Reactions of $M(N-2,6-i-Pr_2C_6H_3)(CHR)(CH_2R')_2$ ($M=M_0,W$) Complexes with Alcohols To Give Olefin Metathesis Catalysts of the Type $M(N-2,6-i-Pr_2C_6H_3)(CHR)(CH_2R')(OR'')$ Amritanshu Sinha, Lourdes Pia H. Lopez, Richard R. Schrock,* Adam S. Hock, and Peter Müller Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 Received November 14, 2005 The reaction between M(NAr)(CH-t-Bu)(CH₂-t-Bu)₂ (M = Mo, W, Ar = 2,6-i-Pr₂C₆H₃) and various alcohols (1-adamantyl-OH, t-BuOH, ArOH, (CF₃)₂CHOH, (CF₃)₂MeCOH, CF₃Me₂COH, (CF₃)₃COH, C₆F₅OH) in pentane or toluene yields either complexes of the type M(NAr)(CH-t-Bu)(CH₂-t-Bu)(OR), through direct addition of ROH across a Mo—C bond, or complexes of the type M(NAr)(CH₂-t-Bu)₃-(OR), through direct addition of ROH across a Mo—C bond. The trineopentyl species appear to be formed when the alcohol has a relatively low pK_a value. The outcome also can depend on whether the alcohol is employed neat or in benzene, and mixtures are observed in some circumstances. The conversion of M(NAr)(CH₂-t-Bu)₃(OR) into M(NAr)(CH-t-Bu)(CH₂-t-Bu)(OR) was shown to be unimolecular in several examples. Preliminary experiments have shown that M(NAr)(CH-t-Bu)(CH₂-t-Bu)(OR) complexes are surprisingly active catalysts for various metathesis reactions, although conversion is sometimes limited by decomposition of intermediate alkylidenes to yield dimeric species that contain M—M bonds. In contrast, M(NAr)(CH-t-Bu)(CH₂-t-Bu)₂ species are virtually inactive for metathesis. X-ray structures are reported for Mo(NAr)(CH₂-t-Bu)₃(OC₆F₅), Mo(NAr)(CH-t-Bu)(CH₂-t-Bu)₃(OS₆(O-t-Bu)₃], [Mo(NAr)(CH-t-Bu)(CH₂-t-Bu)(CH₂-t-Bu)₃(OC₆F₅), Mo(NAr)(CH-t-Bu)(CH₂-t-Bu)(OC₆F₅)(PMe₃). ### Introduction We have been interested in olefin metathesis by imido alkylidene complexes of Mo and W,1 most recently asymmetric metathesis reactions catalyzed by complexes of the type Mo-(NR)(CHR')(diolate) $(R' = CMe_3, CMe_2Ph)$ that contain an enantiomerically pure biphenolate or binaphtholate ligand.² As the number of catalyst variations increases, it would be highly desirable to prepare catalysts through protonation of two monoanionic ligands in an imido alkylidene precursor with an alcohol. Catalysts then could be prepared and evaluated in situ, a possibility that would create opportunities for rapid throughput or combinatorial screening of catalysts for activity, selectivity, enantioselectivity, etc., if other products that might be formed in such reactions are catalytically inactive. For this reason we began to explore reactions between alcohols and dineopentyl imido alkylidene species of the type M(NAr)(CH-t-Bu)(CH₂t-Bu)₂ (M = Mo, W, Ar = 2,6-i-Pr₂C₆H₃), in the hope that 2 equiv of neopentane would be lost and M(NAr)(CH-t-Bu)(OR)₂ species generated. This particular precursor also could be added to a silica surface (Si_{surf}OH) in order to create a relatively welldefined surface-supported catalyst.