NiCl suitable for X-ray diffraction analyses were grown from a concentrated benzene solution at room temperature, while those of ['Pr-PNP]NiCl were obtained from an ethereal solution at -35 °C. Figure 3 depicts the solid-state structures of these chloride complexes. As summarized in Tables 4 and 5, the bond distances and angles involving nickel in these molecules are all similar to each other. These parameters are all well within the expected values.^{19,23,43} As anticipated, the nickel center in these complexes lies perfectly on the square plane defined by the four donor atoms with the chloride ligand being trans to the amido nitrogen atom. The two *o*-phenylene rings in these molecules are all tilted with respect to the coordination plane due to the steric repulsion between the two CH groups ortho to the amido nitrogen atom. These structures are reminiscent of those of [Ph-PNP]PdCl⁴⁴ and [Ph-PNP]PtCl.⁴⁵ Consistent with the ionic sizes of divalent group 10 metals, the P–M–P angle decreases on going from [Ph-PNP]NiCl (171.72(4)°) to [Ph-PNP]PdCl (165.27(11)°) and [Ph-PNP]PtCl (167.30(8)°).

Treatment of green [R-PNP]NiCl with a variety of Grignard reagents produced a series of red, diamagnetic nickel alkyl and aryl complexes in high isolated yield. Of particular interest is the preparation of those containing β -hydrogen atoms, as analogous compounds have not been reported for the closely related [N(SiMe₂CH₂PR₂)₂]^{-,23} [o-(2,6-Me₂C₆H₃N)C₆H₄PPh₂]^{-,19} and $[o-(2,6-iPr_2C_6H_3N)C_6H_4PPh_2]^-$ systems.^{19,22} In general, the metathetical reactions were completed in ca. 2 h to afford cleanly the desired products as indicated by solution ${}^{1}H$ and ${}^{31}P{}^{1}H$ NMR spectroscopy. As anticipated, the H_{α} and C_{α} atoms in these hydrocarbyl complexes are observed as a triplet resonance in the ¹H and ¹³C{¹H} NMR spectra. Similar to those found in [R-PNP]NiCl, the o-phenylene carbon atoms in [R-PNP]NiR' appear as virtual triplet resonances, suggestive of a meridional coordination mode for the amido pincer ligands in these squareplanar molecules.42

The solid-state structures of these hydrocarbyl complexes were investigated by X-ray crystallography. Figures 4–6 illustrate the molecular structures of [R-PNP]NiMe (R = Ph, ⁱPr, Cy), [R–PNP]Ni(*n*-Bu) (R = Ph, ⁱPr), and [Ph-PNP]NiCH₂-SiMe₃, respectively. These structures resemble each other closely. The nickel center in each molecule adopts a squareplanar geometry, a result that is in good agreement with that concluded by solution NMR studies. Although the bond distances and angles are all within the expected values, we note that crystallographically characterized, mononuclear nickel complexes of acyclic alkyls that contain β -hydrogen atoms are extremely rare.⁴⁶

The thermal stability of these nickel complexes is remarkable. These compounds are in general thermally stable at elevated temperatures. Of particular note are the β -hydrogen-containing alkyl derivatives. For instance, no decomposition was observed when a benzene solution of ['Pr-PNP]Ni(*n*-Bu) (6 mM) or [Cy-

Figure 3. Molecular structures of (a) [Ph-PNP]NiCl and (b) [Pr-PNP]NiCl with thermal ellipsoids drawn at the 35% probability level.

Scheme 3. Preparation of Nickel Complexes

 $[R-PNP]Li(solv)_n \xrightarrow{NiCl_2(DME)} [R-PNP]NiCl \xrightarrow{R'MgCl} [R-PNP]NiR'$

R = Ph, R' = Me, Et, *n*-Bu, *i*-Bu, *n*-hexyl, CH₂SiMe₃, Ph R = i Pr, R' = Me, Et, *n*-Bu R = Cy, R' = Me, Et, *n*-Bu

Table 4. Selected Bond Distances (Å) for the Amido Pincer Complexes of Nickel

		-		
compound	Ni-N	Ni-X ^a	Ni-P	
[Ph-PNP]NiCl	1.895(3)	2.1636(11)	2.1737(9), 2.1879(8)	
[Ph-PNP]NiBr	1.912(5)	2.2984(10)	2.1830(12), 2.1830(12)	
[Ph-PNP]NiMe	1.967(8)	1.967(11)	2.1776(13), 2.1776(13)	
[Ph-PNP]Ni(n-Bu)	1.966(2)	1.971(3)	2.1655(8), 2.1811(8)	
[Ph-PNP]NiCH ₂ SiMe ₃ ^b	1.966(5)	1.944(7)	2.191(2), 2.154(2)	
[ⁱ Pr-PNP]NiCl	1.9030(17)	2.1834(6)	2.1884(6), 2.1913(6)	
[ⁱ Pr-PNP]NiMe	1.945(3)	1.965(4)	2.1557(12), 2.1797(12)	
[^{<i>i</i>} Pr-PNP]Ni(<i>n</i> -Bu)	1.953(3)	1.963(3)	2.1576(9), 2.1966(9)	
[Cy-PNP]NiMe	1.947(5)	1.995(7)	2.1677(10), 2.1677(10)	

^a X represents a halide or α-carbon atom. ^b The data summarized represent one of the two independent molecules found in the asymmetric unit cell.

Table 5. Selected Bond Angles (deg) for the Amido Pincer Complexes of Nickel

compound	N-Ni-P	P-Ni-P	P-Ni-X ^a	N-Ni-X ^a
[Ph-PNP]NiCl	85.47(7), 86.27(7)	171.72(4)	93.18(4), 95.06(4),	177.88(8)
[Ph-PNP]NiBr	85.14(4), 85.14(4)	170.28(7)	94.86(4), 94.86(4)	180.000(1)
[Ph-PNP]NiMe	84.53(5), 84.53(5)	169.05(9)	95.47(5), 95.47(5)	180.0
[Ph-PNP]Ni(n-Bu)	82.84(7), 84.99(7),	163.76(3)	96.45(11), 96.46(11)	175.76(12)
[Ph-PNP]NiCH2SiMe3 ^b	83.1(2), 84.5(2)	167.51(8)	99.7(2), 92.8(2)	170.6(3)
[ⁱ Pr-PNP]NiCl	85.73(6), 84.92(5)	168.81(2)	93.99(2), 95.74(2)	176.24(6)
[^{<i>i</i>} Pr-PNP]NiMe	85.97(10), 84.18(10)	166.68(5)	93.81(14), 96.93(15)	173.90(19)
[^{<i>i</i>} Pr-PNP]Ni(<i>n</i> -Bu)	85.58(8), 84.99(8)	168.83(4)	92.86(11), 97.17(11)	173.55(13)
[Cy-PNP]NiMe	85.14(3), 85.14(3)	170.29(7)	94.86(3), 94.86(3)	180.0

^a X represents a halide or α-carbon atom. ^b The data summarized represent one of the two independent molecules found in the asymmetric unit cell.

Figure 4. Molecular structures of (a) [Ph-PNP]NiMe, (b) [Pr-PNP]NiMe, and (c) [Cy-PNP]NiMe with thermal ellipsoids drawn at the 35% probability level.

Figure 5. Molecular structures of (a) [Ph-PNP]Ni(*n*-Bu) and (b) [^{*i*}Pr-PNP]Ni(*n*-Bu) with thermal ellipsoids drawn at the 35% probability level.

PNP]Ni(*n*-Bu) (12 mM) was heated to 80 °C for >3 days, as indicated by ³¹P{¹H} NMR spectroscopy. Attempts to probe whether reversible β -hydrogen elimination occurs at high

temperatures were not successful. Heating a benzene solution of ['Pr-PNP]Ni(*n*-Bu) (36 mM) or [Ph-PNP]Ni(*n*-Bu) (21 mM) in the presence of an excess amount of 1-hexene at 100 °C for 1 day did not lead to formation of any new compounds, in particular ['Pr-PNP]Ni(*n*-hexyl) and [Ph-PNP]Ni(*n*-hexyl), re-

⁽⁴²⁾ Crabtree, R. H. *The Organometallic Chemistry of the Transition Metals*, 4th ed.; Wiley-Interscience: Hoboken, 2005; pp 276–277.
(43) Peters, J. C.; Harkins, S. B.; Brown, S. D.; Day, M. W. *Inorg. Chem.*

²⁰⁰¹, 40, 5083–5091.

⁽⁴⁴⁾ Huang, M.-H.; Liang, L.-C. Organometallics 2004, 23, 2813-2816.

⁽⁴⁵⁾ Liang, L.-C.; Lin, J.-M.; Lee, W.-Y. Chem. Commun. 2005, 2462–2464.

Figure 6. Molecular structure of $[Ph-PNP]NiCH_2SiMe_3$ with thermal ellipsoids drawn at the 35% probability level. The asymmetric unit cell contains two independent molecules; only one is shown for clarity.

Scheme 4. Reactions of Nickel Hydrocarbyl Complexes with Halogenated Hydrocarbons

[R-PNP]NiR' <u>halogenated hydrocarbons</u> [R-PNP]NiX X = Cl _____

spectively, as evidenced by ¹H NMR and ³¹P{¹H} NMR spectra. Interestingly, the insertion reaction of 1-hexene with [Ph-PNP]-NiH, prepared in situ from the reaction of H[Ph-PNP] with Ni-(COD)₂ in benzene,⁴⁷ occurs readily even at room temperature to produce [Ph-PNP]Ni(*n*-hexyl) quantitatively. On the basis of these results and the principle of microscopic reversibility of β elimination and olefin insertion, we conclude that the β elimination of [R-PNP]NiCH₂CHR'R" species is uphill thermodynamically, at least for [Ph-PNP]⁻ derivatives.