³ Related reactions involving Ta(CH-t-Bu)(CH₂-t-Bu)₃,⁴ W(C-t-Bu)(CH₂-t-Bu)₃,⁵ and Re(Ct-Bu)(CH-t-Bu)(CH₂-t-Bu)₂⁶ have been employed for this purpose so far.3 It has been believed that the lifetime of surfacesupported species would be greater than the lifetime of analogous species in solution as a consequence of slow bimolecular (in metal) decomposition at relatively low temperatures.^{7,8} In two preliminary communications we showed that addition of alcohols to M(NAr)(CH-t-Bu)(CH₂-t-Bu)₂ did not lead to bis-(alkoxide) species but to M(NAr)(CH-t-Bu)(CH₂-t-Bu)(OR) species.^{9,10} Only one example of a complex of this general type had been reported¹¹ (prepared through addition of Ph₃SiOH to Mo(N-t-Bu)(CH-t-Bu)(CH₂-t-Bu)₂), although it was not characterized and its olefin metathesis activity was not explored. On the basis of what we know about 1-adamantylimido bis-(alkoxide) complexes, 12,13 and the fact that Mo(NAd)(CH-t-Bu)-(CH2-t-Bu)2 is unstable with respect to bimolecular decomposition to yield di-*tert*-butylethylene, ¹⁴ we suspect that the *tert*-butylimido ligand is "too small" to prevent bimolecular decomposition of Mo(N-t-Bu)(CH-t-Bu)(CH₂-t-Bu)(OSiPh₃) and formation of products that prevent crystallization of these already highly soluble compounds. In this paper we present the full details of the reactions between $M(NAr)(CHR)(CH_2R')_2$ (M = Mo, W; R, $R' = CMe_3$, CMe_2Ph) and selected alcohols. Some M(NAr)(CHR')(CH2-t-Bu)(OR) complexes decompose in a ⁽¹⁾ Schrock, R. R. Chem. Rev. 2002, 102, 145. ⁽²⁾ Schrock, R. R.; Hoveyda, A. H. Angew. Chem., Int. Ed. 2003, 42, ⁽³⁾ Copéret, C.; Chabanas, M.; Saint-Arroman, R. P.; Basset, J.-M. Angew. Chem., Int. Ed. 2003, 42, 156. ⁽⁴⁾ Schrock, R. R.; Fellmann, J. D. J. Am. Chem. Soc. **1978**, 100, 3359. (5) Schrock, R. R.; Clark, D. N.; Sancho, J.; Wengrovius, J. H.; Rocklage, ⁽⁵⁾ Schrock, R. R.; Clark, D. N.; Sancho, J.; Wengrovius, J. H.; Rocklag S. M.; Pedersen, S. F. *Organometallics* **1982**, *1*, 1645. ⁽⁶⁾ Edwards, D. S.; Biondi, L. V.; Ziller, J. W.; Churchill, M. R.; Schrock, R. R. Organometallics 1983, 2, 1505. ⁽⁷⁾ Chabanas, M.; Copéret, C.; Basset, J.-M. *Chem. Eur. J.* **2003**, *9*, 971. (8) LeRoux, E.; Taoufik, M.; Chabanas, M.; Alcor, D.; Baudouin, A.; Copéret, C.; Thivolle-Cazat, J.; Basset, J.-M.; Lesage, A.; Hediger, S.; Emsley, L. *Organometallics* **2005**, *24*, 4274. ⁽⁹⁾ Sinha, A.; Schrock, R. R. Organometallics 2004, 23, 1643. ⁽¹⁰⁾ Lopez, L. P. H.; Schrock, R. R. J. Am. Chem. Soc. 2004, 126, 9526. (11) Ehrenfeld, D.; Kress, J.; Moore, B. D.; Osborn, J. A.; Schoettel, G. J. Chem. Soc., Chem. Commun. 1987, 129. ⁽¹²⁾ Alexander, J. B.; Schrock, R. R.; Davis, W. M.; Hultzsch, K. C.; Hoveyda, A. H.; Houser, J. H. *Organometallics* **2000**, *19*, 3700. ⁽¹³⁾ Tsang, W. C. P.; Jernelius, J. A.; Cortez, A. G.; Weatherhead, G. S.; Schrock, R. R.; Hoveyda, A. H. J. Am. Chem. Soc. 2003, 125, 2591. (14) Pilyugina, T. S.; Schrock, R. R.; Hock, A. S.; Müller, P. Organometallics 2005, 24, 1929. Table 1. Relevant Proton and Carbon NMR Data for Mo(NAr)(CH-t-Bu)(CH₂-t-Bu)(X) Compounds Reported in This Paper | X | Mo $\delta(H_{\alpha})$ | Mo $\delta(C_{\alpha})$ | $W \delta(H_{\alpha})$
(J_{HW}, Hz) | $\begin{array}{c} W \; \delta(C_{\alpha}) \\ (J_{CH}, Hz) \end{array}$ | |-----------------------|-------------------------|-------------------------|--|---| | CH ₂ -t-Bu | 9.50 | 255.0 | 6.74 (15) | 247.2 (102) | | Cl | 11.71^{a} | | 8.83 (16) | 261.0 (114) | | OAd | 11.71 | 275.7 | $8.86 (15)^c$ | 253.11 (110) | | $OCMe_3$ | 11.63 | 275.9 | 8.80 (14) | 253.6 (106) | | OR_{F3} | | | 8.88 (16) | 256.0 (109) | | OR_{F6} | 11.90 | 283.6 | 9.00 (15) | 259.2 (115) | | $OCH(CF_3)_2$ | 11.80 | 284.5 | $8.96 (15)^b$ | | | OR_{F9} | 12.21 | | $9.39(15)^c$ | 263.3 (107) ^c | | OAr | 11.99 | 277.7 | 9.37 (16) | 255.1 (116) | | OC_6F_5 | 12.07 | 286.5 | 9.29 (15) | 260.5 (105) | | $(OC_6F_5)(PMe_3)$ | 13.3 (anti) | 309.7 (anti) | | | | | 10.8 (syn) | 278.7 (syn) | | | ^a See ref 14. ^b Prepared in situ. ^c See ref 10. bimolecular fashion to yield species that contain a M=M bond that is not bridged by imido or alkoxide groups that are present. 10 These and other types of M=M species will be reported elsewhere. It should be noted that N-2,6-diisopropylphenyl (NAr) ligands are the most sterically demanding of the imido ligands available in compounds of this type today; three other imido ligands that have been reported in Mo(NR)(CHR')(OR")2 compounds (inter alia) are N-2,6-dimethylphenyl, N-2,6-dichlorophenyl, and N-1-adamantyl.^{2,15} Reactions analogous to those discussed here have not yet been carried out with complexes that contain these "smaller" imido ligands. Steric properties are so important that similar results could not be guaranteed, nor even expected. #### Results Syntheses of Molybdenum Complexes. Addition of 2 equiv of neopentylmagnesium chloride in ether to Mo(NAr)(CH-t-Bu)(triflate)₂(dme)¹⁶ (Ar = 2,6-i-Pr₂C₆H₃, dme = 1,2-dimethoxyethane) in ether gives red-orange Mo(NAr)(CH-t-Bu)(CH₂-t-Bu)₂ (1a) in 93% isolated yield. Highly soluble 1a can be prepared on a large scale and used in "crude" form for further reactions if pure Mo(NAr)(CH-t-Bu)(triflate)₂(dme) and accurately titrated Me₃CCH₂MgCl are employed. NMR spectra of **1a** in C_6D_6 show resonances for H_{α} at 9.50 ppm and for C_{α} at 255.0 ppm ($J_{CH} = 108 \text{ Hz}$) for the alkylidene ligand and at 2.76 and 0.62 ppm (δ (CH₂); $J_{HH} = 12$ Hz) for the diastereotopic methylene protons in the neopentyl ligands. The neopentylidene chemical shifts are what one might expect for a high-oxidationstate syn alkylidene complex^{1,17,18} and should be compared to $\delta(H_{\alpha})$ 9.22 ppm and $\delta(C_{\alpha})$ 249.3 ppm ($J_{CH}=106$ Hz) in Mo-(N-t-Bu)(CH-t-Bu)(CH₂-t-Bu)₂¹¹ and δ (H_{α}) 6.74 ppm, δ (C_{α}) 247.2 ppm ($J_{\text{CH}} = 102 \text{ Hz}$), and $\delta(\text{CH}_2)$ 2.72 and 0.41 ppm in W(NAr)(CH-t-Bu)(CH₂-t-Bu)₂.¹⁹ No alkylidene resonance for the anti isomer of Mo(NAr)(CH-t-Bu)(CH₂-t-Bu)₂ could be found. Relevant proton and carbon NMR data for all compounds reported here are given in Table 1. Mo(NAr)(CH-t-Bu)(CH₂t-Bu)₂ is relatively stable thermally. When a toluene solution is heated to 60 °C, 24% decomposition is observed after 1 day, 46% after 3 days, and 100% decomposition in 6 days. The nature of the decomposition product or products is (are) not known. Mo(NAr)(CH-t-Bu)(CH₂-t-Bu)₂ also has been prepared in 90% yield through addition of neopentyllithium to Mo(NAr)Np₃Cl at −30 °C.