Reactivity Studies of Nickel Complexes. In general, no reaction was observed for the hydrocarbyl complexes at room temperature with a variety of protic or unsaturated molecules such as water, benzyl alcohol, piperidine, acetone, acetophenone, and trimethylsilylacetylene. These compounds, however, reacted with halogenated hydrocarbons to give corresponding nickel halide complexes (Scheme 4). For instance, the reaction of [Ph-PNP]NiMe with 1 equiv of benzyl bromide in toluene at 100 °C produced tan crystals of [Ph-PNP]NiBr in high yield. Analogous reactions with an excess amount of dichloromethane or benzyl chloride afforded [Ph-PNP]NiCl quantitatively. Treatment of [Ph-PNP]NiMe with chlorobenzene or bromobenzene led to slow but clean formation of [Ph-PNP]NiX (X = Cl, 16% conversion; Br, 86% conversion), whereas the reaction of [Ph-PNP]NiMe with iodobenzene proceeded much faster (100% conversion) to generate a mixture of [Ph-PNP]NiI (80%) and [Ph-PNP]NiPh (20%). We note that the relative reaction rates of [Ph-PNP]NiMe with PhX are consistent with the anticipated reactivity of the aryl halides. The identity of both [Ph-PNP]-NiBr and [Ph-PNP]NiI was further confirmed by independent preparation of these molecules from the reactions of [Ph-PNP]-

Figure 7. Molecular structure of [Ph-PNP]NiBr with thermal ellipsoids drawn at the 35% probability level. The asymmetric unit cell contains two benzene molecules, which are omitted for clarity.

Scheme 5.	Interconversion between [R-P] [R-PNP]NiR'	NP]NiX and
	Grignard reagent R'MgX	
	halogenated hydrocarbons R"X	ואין אוא

NiCl with NaBr and NaI, respectively. Figure 7 depicts the X-ray structure of [Ph-PNP]NiBr.

It is interesting to note that both [R-PNP]NiX and [R-PNP]-NiR' can be interconverted to each other in the presence of Grignard reagents and halogenated hydrocarbons, respectively (Scheme 5). Of particular note is the activation of the C_{sp3} -X and $C_{sp2}-X$ (X = Cl, Br, I) bonds promoted by these nickel hydrocarbyl complexes. It thus seems promising that the crosscoupling reactions of Grignard reagents with halogenated hydrocarbons, generally referred to as the Kumada reactions,⁴⁸ can be catalyzed by these amido pincer complexes of nickel. As summarized in Table 6, both aryl (entries 1-3) and alkyl (entries 4-9) Griganrd reagents are successfully coupled with phenyl halides in the presence of a catalytic amount of [R-PNP]-NiCl. As anticipated, the catalysis is compatible with alkyl nucleophiles bearing β -hydrogen atoms (entries 4–9), although the reaction conversion and selectivity are relatively unsatisfied. Nevertheless, the successful Kumada couplings of β -hydrogencontaining alkyl groups described herein are remarkable, as preceding examples are rare.^{7,9} The formation of the undesired biphenyl product is suggestive of the presence of an [R-PNP]-NiPh intermediate during catalysis, consistent with what we observed in the reaction of [Ph-PNP]NiMe with iodobenzene (vide supra). Although the mechanism is not clear at this stage, the discrepancy for the formation of the undesired [R-PNP]NiPh intermediate in the catalytic reactions involving alkyl rather than aryl Grignard reagents is consistent with the relatively higher inherent reactivity of Ni-alkyl than Ni-aryl with respect to phenyl halides. Attempts to employ decyl halides as electrophiles for Kumada reactions led to insignificant results (ca. 10% yield). As the reactivity of [Ph-PNP]NiCl, [Pr-PNP]NiCl, and [Cy-PNP]NiCl seems comparable to each other under the conditions employed, it is likely that the rate-determining step in this process is not aryl halide oxidative addition,49 which would lead instead to a notably higher reactivity for cyclohexyl derivatives. It is also possible that, however, the catalysis described herein may not involve oxidative addition at all. A similar conclusion

⁽⁴⁶⁾ We note that only five examples are available from the Cambridge Structural Database; see: (a) Cotton, F. A.; Frenz, B. A.; Hunter, D. L. J. Am. Chem. Soc. **1974**, 96, 4820–4825. (b) Hoberg, H.; Gotz, V.; Kruger, C. J. Organomet. Chem. **1979**, 169, 219–224. (c) Conroy-Lewis, F. M.; Mole, L.; Redhouse, A. D.; Litster, S. A.; Spencer, J. L. Chem. Commun. **1991**, 1601–1603. (d) Wiencko, H. L.; Kogut, E.; Warren, T. H. Inorg. Chim. Acta **2003**, 345, 199–208. (e) Kogut, E.; Zeller, A.; Warren, T. H.; Strassner, T. J. Am. Chem. Soc. **2004**, 126, 11984–11994.

⁽⁴⁷⁾ Attempts to isolate [Ph-PNP]NiH by this route were not successful. ${}^{31}P{}^{1}H}$ NMR for [Ph-PNP]NiH in C₆D₆: δ 33.

⁽⁴⁸⁾ Metal-Catalyzed Cross-Coupling Reactions; Diederich, F., Stang, P. J., Ed.; Wiley-VCH: Weinheim, 1998.

⁽⁴⁹⁾ Portnoy, M.; Milstein, D. Organometallics 1993, 12, 1665-1673.

Table 6. Catalytic Kumada Reactions of Grignard Reagents with Aryl Halides^a

1 mol% [R-PNP]NiCl

$R'MgCl + X \longrightarrow 1 \mod (R-PNP]NiCl + R' \longrightarrow A + X \longrightarrow A$									
								yield	$(\%)^{b}$
entry	R	R′	Х	solvent	temp (°C)	<i>t</i> (h)	conversion $(\%)^b$	А	В
1	Ph	4-tolyl ^c	Ι	toluene	25	12	92	100	0
2	ⁱ Pr	4-tolyl ^c	Ι	toluene	25	39	85	100	0
3	Су	4-tolyl ^c	Ι	toluene	25	39	55	100	0
4	Ph	Et	Ι	THF	60	12	89	59	41
5	ⁱ Pr	Et	Ι	THF	60	12	55	60	40
6	Су	Et	Ι	THF	60	12	42	33	67
7	Ph	<i>n</i> -Bu	Br	THF	60	12	97	44	56
8	ⁱ Pr	<i>n</i> -Bu	Br	THF	60	12	57	46	54
9	Су	<i>n</i> -Bu	Br	THF	60	12	47	56	44

^a Reaction conditions: 1.0 equiv of aryl halide, 1.1 equiv of Grignard reagent, 2 mL of solvent. Reaction times have not been minimized. ^b Determined by GC, based on aryl halides; average of two runs. ^c 4-Tolylmagnesium bromide was used.

has also been deduced for [Ph-PNP]PdCl-catalyzed Heck olefination⁴⁴ and $\{[o-(2,6-iPr_2C_6H_3N)C_6H_4PPh_2]PdCl\}_2$ - and [o-(2,6-Pr₂C₆H₃N)C₆H₄PPh₂]PdCl(PCy₃)-catalyzed Suzuki coupling reactions.²⁰

Conclusions

In summary, we have prepared a series of lithium and divalent nickel complexes of amido pincer ligands $[R-PNP]^-$ (R = Ph, ⁱPr, Cy) and established their structural characterization by means of solution NMR spectroscopy and X-ray crystallography. The coordination number and geometry of the lithium compounds apparently depend on the characteristics of substituents at the phosphorus donors of these pincer ligands. In contrast, the nickel complexes consistently adopt a square planar geometry. The isolation of nickel alkyl complexes that contain β -hydrogen atoms is intriguing as compared to the closely related [N(SiMe₂CH₂PR₂)₂]⁻ system.²³ Particularly remarkable is the thermal stability of these β -hydrogen-containing alkyl complexes at elevated temperatures. Consistent with the reactivity studies of the nickel halide and nickel alkyl complexes with Grignard reagents and halogenated hydrocarbons, respectively, the nickel halide complexes of [R-PNP]⁻ are all active catalyst precursors for Kumada coupling reactions.

Experimental Section

General Procedures. Unless otherwise specified, all experiments were performed under nitrogen using standard Schlenk or glovebox techniques. All solvents were reagent grade or better and purified by standard methods. The NMR spectra were recorded on Varian instruments. Chemical shifts (δ) are listed as parts per million downfield from tetramethylsilane and coupling constants (J) in hertz. ¹H NMR spectra are referenced using the residual solvent peak at δ 7.16 for C₆D₆ and δ 2.09 for toluene-d₈ (the most upfield resonance). ¹³C NMR spectra are referenced using the residual solvent peak at δ 128.39 for C₆D₆. The assignment of the carbon atoms for all new compounds is based on the DEPT $^{13}\mbox{C}$ NMR spectroscopy. ³¹P and ⁷Li NMR spectra are referenced externally using 85% H₃PO₄ at δ 0, and LiCl in D₂O at δ 0, respectively. Routine coupling constants are not listed. All NMR spectra were recorded at room temperature in specified solvents unless otherwise noted. Elemental analysis was performed on a Heraeus CHN-O Rapid analyzer.

Materials. Compounds NiCl₂(DME),⁴¹ [Ph-PNP]Li(THF)₂,²¹ and [Ph-PNP]NiR' (R' = Me, Et, *n*-Bu, *i*-Bu, CH₂SiMe₃, Ph)²¹ were prepared according to the procedures reported previously. All other chemicals were obtained from commercial vendors and used as received.