¹⁴ It is straightforward to prepare "mixed" alkyl/alkylidene compounds such as Mo(NAr)(CHCMe₂Ph)(CH₂-t-Bu)₂ (1b) through alkylation of Mo(NAr)(CHCMe₂Ph)(triflate)₂(dme) with neopentyl Grignard reagent and Mo(NAr)(CH-t-Bu)(CH₂CMe₂-Ph)₂ (**1c**) through alkylation of Mo(NAr)(CH-t-Bu)(triflate)₂-(dme) with neophyl Grignard
reagent. There is no evidence for intramolecular α-proton migration that would lead to alkyl/ alkylidene scrambling in any of these species in solution at room temperature. This type of intramolecular transfer or migration of an α -hydrogen from an alkyl α -carbon to an alkylidene α-carbon is known to be slow in all high-oxidation-state systems so far where it has been tested. 1,17,18 There is also no evidence that alkyl or alkylidene ligands transfer readily between metals. Reactions between 1a and the alcohols shown in eq 1 (Ad = 1-adamantyl) in benzene or toluene (22 °C, 0.1-0.2 M, up to 24 h reaction time) give isolable complexes of the type Mo-(NAr)(CH-t-Bu)(CH₂-t-Bu)(OR) (**2a**-**d**), which we will call the type **B** product. The product of a reaction between **1a** and (t- Ar $$\begin{array}{c} Ar\\ N\\ N\\ H\\ Ar = 2,6-i-Pr_2C_6H_3 \end{array}$$ $$Ar = 2,6-i-Pr_2C_6H_3$$ $$\begin{array}{c} Ar\\ N\\ H\\ N\\ CHOM \end{array}$$ $$\begin{array}{c} Ar\\ N\\ H\\ N\\ CHOM \end{array}$$ $$\begin{array}{c} Ar\\ N\\ N\\ H\\ CHOM\\ CHOM\\ CHOM \end{array}$$ $$\begin{array}{c} CHOM\\ CHOM\\ CHOM \end{array}$$ $$\begin{array}{c} CHOM\\ CHOM\\ CHOM\\ CHOM \end{array}$$ $$\begin{array}{c} CHOM\\ CHOM\\ CHOM \end{array}$$ $$\begin{array}{c} CHOM\\ CHOM\\ CHOM\\ CHOM\\ CHOM \end{array}$$ $$\begin{array}{c} CHOM\\ CHOM\\ CHOM\\ CHOM\\ CHOM \end{array}$$ $$\begin{array}{c} CHOM\\ CHOM\\$$ BuO)₃SiOH is also an isolable, crystalline species that has been reported elsewhere.²⁰ We can confirm that AdOH or t-BuOH adds across a Mo-C bond directly, since addition of ROH to **1b** gives Mo(NAr)(CHCMe₂Ph)(CH₂-t-Bu)(OR) exclusively. In contrast, the reaction between 1a and C₆F₅OH in benzened₆ or neat (CF₃)₂CHOH at 22 °C gives the trineopentyl species **3e** or **3a** shown in eq 2 rapidly (minutes) and exclusively. We Ar $$+ ROH$$ $t-Bu$ OR = OC_6F_5 (3e) or $OCH(CF_3)_2$ (3a) (in neat (CF₃)₂HCOH) will call the trineopentyl species the type A product. (The results ⁽¹⁵⁾ Schrock, R. R. In Handbook of Metathesis; Grubbs, R. H., Ed.; Wiley-VCH: Weinheim, Germany, 2003; Vol. 1, p 8. ⁽¹⁶⁾ Schrock, R. R.; Murdzek, J. S.; Bazan, G. C.; Robbins, J.; DiMare, M.; O'Regan, M. J. Am. Chem. Soc. 1990, 112, 3875. ⁽¹⁷⁾ Feldman, J.; Schrock, R. R. Prog. Inorg. Chem. 1991, 39, 1. ⁽¹⁸⁾ Schrock, R. R. In Reactions of Coordinated Ligands; Braterman, P. R., Ed.; Plenum: New York, 1986. ⁽¹⁹⁾ Schrock, R. R.; DePue, R. T.; Feldman, J.; Yap, K. B.; Yang, D. C.; Davis, W. M.; Park, L. Y.; DiMare, M.; Schofield, M.; Anhaus, J.; Walborsky, E.; Evitt, E.; Krüger, C.; Betz, P. Organometallics 1990, 9, 2262 ⁽²⁰⁾ Blanc, F.; Copéret, C.; Thivolle-Cazat, J.; Basset, J.