X-ray Crystallography. Table 2 summarizes the crystallographic data for all structurally characterized compounds. Crystals of [Ph-PNP]NiMe suitable for X-ray diffraction analysis were grown from a concentrated toluene solution at -35 °C, while those of [Ph-PNP]Ni(n-Bu) and [Ph-PNP]NiCH2SiMe3 were grown by slow evaporation of a concentrated benzene solution at room temperature. Data were collected on a Bruker-Nonius Kappa CCD or a Bruker AXS SMART APEX CCD diffractometer with graphite-monochromated Mo K α radiation ($\lambda = 0.7107$ Å). Structures were solved by direct methods and refined by full matrix least squares procedures against F^2 using the maXus or WinGX crystallographic software package. All full-weight non-hydrogen atoms were refined anisotropically. Hydrogen atoms were placed in calculated positions.

Synthesis of Di(2-fluorophenyl)amine. A Schlenk flask was charged with 2-fluoroaniline (5.55 g, 50 mmol), 1-bromo-2fluorobenzene (8.75 g, 50 mmol), Pd(OAc)₂ (0.020 g, 0.089 mmol, 0.5% equiv), DPEPhos (0.216 g, 0.401 mmol, 0.75% equiv), NaO'Bu (7.185 g, 74.84 mmol, 1.4 equiv), and toluene (45 mL) under nitrogen. The reaction mixture was heated to reflux with stirring. The reaction was monitored by GC, which showed complete formation of the desired product in 1 day. After being cooled to room temperature, the reaction was quenched with deionized water (45 mL). The organic portion was separated from the aqueous layer, which was further extracted with toluene (10 mL \times 2). The combined organic solution was dried over MgSO₄ and filtered. All volatiles were removed in vacuo to yield a red oil, which was directly used for the subsequent reaction; yield 9.38 g (91.4%). ¹H NMR (CDCl₃, 500 MHz): δ 7.42 (m, 2, Ar), 7.25 (m, 2, Ar), 7.20 (m, 2, Ar), 7.04 (m, 2, Ar), 6.03 (br s, 1, NH). ¹⁹F NMR (CDCl₃, 470.5 MHz): δ -133.07. ¹³C{¹H} NMR (CDCl₃, 125 MHz): δ 153.45 (t, $J_{CF} = 241$, *C*F), 130.45 (t, $J_{CF} = 11.75$, CN), 124.14 (t, $J_{CF} = 3.63$, CH), 121.38 (t, $J_{CF} = 7.25$, CH), 117.98 (s, CH), 115.45 (t, $J_{CF} = 19.00$, CH). LR-MS (EI): calcd for $C_{12}H_9F_2N$ m/z 205, found m/z 205. Anal. Calcd for $C_{12}H_9F_2N$: C, 70.24; H, 4.42; N, 6.83. Found: C, 70.13; H, 4.52; N 6.69.

Synthesis of Di(2-bromophenyl)amine. A Schlenk flask was charged with 2-bromoaniline (5.26 g, 30.58 mmol), 1-bromo-2iodobenzene (8.65 g, 30.58 mmol), Pd(OAc)₂ (0.034 g, 0.15 mmol, 0.5% equiv), DPEPhos (0.123 g, 0.23 mmol, 0.75% equiv), NaO'Bu (4.11 g, 42.81 mmol, 1.4 equiv), and toluene (20 mL) under nitrogen. In the absence of light, the reaction mixture was heated to reflux with stirring. The reaction was monitored by GC-MS, which showed quantitative formation of the desired product in 15 h. After being cooled to room temperature, the reaction mixture was evaporated to dryness under reduced pressure. The solid residue was dissolved in deionized water (30 mL) and CH₂Cl₂ (60 mL). The organic portion was separated from the aqueous layer, which was further extracted with dichloromethane (40 mL \times 2). The combined organic solution was dried over MgSO4 and filtered. The solvent was removed in vacuo to yield a dark brown oil, which was subjected to flash column chromatography on neutral Al₂O₃ using Et₂O as the eluant. The first band (pale yellow) was collected and solvent was removed in vacuo, affording the product as pale yellow oil; yield 9.21 g (92%). ¹H NMR (CDCl₃, 500 MHz): δ 7.59 (dd, 2, Ar), 7.30 (dd, 2, Ar), 7.22 (td, 2, Ar), 6.85 (td, 2, Ar), 6.48 (br s, 1, NH). ¹³C{¹H} NMR (CDCl₃, 125.70 MHz): δ 139.87 (s, C), 133.13 (s, CH), 128.00 (s, CH), 122.44 (s, CH), 117.82 (s, CH), 114.16 (s, C). HRMS (EI): Calcd for C₁₂H₉Br₂N *m/z* 324.9102, found *m/z* 324.9101. Anal. Calcd for C₁₂H₉Br₂N: C, 44.07; H, 2.77; N, 4.28. Found: C, 44.21; H, 2.80; N, 4.27.

Synthesis of Bis(2-diphenylphosphinophenyl)amine (H[Ph-PNP]). Method 1. A 100 mL Schlenk flask equipped with a condenser was flashed with nitrogen thoroughly. To this flask was added KPPh₂ (20 mL, 0.5 M in THF solution, 10 mmol). THF was removed in vacuo, and a solution of di(2-fluorophenyl)amine (1.00 g, 4.88 mmol) in 1,4-dioxane (8 mL) was added with a syringe. The transparent, ruby reaction solution was heated to reflux with stirring. The reaction condition was monitored by ³¹P{¹H} NMR spectroscopy, which revealed the completion of reaction in 2 days. The resulting yellow solution was evaporated to dryness in vacuo. The residue was treated with degassed deionized water (50 mL), and the product was extracted with deoxygenated dichloromethane (15 mL). The dichloromethane solution was separated from the aqueous layer, from which the product was further extracted with dichloromethane (15 mL \times 3). The combined organic solution was dried over MgSO4 and filtered. All volatiles were removed in vacuo to yield the product as a pale yellow crystalline solid; yield 2.1 g (80%). Method 2. n-BuLi (2.5 mL, 1.6 M in hexane, 4.0 mmol, 3 equiv) was added dropwise to a solution of di(2-bromophenyl)amine (440 mg, 1.35 mmol) in diethyl ether (15 mL) at -35 °C. The reaction solution was naturally warmed to room temperature and stirred for 1 h, providing a pale yellow solution along with a significant amount of off-white precipitate. The reaction mixture was cooled to -35 °C again, and chlorodiphenylphosphine (0.5 mL, 2.69 mmol, 2 equiv) was added dropwise. The reaction mixture was stirred at room temperature for 18 h. The reaction was quenched with 2-propanol (0.2 mL) and filtered through a pad of Celite, which was further washed with diethyl ether (4 mL). The combined diethyl ether solution was evaporated to dryness under reduced pressure to afford a pale yellow oil. The oil was dissolved in a mixture of CH₂Cl₂ (2 mL) and pentane (5 mL) and cooled to -35 °C, affording the product as an off-white solid; yield 450 mg (62%, 2 crops). ¹H NMR (CDCl₃, 300 MHz): δ 7.10–7.23 (m, 24, Ar), 6.69–6.76 (m, 5, Ar and NH). ${}^{31}P{}^{1}H$ NMR (CDCl₃, 121.5 MHz): δ -19.58. ³¹P{¹H} NMR (C₆D₆, 121.5 MHz): δ –18.62. ³¹P{¹H} NMR (Et₂O, 121.5 MHz): δ -18.62. ¹³C{¹H} NMR (CDCl₃, 75 MHz): δ 146.51 (d, $J_{CP} = 21.1$), 135.78 (d, $J_{CP} = 8.0$), 134.14 (s), 133.72 (d, $J_{CP} = 21.1$), 129.64 (s), 128.53 (d, $J_{CP} = 12.0$), 128.46 (d, J_{CP} = 7.5), 126.34 (d, J_{CP} = 10.1), 121.51 (s), 118.16 (s). Anal. Calcd for C36H29NP2: C, 80.43; H, 5.44; N, 2.61. Found: C, 80.04; H, 5.56; N, 2.69.

Synthesis of Bis(2-diisopropylphosphinophenyl)amine (H['Pr-PNP]). *n*-BuLi (2.9 mL, 1.6 M in hexane, 4.68 mmol, 3 equiv) was added dropwise to a solution of di(2-bromophenyl)amine (510 mg, 1.56 mmol) in diethyl ether (13 mL) at -35 °C. The reaction solution was naturally warmed to room temperature and stirred for 1 h, providing a pale yellow solution along with a significant amount of off-white precipitate. The reaction mixture was cooled to -35°C again, and chlorodiisopropylphosphine (0.5 mL, 3.12 mmol, 2 equiv) was added dropwise. The reaction mixture was stirred at room temperature for 16 h. Degassed deionized water (10 mL) and diethyl ether (10 mL) were added. The diethyl ether portion was separated from the aqueous solution, which was further extracted with diethyl ether (5 mL \times 2). The diethyl ether solutions were combined, dried over MgSO₄, and evaporated to dryness under reduced pressure to afford a yellow oil. The yellow oil was dissolved in degassed ethanol (1 mL) and cooled to -40 °C to give the product as an off-white crystalline solid; yield 344 mg (55%). ¹H NMR (C₆D₆, 500 MHz): δ 8.48 (t, 1, $J_{\rm HP}$ = 8.3, NH), 7.41 (d, 2, Ar), 7.26 (d, 2, Ar), 7.06 (t, 2, Ar), 6.82 (t, 2, Ar), 1.97 (m, 4, CHMe₂), 1.09 (dd, 12, CHMe₂), 0.93 (dd, 12, CHMe₂). ³¹P{¹H} NMR (Et₂O, 80.95 MHz): δ -11.86. ³¹P{¹H} NMR (THF, 80.95 MHz): δ -12.07. ³¹P{¹H} NMR (toluene, 80.95 MHz): δ -13.07. ³¹P{¹H} NMR (C₆D₆, 202.31 MHz): δ -13.31.¹³C{¹H} NMR (C₆D₆, 125.70 MHz): δ 149.55 (d, $J_{\rm CP}$ = 20.1, C), 134.14 (s, CH), 130.14 (s, CH), 123.79 (d, $J_{\rm CP}$ = 16.6, C), 120.74 (s, CH), 117.36 (s, CH), 23.73 (d, $J_{\rm CP}$ = 11.1, CHMe₂), 20.70 (d, $J_{\rm CP}$ = 19.4, CHMe₂), 19.44 (d, $J_{\rm CP}$ = 9.2, CHMe₂). Anal. Calcd for C₂₄H₃₇-NP₂: C, 71.79; H, 9.29; N, 3.49. Found: C, 71.50; H, 9.15; N, 3.56.

Synthesis of Bis(2-dicyclohexylphosphinophenyl)amine (H[Cy-PNP]). n-BuLi (5.8 mL, 1.6 M in hexane, 9.3 mmol, 3 equiv) was added dropwise to a solution of di(2-bromophenyl)amine (1.0 g, 3.1 mmol) in diethyl ether (30 mL) at -35 °C. The reaction solution was naturally warmed to room temperature and stirred for 1 h, providing a pale yellow solution along with a significant amount of off-white precipitate. The reaction mixture was cooled to -35°C again, and a diethyl ether solution (3 mL) of chlorodiisopropylphosphine (933 mg, 6.1 mmol, 2 equiv) was added dropwise. The reaction mixture was stirred at room temperature for 16 h and evaporated to dryness under reduced pressure to give an orange viscous oil. Degassed deionized water (30 mL) and dichloromethane (50 mL) were added. The dichloromethane portion was separated from the aqueous solution, which was further extracted with dichloromethane (20 mL \times 2). The dichloromethane solutions were combined, dried over MgSO₄, and evaporated to dryness under reduced pressure to afford a white cloudy oil. Pentane (5 mL) was added. The solution was vigorously stirred at room temperature to give the product as an off-white solid, which was isolated by decantation of the solution and dried in vacuo; yield 1.32 g (77%). ¹H NMR (C₆D₆, 500 MHz): δ 8.51 (t, 1, J_{HP} = 7.3, NH), 7.48 (dd, 2, Ar), 7.40 (d, 2, Ar), 7.09 (td, 2, Ar), 6.85 (td, 2, Ar), 2.00 (m, 8, Cy), 1.70 (t, 8, Cy), 1.60 (d, 4, Cy), 1.53 (d, 4, Cy), 1.36 (qt, 4, Cy), 1.23 (m, 8, Cy), 1.15 (dt, 4, Cy), 1.07 (tt, 4, Cy). ³¹P-{¹H} NMR (THF, 80.95 MHz): δ -19.56. ³¹P{¹H} NMR (toluene, 80.95 MHz): δ -20.86. ³¹P{¹H} NMR (Et₂O, 80.95 MHz): δ -20.62. ³¹P{¹H} NMR (C₆D₆, 202.31 MHz): δ -22.04 ($\Delta v_{1/2} =$ 491 Hz). ¹³C{¹H} NMR (C₆D₆, 125.70 MHz): δ 149.75 (d, J_{CP} = 19.2, C), 134.68 (s, CH), 130.13 (s, CH), 123.76 (d, $J_{CP} = 16.2$, C), 120.78 (s, CH), 117.46 (s, CH), 33.96 (d, $J_{CP} = 11.4$, CH), 31.31 (d, $J_{CP} = 17.4$, CH₂), 29.72 (d, $J_{CP} = 8.2$, CH₂), 27.86 (d, $J_{\rm CP} = 10.4$, CH₂), 27.67 (d, $J_{\rm CP} = 7.4$, CH₂), 27.10 (s, CH₂). Anal. Calcd for C₃₆H₅₃NP₂: C, 76.97; H, 9.51; N, 2.49. Found: C, 77.43; H, 9.69; N, 2.06.

Synthesis of [Pr-PNP]Li(THF). Solid H[Pr-PNP] (69 mg, 0.17 mmol) was dissolved in THF (3 mL) and cooled to -35 °C. To this was added *n*-BuLi (0.11 mL, 1.6 M in hexane, 0.17 mmol) dropwise. The reaction solution was stirred at room temperature for 1 h and evaporated to dryness under reduced pressure to give an orange-yellow oil. Pentane (2 mL) was added and evaporated in vacuo, affording the product as a yellow oil; yield 80 mg (97%). ¹H NMR (C₆D₆, 500 MHz): δ 7.53 (t, 2, Ar), 7.16 (td, 2, Ar), 7.11 (td, 2, Ar), 6.60 (t, 2, Ar), 3.40 (t, 4, OCH₂CH₂), 1.99 (m, 4, CHMe₂), 1.25 (t, 4, OCH₂CH₂), 1.12 (dd, 12, CHMe₂), 1.05 (dd, 12, CHMe₂). ¹H NMR (toluene- d_8 , 500 MHz): δ 7.51 (t, 2, Ar), 7.09 (m, 4, Ar), 6.57 (t, 2, Ar), 3.40 (t, 4, OCH₂CH₂), 1.97 (m, 4, CHMe₂), 1.27 (t, 4, OCH₂CH₂), 1.11 (dd, 12, CHMe₂), 1.03 (dd, 12, CHMe₂). ³¹P{¹H} NMR (THF, 80.95 MHz): δ -7.95. ³¹P-{¹H} NMR (Et₂O, 80.95 MHz): δ -4.66. ³¹P{¹H} NMR (C₆D₆, 202.31 MHz): δ -4.43 ($\Delta v_{1/2}$ = 59 Hz). ³¹P{¹H} NMR (toluene d_8 , 202.31 MHz): δ -3.95 (1:1:1:1 q, ${}^1J_{\text{LiP}}$ = 46.15 Hz). ${}^7\text{Li}{}^1\text{H}$ NMR (C₆D₆, 194.20 MHz): δ 2.48 ($\Delta v_{1/2} = 53$ Hz). ⁷Li{¹H} NMR (toluene- d_8 , 194.20 MHz): δ 2.32 (t, ${}^{1}J_{\text{LiP}} = 46.15$ Hz). ${}^{13}C{}^{1}H$

NMR (C_6D_6 , 125.70 MHz): δ 163.71 (br s, C), 133.25 (s, CH), 130.85 (s, CH), 120.75 (br s, C), 117.51 (br s, CH), 114.46 (s, CH), 68.61 (s, OCH₂CH₂), 25.73 (s, OCH₂CH₂), 23.26 (br s, CHMe₂), 20.66 (d, $J_{CP} = 13.7$, CHMe₂), 20.10 (d, $J_{CP} = 8.7$, CHMe₂).

Synthesis of [Pr-PNP]Li(OEt2). Solid H[Pr-PNP] (90 mg, 0.22 mmol) was dissolved in diethyl ether (3 mL) and cooled to -35°C. To this was added n-BuLi (0.14 mL, 1.6 M in hexane, 0.22 mmol) dropwise. The reaction solution was naturally warmed to room temperature with stirring for 10 min, evaporated to dryness under reduced pressure, and triturated with pentane (2 mL) to afford the product as a yellow oil; yield 100 mg (93%). ¹H NMR (C₆D₆, 500 MHz): δ 7.61 (t, 2, Ar), 7.17 (m, 4, Ar), 6.65 (t, 2, Ar), 3.09 (q, 4, OCH₂CH₃), 1.99 (m, 4, CHMe₂), 1.11 (dd, 12, CHMe₂), 1.04 (dd, 12, CHMe₂), 0.93 (t, 6, OCH₂CH₃). ¹H NMR (toluene-d₈, 500 MHz): δ 7.50 (dd, 2, Ar), 7.08 (m, 4, Ar), 6.57 (t, 2, Ar), 3.13 (q, 4, OCH₂CH₃), 1.95 (m, 4, CHMe₂), 1.10 (dd, 12, CHMe₂), 1.01 (dd, 12, CHMe₂), 0.95 (t, 6, OCH₂CH₃). ³¹P{¹H} NMR (C₆D₆, 202.31 MHz): δ -4.91 ($\Delta_{1/2}$ = 77 Hz). ³¹P{¹H} NMR (diethyl ether, 80.95 MHz): δ -5.03. ³¹P{¹H} NMR (toluene- d_8 , 202.31 MHz): δ -5.07 ($\Delta_{1/2}$ = 116 Hz). ⁷Li{¹H} NMR (C₆D₆, 194.2 MHz): δ 2.79 ($\Delta_{1/2}$ = 40 Hz). ⁷Li{¹H} NMR (toluene-*d*₈, 194.2 MHz): δ 2.52 ($\Delta_{1/2}$ = 49 Hz). ¹³C{¹H} NMR (C₆D₆, 125.70 MHz): δ 163.42 (d, J_{CP} = 19.23, C), 133.30 (d, J_{CP} = 1.89, CH), 131.02 (s, CH), 120.24 (d, $J_{CP} = 1.06$, C), 117.34 (br s, CH), 114.58 (s, CH), 66.71 (s, OCH_2CH_3), 23.12 (d, ${}^1J_{CP} = 14.20$, CHMe₂), 20.66 (d, ${}^{2}J_{CP} = 13.32$, CHMe₂), 20.17 (d, ${}^{2}J_{CP} = 8.67$, CHMe₂), 14.91 (s, OCH₂CH₃).

Synthesis of [Cy-PNP]Li(THF). Solid H[Cy-PNP] (128 mg, 0.228 mmol) was dissolved in THF (3 mL) and cooled to -35 °C. To this was added *n*-BuLi (0.14 mL, 1.6 M in hexane, 0.228 mmol) dropwise. The reaction solution was stirred at room temperature for 1 h and evaporated to dryness under reduced pressure to give a bright yellow solid, which was triturated with pentane (2 mL), affording the product as a yellow solid; yield 139 mg (95%). ¹H NMR (C_6D_6 , 500 MHz): δ 7.63 (t, 2, Ar), 7.26 (t, 2, Ar), 7.18 (t, 2, Ar), 6.66 (t, 2, Ar), 3.42 (t, 4, OCH₂CH₂), 1.93 (m, 12, Cy), 1.69 (t, 8, Cy), 1.61 (d, 4, Cy), 1.39 (q, 4, Cy), 1.23 (m, 16, Cy and OCH₂CH₂), 1.13 (t, 4, Cy). ¹H NMR (toluene-d₈, 500 MHz): δ 7.53 (dd, 2, Ar), 7.21 (m, 2, Ar), 7.12 (t, 2, Ar), 6.60 (t, 2, Ar), 3.46 (t, 4, OCH₂CH₂), 1.90 (m, 12, Cy), 1.70 (t, 8, Cy), 1.61 (d, 4, Cy), 1.35 (q, 4, Cy), 1.25 (m, 16, Cy and OCH₂CH₂), 1.13 (t, 4, Cy). ³¹P{¹H} NMR (THF, 80.95 MHz): δ -15.63. ³¹P{¹H} NMR (Et₂O, 80.95 MHz): δ -12.81. ³¹P{¹H} NMR (C₆D₆, 202.31 MHz): $\delta - 12.12$ (1:1:1:1 q, ${}^{1}J_{PLi} = 46.13$). ${}^{31}P{}^{1}H}$ NMR (toluene d_8 , 202.31 MHz): δ -12.20 (1:1:1:1 q, ${}^1J_{\text{LiP}} = 48.17$). ${}^7\text{Li}{}^1\text{H}$ NMR (C₆D₆, 194.20 MHz): δ 2.58 (t, ¹*J*_{LiP} = 46.13). ⁷Li{¹H} NMR (toluene- d_8 , 194.20 MHz): δ 2.41 (t, ${}^{1}J_{\text{LiP}} = 48.17$). ${}^{13}C{}^{1}H$ NMR (C₆D₆, 125.70 MHz): δ 163.42 (d, J_{CP} = 19.2, C), 133.18 (s, CH), 130.81 (s, CH), 120.15 (d, $J_{CP} = 10.6$, C), 117.12 (s, CH), 114.38 (s, CH), 68.75 (s, OCH_2CH_2), 33.39 (s, CH), 31.06 (d, $J_{CP} = 11.8$, CH₂), 30.35 (d, $J_{CP} = 7.8$, CH₂), 28.14 (d, $J_{CP} = 10.9$, CH₂), 28.03 (d, $J_{CP} = 9.1$, CH₂), 27.32 (s, CH₂), 25.71 (s, OCH₂CH₂). Anal. Calcd for C₄₀H₆₀LiNOP₂: C, 75.09; H, 9.45; N, 2.19. Found: C, 73.09; H, 9.22; N, 2.15. Satisfactory analysis could not be obtained due to moisture sensitivity of this compound.

Synthesis of [Cy-PNP]Li(OEt₂). Method 1. *n*-BuLi (2.13 mL, 1.6 M in hexane, 3.39 mmol, 3 equiv) was added dropwise to a solution of di(2-bromophenyl)amine (370 mg, 1.13 mmol) in diethyl ether (13 mL) at -35 °C. The reaction solution was naturally warmed to room temperature and stirred for 1 h, providing a pale yellow solution along with a significant amount of off-white precipitate. The reaction mixture was cooled to -35 °C again, and chlorodicyclohexylphosphine (0.5 mL, 2.26 mmol, 2 equiv) was added dropwise. The reaction mixture was stirred at room temperature for 16 h and filtered through a pad of Celite, which was further washed with diethyl ether (4 mL). The diethyl ether solution was

combined and evaporated to dryness under reduced pressure. The resulting oily residue was dissolved in pentane (1 mL) and cooled to -35 °C to afford the product as a yellow solid; yield 570 mg (79%, 2 crops). Method 2. n-BuLi (0.1 mL, 1.6 M in hexane, 0.16 mmol) was added dropwise to a solution of H[Cy-PNP] (90 mg, 0.16 mmol) in diethyl ether (3 mL) at -35 °C. The reaction solution was stirred at room temperature for 10 min, evaporated to dryness under reduced pressure, and triturated with pentane (2 mL) to afford the product as a yellow solid; yield 96 mg (94%). Yellow crystals suitable for X-ray diffraction analysis were grown by slow evaporation of a diethyl ether solution at room temperature. ¹H NMR (C₆D₆, 500 MHz): δ 7.62 (m, 2, Ar), 7.24 (m, 2, Ar), 7.17 (t, 2, Ar), 6.66 (t, 2, Ar), 3.17 (q, 4, OCH₂CH₃), 1.91 (m, 12, Cy), 1.70 (m, 8, Cy), 1.62 (d, 4, Cy), 1.36 (qt, 4, Cy), 1.24 (m, 12, Cy), 1.12 (q, 4, Cy), 1.02 (t, 6, OCH₂CH₃). ¹H NMR (toluene-d₈, 500 MHz): δ 7.46 (m, 2, Ar), 7.18 (m, 2, Ar), 7.10 (t, 2, Ar), 6.60 (t, 2, Ar), 3.18 (q, 4, OCH₂CH₃), 1.88 (m, 12, Cy), 1.66 (m, 12, Cy), 1.10-1.35 (m, 20, Cy), 0.98 (t, 6, OCH₂CH₃). ³¹P{¹H} NMR (diethyl ether, 80.95 MHz): $\delta - 13.29$. ³¹P{¹H} NMR (C₆D₆, 202.31 MHz): $\delta - 12.97$ (br s, $\Delta v_{1/2} = 127$ Hz). ³¹P{¹H} NMR (toluene d_8 , 202.31 MHz): δ -12.54 (br s, $\Delta v_{1/2}$ = 90 Hz). ⁷Li{¹H} NMR (C₆D₆, 194.20 MHz): δ 2.90 (br s, $\Delta v_{1/2} = 54$ Hz). ⁷Li{¹H} NMR (toluene- d_8 , 194.20 MHz): δ 3.00 (br s, $\Delta v_{1/2} = 49$ Hz). ¹³C{¹H} NMR (C₆D₆, 125.70 MHz): δ 163.58 (m, C), 133.34 (s, CH), 130.85 (s, CH), 120.00 (br s, C), 117.48 (br s, CH), 114.62 (s, CH), 66.70 (s, OCH₂CH₃), 33.57 (br s, PCH), 31.29 (d, J_{CP} = 11.94, CH₂), 30.43 (d, $J_{CP} = 7.29$, CH₂), 28.12 (d, $J_{CP} = 11.94$, CH₂), 28.03 (d, $J_{CP} = 10.94$, CH₂), 27.29 (s, CH₂), 15.16 (s, OCH₂CH₃). Anal. Calcd for C40H62LiNOP2: C, 74.85; H, 9.74; N, 2.18. Found: C, 73.03; H, 9.59; N, 2.10. Satisfactory analysis could not be obtained due to moisture sensitivity of this compound.

Synthesis of [Ph-PNP]NiCl. Method 1. Solid NiCl₂(DME) (172.7 mg, 0.785 mmol) was suspended in THF (10 mL) and cooled to -35 °C. A cold solution of [Ph-PNP]Li(THF)₂ (540 mg, 0.785 mmol) in THF (10 mL) at -35 °C was added dropwise to the suspension to result in gradual dissolution of solid NiCl₂(DME), and a homogeneous dark green solution formed. The reaction mixture was stirred at room temperature for 2 h. All volatiles were removed in vacuo. The solid residue was extracted with CH₂Cl₂ (20 mL). The green CH₂Cl₂ solution was filtered through a pad of Celite and evaporated to dryness, providing the product as a green solid, yield 464 mg (93.6%). Method 2. A J. Young tube containing a toluene solution (0.5 mL) of [Ph-PNP]NiMe (4 mg, 0.006 mmol) and benzyl chloride (20 mg, 0.158 mmol, 26.3 equiv) was immersed into an oil bath at 110 °C. The reaction was monitored by ³¹P{¹H} NMR spectroscopy, which indicated quantitative formation of [Ph-PNP]NiCl in 43 h. Method 3. A J. Young tube containing a toluene solution (0.5 mL) of [Ph-PNP]NiMe (1.0 mg, 0.002 mmol) and CH₂Cl₂ (130 mg, 1.531 mmol, 765.5 equiv) was immersed into an oil bath at 110 °C. The reaction was monitored by ³¹P{¹H} NMR spectroscopy, which indicated quantitative formation of [Ph-PNP]-NiCl in 113 h. Method 4. A J. Young tube containing a toluene solution (0.5 mL) of [Ph-PNP]NiMe (4 mg, 0.006 mmol) and PhCl (17 mg, 0.151 mmol, 25.2 equiv) was immersed into an oil bath at 110 °C. The reaction was monitored by ³¹P{¹H} NMR spectroscopy, which indicated the presence of [Ph-PNP]NiCl (16%) and [Ph-PNP]-NiMe (84%) in 168 h. Crystals suitable for X-ray diffraction analysis were grown by slow evaporation of a concentrated benzene solution at room temperature. ¹H NMR (C₆D₆, 500 MHz): δ 7.92-7.95 (m, 8, Ar), 7.61 (d, 2, Ar), 6.96-7.04 (m, 14, Ar), 6.83 (t, 2, Ar), 6.35 (t, 2, Ar). ${}^{31}P{}^{1}H$ NMR (C₆D₆, 202 MHz): δ 18.77. ³¹P{¹H} NMR (THF, 121 MHz): δ 17.82. ¹³C{¹H} NMR (C₆D₆, 125 MHz): δ 163.31 (t, $J_{CP} = 14.43$), 135.15 (s, CH), 134.38 (t, $J_{CP} = 5.90$, CH), 132.38 (s, CH), 130.95 (s, CH), 130.69 (t, $J_{CP} =$ 23.97), 129.29 (t, $J_{CP} = 4.89$, CH), 123.65 (t, $J_{CP} = 23.47$), 118.51 (t, $J_{CP} = 3.14$, CH), 117.87 (t, $J_{CP} = 5.90$, CH). Anal. Calcd for

 $C_{36}H_{28}ClNNiP_2:\ C,\,68.56;\ H,\,4.47;\ N,\,2.22.$ Found: C, 68.36; H, 4.57; N, 2.18.

Synthesis of [Ph-PNP]NiBr. Method 1. This experiment was conducted under aerobic conditions. Solid NaBr (10.7 mg, 0.104 mmol, 2.6 equiv) was suspended in acetone (30 mL) and added to a green solution of [Ph-PNP]NiCl (25 mg, 0.040 mmol) in acetone (8 mL) at room temperature. After being stirred at room temperature for 24 h, the reaction mixture was evaporated to dryness in vacuo. The residue was extracted with CH₂Cl₂ (6 mL) and filtered through a pad of Celite. Solvent was removed in vacuo to yield the product as a tan solid; yield 26.6 mg (99%). Method 2. A toluene solution (10 mL) containing [Ph-PNP]NiMe (100 mg, 0.164 mmol) and benzyl bromide (0.02 mL, 0.164 mmol) was heated to 100 °C in an oil bath for 2 days. All volatiles were removed in vacuo. The tan solid residue was subject to recrystallization from benzene to give the desired product as tan crystals; yield 79 mg (72%). Method 3. A J. Young tube containing a toluene solution (0.5 mL) of [Ph-PNP]NiMe (4 mg, 0.006 mmol) and PhBr (14 mg, 0.089 mmol, 15 equiv) was immersed into an oil bath at 110 °C. The reaction was monitored by ³¹P{¹H} NMR spectroscopy, which indicated the presence of [Ph-PNP]NiBr (86%) and [Ph-PNP]NiMe (14%) in 221 h. Crystals suitable for X-ray diffraction analysis were grown by slow evaporation of a concentrated benzene solution at room temperature. ¹H NMR (C₆D₆, 499.767 MHz): δ 7.92 (m, 8, Ar), 7.62 (m, 2, Ar), 6.99 (m, 14, Ar), 6.84 (t, 2, Ar), 6.35 (t, 2, Ar). ³¹P{¹H} NMR (C₆D₆, 202.31 MHz): δ 23.72. ³¹P{¹H} NMR (CH₃-COCH₃, 80.953 MHz): δ 24.31. ³¹P{¹H} NMR (CH₂Cl₂, 80.95 MHz): δ 23.50. ³¹P{¹H} NMR (toluene, 121.42 MHz): δ 23.46. ${}^{31}P{}^{1}H$ NMR (THF, 121.42 MHz): δ 23.18. ${}^{13}C{}^{1}H$ NMR (C₆D₆, 125.68 MHz): δ 163.14 (t, J_{CP} = 14.58 Hz, C), 135.25 (s, CH), 134.56 (t, $J_{CP} = 5.9$ Hz, CH), 132.41 (s, CH), 130.97 (s, CH), 130.89 (t, $J_{CP} = 24.57$ Hz, C), 129.23 (t, $J_{CP} = 5.03$ Hz, CH), 124.37 (t, $J_{CP} = 23.19$ Hz, C), 118.58 (s, CH), 117.71 (t, $J_{CP} =$ 4.96 Hz, CH). Anal. Calcd for C₃₆H₂₈BrNNiP₂: C, 64.04; H, 4.18; N, 2.07. Found: C, 64.51; H, 4.33; N, 2.12.

Synthesis of [Ph-PNP]NiI. Method 1. The experiment was conducted under aerobic condition. At room temperature, an acetone solution (8 mL) of NaI (62 mg, 0.41 mmol, 2.6 equiv) was added to a green solution of [Ph-PNP]NiCl (100 mg, 0.159 mmol) dissolved in acetone (20 mL). Upon addition, the reaction solution became red in color and a considerable amount of a red solid formed. After being stirred at room temperature for 16 h, the reaction mixture was evaporated to dryness under reduced pressure. The solid residue was extracted with CH₂Cl₂ (10 mL) and filtered to remove the remaining solid halides. Solvent was removed in vacuo to yield the desired product as a brick-red solid; yield 102 mg (89%). Method 2. A J. Young tube containing a toluene solution (0.5 mL) of [Ph-PNP]NiMe (4 mg, 0.006 mmol) and PhI (36 mg, 0.176 mmol, 29 equiv) was immersed into an oil bath at 110 °C. The reaction was monitored by ³¹P{¹H} NMR spectroscopy, which indicated the presence of [Ph-PNP]NiI (80%) and [Ph-PNP]NiPh (20%) in 1 h. ¹H NMR (C₆D₆, 500 MHz): δ 7.91 (m, 6, Ar), 7.64 (m, 2, Ar), 6.99 (m, 16, Ar), 6.86 (t, 2, Ar), 6.34 (t, 2, Ar). ³¹P-{¹H} NMR (C₆D₆, 202.31 MHz): δ 33.09. ³¹P{¹H} NMR (THF, 80.95 MHz): δ 32.19. ³¹P{¹H} NMR (CH₂Cl₂, 121.42 MHz): δ 32.37. ³¹P{¹H} NMR (toluene, 80.95 MHz): δ 32.76. ¹³C{¹H} NMR (C₆D₆, 125.68 MHz): δ 162.79 (t, J_{CP} = 14.14 Hz, C), 135.38 (s, CH), 134.84 (s, CH), 132.44 (s, CH), 131.47 (t, $J_{CP} = 25.01$ Hz, C), 131.00 (s, CH), 129.12 (s, CH), 125.53 (t, $J_{CP} = 22.69$ Hz, C), 118.67 (s, CH), 117.32 (s, CH). Anal. Calcd for C₃₆H₂₈-INNiP2: C, 59.87; H, 3.91; N, 1.94. Found: C, 60.48; H, 4.29; N, 1.73.

Synthesis of ['Pr-PNP]NiCl. Solid NiCl₂(DME) (45.6 mg, 0.21 mmol) was suspended in THF (3 mL) and cooled to -35 °C. To this was added dropwise a prechilled solution of ['Pr-PNP]Li(THF) (100 mg, 0.21 mmol) in THF (3 mL) at -35 °C. Upon addition, the reaction solution became emerald in color. The reaction mixture

was stirred at room temperature overnight. All volatiles were removed in vacuo. The solid residue was triturated with pentane $(3 \text{ mL} \times 2)$ and extracted with toluene (6 mL). The toluene solution was filtered through a pad of Celite and evaporated to dryness under reduced pressure, affording the product as a green solid; yield 96 mg (93%). Emerald crystals suitable for X-ray diffraction analysis were grown from a concentrated THF/Et₂O (ca. 1:9) solution at -35 °C; yield 81 mg (84%). ¹H NMR (C₆D₆, 500 MHz): δ 7.55 (d, 2, Ar), 6.97 (br s, 2, Ar), 6.88 (t, 2, Ar), 6.43 (t, 2, Ar), 2.21 (m, 4, CHMe₂), 1.50 (dt, 12, CHMe₂), 1.21 (dt, 12, CHMe₂). ³¹P-{¹H} NMR (C₆D₆, 202.31 MHz): δ 34.68. ³¹P{¹H} NMR (THF, 80.95 MHz): δ 35.17. ¹³C{¹H} NMR (C₆D₆, 125.70 MHz): δ 164.45 (t, J_{CP} = 13.7, C), 132.53 (s, CH), 131.71 (s, CH), 121.17 (t, $J_{CP} = 18.4$, C), 117.29 (t, $J_{CP} = 5.5$, CH), 117.25 (t, $J_{CP} = 2.6$, CH), 24.32 (t, $J_{CP} = 11.9$, CHMe₂), 18.90 (s, CHMe₂), 18.00 (s, CHMe₂). Anal. Calcd for C₂₄H₃₆ClNNiP₂: C, 58.28; H, 7.34; N, 2.83. Found: C, 58.05; H, 7.35; N, 2.78.

Synthesis of [Cy-PNP]NiCl. Solid NiCl₂(DME) (34 mg, 0.16 mmol) was suspended in THF (3 mL) and cooled to -35 °C. To this was added dropwise a prechilled solution of [Cy-PNP]Li(THF) (100 mg, 0.16 mmol) in THF (3 mL) at -35 °C. Upon addition, the reaction solution became emerald in color. The reaction mixture was stirred at room temperature for 7 h. All volatiles were removed in vacuo. The solid residue was triturated with pentane (3 mL \times 2) and extracted with toluene (5 mL). The toluene solution was filtered through a pad of Celite and evaporated to dryness under reduced pressure, affording the product as a green solid; yield 860 mg (85%). ¹H NMR (C_6D_6 , 500 MHz): δ 7.62 (d, 2, Ar), 7.13 (m, 2, Ar), 6.91 (t, 2, Ar), 6.47 (t, 2, Ar), 2.61 (d, 4, Cy), 2.24 (m, 4, Cy), 1.97 (m, 8, Cy), 1.86 (m, 4, Cy), 1.70 (m, 4, Cy), 1.62 (m, 4, Cy), 1.51 (m, 4, Cy), 1.22 (m, 4, Cy), 1.10 (m, 8, Cy). ³¹P{¹H} NMR (C₆D₆, 202.31 MHz): δ 26.77. ³¹P{¹H} NMR (THF, 80.95 MHz): δ 27.58. ¹³C{¹H} NMR (C₆D₆, 125.70 MHz): δ 164.62 (t, $J_{CP} = 13.7$, C), 132.71 (s, CH), 131.60 (s, CH), 121.59 (t, $J_{CP} =$ 19.4, C), 117.30 (t, $J_{CP} = 5.5$, CH), 117.29 (t, $J_{CP} = 2.6$, CH), 33.81 (t, ${}^{1}J_{CP} = 10.9$, PCH), 29.02 (s, CH₂), 28.42 (s, CH₂), 27.72 (t, ${}^{2}J_{CP} = 6.4$, CH₂), 27.57 (t, ${}^{2}J_{CP} = 5.4$, CH₂), 26.75 (s, CH₂). Anal. Calcd for C36H52ClNNiP2: C, 66.02; H, 8.00; N, 2.14. Found: C, 65.73; H, 8.14; N, 2.06.

Synthesis of [Ph-PNP]Ni(n-hexyl). Method 1. Solid [Ph-PNP]-NiCl (50 mg, 0.08 mmol) was dissolved in toluene (3 mL) and cooled to -35 °C. To this was added *n*-hexylmagnesium chloride (0.04 mL, 2 M in diethyl ether, 0.08 mmol) dropwise. Upon addition, the green solution became red in color. The reaction mixture was stirred at room temperature for 10 min, and 1,4-dioxane (0.02 mL, 0.22 mmol) was added. The solid thus precipitated was removed by filtration through a pad of Celite from the reaction solution, which was then evaporated to dryness under reduced pressure and triturated with pentane (2 mL \times 2) to afford the product as a red solid; yield 53 mg (100%). Method 2. To a solid mixture of H[Ph-PNP] (10 mg, 0.019 mmol) and Ni(COD)₂ (5 mg, 0.019 mmol) was added 1-hexene (25 mg, 0.297 mmol, 16 equiv) followed by benzene (1 mL) at room temperature. The reaction solution was transferred to an NMR tube, and the reaction was monitored by ³¹P{¹H} NMR spectroscopy, which showed quantitative formation of [Ph-PNP]Ni(n-hexyl) in 1 day. ¹H NMR (C₆D₆, 500 MHz): δ 7.780 (m, 10, Ar), 7.200 (m, 2, Ar), 7.039 (m, 12, Ar), 6.965 (t, 2, Ar), 6.442 (t, 2, Ar), 1.116 (t, 2, CH₂), 0.993-1.097 (m, 4, CH₂), 0.945 (m, 4, CH₂), 0.753 (t, 3, CH₃). ³¹P{¹H} NMR (toluene, 80.953 MHz): δ 26.533. ³¹P{¹H} NMR (C₆D₆, 202.31 MHz): δ 26.782.¹³C{¹H} NMR (C₆D₆, 125.70 MHz): δ 163.576 (t, $J_{CP} = 13.70$, C), 135.444 (s, CH), 135.149 (t, $J_{CP} =$ 6.03, CH), 133.840 (t, $J_{CP} = 20.99$, C), 133.297 (s, CH), 131.409 (s, CH), 130.148 (t, $J_{CP} = 23.76$, CH), 126.510 (t, $J_{CP} = 22.88$, C), 118.017 (t, *J*_{CP} = 3.14, CH), 117.372 (t, *J*_{CP} = 5.03, CH), 36.155 (s, CH₂), 33.275 (s, CH₂), 32.003 (s, CH₂), 24.246 (s, CH₂), 15.743

(s, CH₃), 6.718 (t, ${}^{2}J_{CP} = 18.85$, Ni*C*H₂). Anal. Calcd for C₄₂H₄₁-NNiP₂: C, 74.14; H, 6.07; N, 2.06. Found: C, 74.50; H, 6.04; N, 1.59.

Synthesis of ['Pr-PNP]NiMe. Solid ['Pr-PNP]NiCl (100 mg, 0.2 mmol) was dissolved in toluene (3 mL) and cooled to -35 °C. To this was added MeMgCl (0.07 mL, 3 M in THF, 0.2 mmol) dropwise. Upon addition, the green solution became brownish-red in color. The reaction solution was naturally warmed to room temperature with stirring for 1 h and evaporated to dryness under reduced pressure. The solid residue was triturated with pentane (2 $mL \times 2$), and the product was extracted with toluene (4 mL). The toluene solution was filtered through a pad of Celite and evaporated to dryness to afford the product as a red solid; yield 87 mg (91%). Crystals suitable for X-ray diffraction analysis were grown from a concentrated toluene solution at -35 °C. ¹H NMR (C₆D₆, 500 MHz): δ 7.77 (d, 2, Ar), 7.09 (m, 2, Ar), 7.01 (t, 2, Ar), 6.50 (t, 2, Ar), 2.12 (m, 4, CHMe₂), 1.25 (dd, 12, CHMe₂), 1.12 (dd, 12, CHMe₂), -0.31 (t, 3, ${}^{3}J_{HP} = 9.0$, NiMe). ${}^{31}P{}^{1}H$ NMR (toluene, 80.95 MHz): δ 35.31. ³¹P{¹H} NMR (C₆D₆, 202.31 MHz): δ 35.47. ¹³C{¹H} NMR (C₆D₆, 125.70 MHz): δ 163.94 (t, J_{CP} = 12.70, C), 132.45 (s, CH), 131.52 (s, CH), 122.24 (t, $J_{CP} = 18.60$, C), 116.01 (t, $J_{CP} = 4.90$, CH), 115.84 (t, $J_{CP} = 2.89$, CH), 24.18 (t, $J_{CP} = 11.69$, CHMe₂), 19.24 (t, $J_{CP} = 2.45$, CHMe₂), 18.34 (s, CHMe₂), -25.41 (t, ${}^{2}J_{CP} = 25.39$, NiMe). Anal. Calcd for C₂₅H₃₉-NNiP₂: C, 63.32; H, 8.29; N, 2.95. Found: C, 62.79; H, 8.33; N, 2.87

Synthesis of ['Pr-PNP]NiEt. Solid ['Pr-PNP]NiCl (59 mg, 0.12 mmol) was dissolved in toluene (3 mL) and cooled to -35 °C. To this green solution was added EtMgCl (0.06 mL, 2 M in diethyl ether, 0.12 mmol) dropwise. Upon naturally warming to room temperature with stirring, the reaction solution gradually became brownish-red in color in 15 min. 1,4-Dioxane (0.01 mL, 0.12 mmol) was added. The solid thus precipitated was removed by filtration through a pad of Celite. All volatiles were removed in vacuo, and the solid residue was triturated with pentane (1 mL) to give the product as a red powder; yield 45 mg (78%). ¹H NMR (C_6D_6 , 500 MHz): δ 7.71 (d, 2, Ar), 7.03 (m, 2, Ar), 6.99 (t, 2, Ar), 6.49 (t, 2, Ar), 2.17 (m, 4, CHMe₂), 1.30 (dd, 12, CHMe₂), 1.23 (t, 3, ³J_{HH} = 7.5, NiCH₂CH₃), 1.10 (dd, 12, CHMe₂), 0.84 (tq, 2, ${}^{3}J_{HP} = 11$, ${}^{3}J_{\text{HH}} = 7.5$, NiCH₂CH₃). ${}^{31}P{}^{1}H{}$ NMR (C₆D₆, 202.31 MHz): δ 32.07. ³¹P{¹H} NMR (toluene, 80.95 MHz): δ 32.00. ¹³C{¹H} NMR (C₆D₆, 125.5 MHz): δ 163.77 (t, J_{CP} = 12.3, C), 132.42 (s, CH), 131.49 (s, CH), 121.84 (t, $J_{CP} = 18.4$, C), 115.96 (t, $J_{CP} =$ 4.5, CH), 115.73 (t, $J_{CP} = 2.8$, CH), 24.01 (t, ${}^{1}J_{CP} = 10.9$, CHMe₂), 19.25 (t, ${}^{2}J_{CP} = 2.3$, CHMe₂), 18.04 (s, CHMe₂), 17.01 (t, ${}^{3}J_{CP} =$ 2.3, NiCH₂CH₃), -14.97 (t, ${}^{2}J_{CP} = 22.5$, NiCH₂CH₃). Anal. Calcd for C₂₆H₄₁NNiP₂: C, 63.96; H, 8.46; N, 2.87. Found: C, 63.94; H, 8.66; N, 2.85.

Synthesis of ['Pr-PNP]Ni(n-Bu). Solid ['Pr-PNP]NiCl (59 mg, 0.12 mmol) was dissolved in toluene (3 mL) and cooled to -35°C. To this green solution was added n-BuMgCl (0.06 mL, 2 M in diethyl ether, 0.12 mmol) dropwise. Upon naturally warming to room temperature with stirring, the reaction solution gradually became brownish-red in color in 15 min. 1,4-Dioxane (0.01 mL, 0.12 mmol) was added. The solid thus precipitated was removed by filtration through a pad of Celite. All volatiles were removed in vacuo to give the product as a red powder; yield 59 mg (95%). Red crystals suitable for X-ray diffraction analysis were grown from a concentrated pentane solution at -35 °C. ¹H NMR (C₆D₆, 500 MHz): δ 7.71 (d, 2, Ar), 7.04 (m, 2, Ar), 6.99 (t, 2, Ar), 6.49 (t, 2, Ar), 2.19 (m, 4, CHMe₂), 1.64 (m, 2, NiCH₂(CH₂)₂CH₃), 1.49 (m, 2, NiCH₂(CH₂)₂CH₃), 1.31 (dd, 12, CHMe₂), 1.10 (dd, 12, CHMe₂), 1.08 (t, 3, NiCH₂(CH₂)₂CH₃), 0.76 (m, 2, NiCH₂). ³¹P-{¹H} NMR (C₆D₆, 202.31 MHz): δ 32.50. ³¹P{¹H} NMR (toluene, 80.95 MHz): δ 32.12. ³¹P{¹H} NMR (pentane, 80.95 MHz): δ 31.82. ¹³C{¹H} NMR (C₆D₆, 125.5 MHz): δ 163.79 (t, $J_{CP} = 11.8$, C), 132.41 (s, CH), 131.50 (s, CH), 121.85 (t, $J_{CP} = 18.4$, C), 115.99 (t, $J_{CP} = 4.5$, CH), 115.77 (t, $J_{CP} = 3.6$, CH), 35.14 (s, NiCH₂-(CH₂)₂CH₃), 28.47 (s, NiCH₂(CH₂)₂CH₃), 24.11 (t, ${}^{1}J_{CP} = 10.9$, CHMe₂), 19.27 (t, ${}^{2}J_{CP} = 2.8$, CHMe₂), 18.05 (s, CHMe₂), 14.62 (s, NiCH₂(CH₂)₂CH₃), -6.50 (t, ${}^{2}J_{CP} = 22.0$, NiCH₂). Anal. Calcd for C₂₈H₄₅NNiP₂: C, 65.14; H, 8.78; N, 2.71. Found: C, 64.95; H, 8.76; N, 2.68.

Synthesis of [Cy-PNP]NiMe. Solid [Cy-PNP]NiCl (39 mg, 0.06 mmol) was dissolved in toluene (3 mL) and cooled to -35 °C. To this was added MeMgCl (0.02 mL, 3 M in THF, 0.06 mmol) dropwise. Upon addition, the green solution became red in color. The reaction mixture was stirred at room temperature for 30 min, evaporated to dryness under reduced pressure, and triturated with pentane (2 mL \times 2). The product was extracted with toluene (2 mL) and filtered through a pad of Celite. The toluene solution was evaporated to dryness and triturated with pentane (2 mL \times 2) to afford the product as an orange solid; yield 36 mg (92%). Crystals suitable for X-ray diffraction analysis were grown from a concentrated diethyl ether solution at -35 °C. ¹H NMR (C₆D₆, 500 MHz): δ 7.84 (d, 2, Ar), 7.24 (m, 2, Ar), 7.04 (t, 2, Ar), 6.54 (t, 2, Ar), 2.33 (d, 4, Cy), 2.14 (m, 4, Cy), 1.84 (m, 4, Cy), 1.75 (m, 4, Cy), 1.64 (m, 12, Cy), 1.53 (m, 4, Cy), 1.20 (m, 4, Cy), 1.07 (qt, 8, Cy), -0.13 (t, 3, ${}^{3}J_{HP} = 9$, NiMe). ${}^{31}P{}^{1}H}$ NMR (toluene, 80.95 MHz): δ 27.99. ³¹P{¹H} NMR (C₆D₆, 202.31 MHz): δ 28.16.¹³C{¹H} NMR (C₆D₆, 125.70 MHz): δ 164.08 (t, J_{CP} = 12.82, C), 132.62 (s, CH), 131.43 (s, CH), 122.65 (t, $J_{CP} = 18.35$, C), 116.02 (t, $J_{CP} = 5.02$, CH), 115.89 (t, $J_{CP} = 3.14$, CH), 34.05 (t, ${}^{1}J_{CP} = 6.53$, CH), 29.69 (s, CH₂), 28.79 (s, CH₂), 27.96 (t, J_{CP} = 6.41, CH₂), 27.71 (t, J_{CP} = 5.03, CH₂), 26.95 (s, CH₂), -23.60 $(t, J_{CP} = 24.76, NiCH_3)$. Anal. Calcd for C₃₇H₅₅NNiP₂: C, 70.04; H, 8.74; N, 2.21. Found: C, 70.48; H, 9.25; N, 1.78.

Synthesis of [Cy-PNP]NiEt. Solid [Cy-PNP]NiCl (100 mg, 0.15 mmol) was dissolved in toluene (3 mL) and cooled to -35 °C. To this was added EtMgCl (0.08 mL, 2.0 M in diethyl ether, 0.16 mmol) dropwise. The green reaction solution became brownishred in color upon addition. The reaction mixture was stirred at room temperature for 2 h and filtered through a pad of Celite, which was further washed with toluene (2 mL) until the washings were colorless. The toluene filtrate was evaporated to dryness under reduced pressure. The solid residue was triturated with pentane (2 mL \times 2) to afford the product as a brownish-red solid; yield 81 mg (82%). ¹H NMR (C₆D₆, 500 MHz): δ 7.81 (d, 4, Ar), 7.20 (m, 2, Ar), 7.02 (t, 2, Ar), 6.53 (t, 2, Ar), 2.41 (d, 4, Cy), 2.20 (tt, 4, Cy), 1.84 (m, 4, Cy), 1.67 (m, 18, Cy), 1.52 (d, 4, Cy), 1.41 (t, 3, CH_2CH_3), 1.20 (qt, 4, Cy), 1.09 (m, 6, Cy), 1.03 (m, 2, ${}^{3}J_{HP} = 11$, NiCH₂). ³¹P{¹H} NMR (C₆D₆, 202.31 MHz): δ 24.59. ³¹P{¹H} NMR (toluene, 80.95 MHz): δ 24.67. ¹³C{¹H} NMR (C₆D₆, 125.70 MHz): δ 163.99 (t, J_{CP} = 12.3, C), 132.55 (s, CH), 131.40 (s, CH), 122.29 (t, $J_{CP} = 18.4$, C), 116.02 (t, $J_{CP} = 4.7$, CH), 115.80 (t, $J_{CP} = 3.1$, CH), 34.01 (t, $J_{CP} = 10.9$, PCH), 29.67 (s, CH₂), 28.41 (s, CH₂), 28.10 (t, $J_{CP} = 6.0$, CH₂), 27.72 (t, $J_{CP} = 5.0$, CH₂), 26.87 (s, CH₂), 17.10 (s, NiCH₂CH₃), -13.24 (t, $J_{CP} = 22.4$, NiCH₂). Anal. Calcd for C₃₈H₅₇NNiP₂: C, 70.38; H, 8.86; N, 2.16. Found: C, 69.95; H, 8.56; N, 1.94.

Synthesis of [Cy-PNP]Ni(*n*-Bu). Solid [Cy-PNP]NiCl (90 mg, 0.14 mmol) was dissolved in toluene (3 mL) and cooled to -35 °C. To this was added *n*-BuMgCl (0.07 mL, 2.0 M in diethyl ether, 0.14 mmol) dropwise. The green reaction solution became brownish-red in color upon addition. The reaction mixture was stirred at room temperature for 2 h and filtered through a pad of Celite, which was further washed with toluene (2 mL) until the washings were colorless. The toluene filtrate was evaporated to dryness under reduced pressure. The solid residue was triturated with pentane (2 mL × 2) to afford the product as a brownish-red solid; yield 70 mg (75%). ¹H NMR (C₆D₆, 500 MHz): δ 7.80 (d, 4, Ar), 7.21 (m, 2, Ar), 7.02 (t, 2, Ar), 6.53 (t, 2, Ar), 2.41 (d, 4, Cy), 2.20 (tt, 4, Cy), 1.84 (m, 4), 1.66 (m, 18), 1.52 (d, 4), 1.22 (m, 4), 1.17 (t, 3, CH₃), 1.05 (m, 8), 0.92 (m, 4); the complete assignment for the upfield aliphatic signals was hampered due to the overlap of *n*-Bu with cyclohexyl groups. ³¹P{¹H} NMR (C₆D₆, 202.31 MHz): δ 25.08. ³¹P{¹H} NMR (toluene, 80.953 MHz): δ 24.65. ¹³C{¹H} NMR (C₆D₆, 125.70 MHz): δ 163.96 (t, *J*_{CP} = 12.3, C), 132.54 (s, CH), 131.41 (s, CH), 122.38 (t, *J*_{CP} = 18.9, C), 116.01 (t, *J*_{CP} = 4.5, CH), 115.80 (t, *J*_{CP} = 3.1, CH), 35.01 (s, NiCH₂(CH₂)₂CH₃), 34.05 (t, *J*_{CP} = 10.4, PCH), 29.68 (s, CH₂), 28.70 (s, NiCH₂-(CH₂)₂CH₃), 28.42 (s, CH₂), 28.12 (t, *J*_{CP} = 5.9, CH₂), 27.73 (t, *J*_{CP} = 4.5, CH₂), 26.90 (s, CH₂), 14.70 (s, NiCH₂(CH₂)₂CH₃), -4.67 (t, *J*_{CP} = 22.2, NiCH₂). Anal. Calcd for C₄₀H₆₁NNiP₂: C, 71.01; H, 9.09; N, 2.07. Found: C, 71.66; H, 9.75; N, 1.54.

General Procedures for the Kumada Reactions Outlined in Table 6. A Schlenk flask was charged with aryl halide (1.0 equiv), Grignard reagent (1.1 equiv), [R-PNP]NiCl (1.0 mg for each single experiment), solvent (2 mL), and a magnetic stir bar. The flask was capped with a glass stopper and stirred at room temperature or heated in an oil bath at 60 °C with stirring for a specified period of time. After being cooled to room temperature, the reaction mixture was quenched with deionized water and the product was extracted with diethyl ether. The diethyl ether solution was separated from the aqueous layer, dried over $MgSO_4$, and subject to GC-MS analysis.

Acknowledgment. We thank the National Science Council of Taiwan for financial support (NSC 94-2113-M-110-004) of this work and Prof. Michael Y. Chiang (NSYSU), Mr. Ting-Shen Kuo (National Taiwan Normal University), and Mr. Yong-Yi Song (NSYSU) for crystallographic assistance. Acknowl-edgment is made to the National Center for High-performance Computing (NCHC) for the access to chemical databases. We also thank the reviewers for insightful comments.

Supporting Information Available: X-ray crystallographic data in CIF format for [Cy-PNP]Li(OEt₂), [Ph-PNP]NiCl, ['Pr-PNP]NiCl, [Ph-PNP]NiMe, ['Pr-PNP]NiMe, [Cy-PNP]NiMe, [Ph-PNP]Ni-(*n*-Bu), ['Pr-PNP]Ni(*n*-Bu), [Ph-PNP]NiCH₂SiMe₃, and [Ph-PNP]-NiBr. This material is available free of charge via the Internet at http://pubs.acs.org.

OM050943A