-M.; Sinha, A.; Schrock, R. R. Angew. Chem., Int. Ed., in press. of alcohol addition are summarized in Table 2.) When solutions of 3e or 3a are heated to 60 °C over a period of hours, neopentane evolves smoothly to yield Mo(NAr)(CH-t-Bu)(CH₂-t-Bu)(OR) species (OR = OC₆F₅ (2e), OCH(CF₃)₂ (2a)) quantitatively. The conversion of 3e to 2e was shown to be unimolecular with $k = 1.0 \times 10^{-4} \, \mathrm{s^{-1}}$ in benzene- d_6 at 60 °C. (All rate constants for reactions of this type are gathered in Table 3.) Addition of C₆F₅OH to Mo(NAr)(CHCMe₂Ph)(CH₂-t-Bu)₂ yields Mo(NAr)(CH₂CMe₂Ph)(CH₂-t-Bu)₂(OC₆F₅), which upon heating is transformed into a mixture of the expected three compounds (approximately 1:1:1) shown in eq 3, along with neopentane and tert-butylbenzene. $$\begin{array}{c} \text{Ar} \\ \text{N} \\ \text{N} \\ \text{Me}_{3}\text{C} \\ \text{Me}_{3}\text{C} \\ \text{Me}_{3}\text{C} \\ \text{Me}_{4}\text{Cr} \\ \text{Ph}\text{CMe}_{2}\text{Ph} \\ \text{RMe}_{2}\text{C} \\ \text{Imm. Mo} \\ \text{Mo} \\ \text{C}_{6}\text{F}_{5}\text{O} \\ \text{C}_{6}\text{F}_{5}\text{O} \\ \text{R} = \text{R'} = \text{Me}; 36\% \\ \text{R} = \text{Ph}; \text{R'} = \text{Me}; 31\% \\ \text{R} = \text{Me}; \text{R'} = \text{Ph}; 33\% \\ \end{array} \tag{3}$$ When $(CF_3)_3COH$ is added to **1a** in benzene- d_6 , both Mo-(NAr)(CH-t-Bu)(CH₂-t-Bu)[OC(CF₃)₃] (2f) and Mo(NAr)(CH₂ $t-Bu)_3[OC(CF_3)_3]$ (3f) are formed in a ratio of 1:1.2, while the reaction between Mo(NAr)(CH-t-Bu)(CH₂-t-Bu)₂ and neat (CF₃)₃COH affords a mixture which contains >95% **3f** and <5% 2f. Compound 3f is converted into 2f at 60 °C in benzene d_6 with a rate constant of $7.2 \times 10^{-4} \, \mathrm{s}^{-1}$ (Table 3). Since the pK_a 's of HOC(CF₃)₃ and HOC₆F₅ in water are similar (5.4 and 5.5, respectively), $^{21-23}$ these results demonstrate once again that α-hydrogen abstraction is accelerated in the electronically similar but sterically more crowded circumstance. 1,17,18 If (CF₃)₃-COH is added to Mo(NAr)(CHCMe₂Ph)(CH₂-t-Bu)₂ in benzene d_6 , the alkylidene that is formed initially (\sim 50% of the mixture) is only Mo(NAr)(CHCMe₂Ph)(CH₂-t-Bu)[OC(CF₃)₃], thus confirming that in this case also a Mo–C bond is cleaved directly in competition with addition of (CF₃)₃COH to the Mo=C bond to give Mo(NAr)(CH₂CMe₂Ph)(CH₂-t-Bu)₂[OC(CF₃)₃]. When Mo(NAr)(CH₂CMe₂Ph)(CH₂-t-Bu)₂[OC(CF₃)₃] decomposes, it yields all possible alkylidenes analogous to those shown in eq 3 in approximately a 1:1:1 ratio. The complexes Mo(NAr)(CH-t-Bu)(CH₂-t-Bu)(OR) (OR = OAd, OCMe₃, OAr) are relatively stable thermally. For example, when a 0.04 M solution of these complexes in toluene is heated at 60 °C for 11 days, less than 0.5% decomposition is observed. However, under identical conditions, Mo(NAr)(CH-t-Bu)(CH₂-t-Bu)(OC₆F₅) shows 54% decomposition in 11 days. The results of thermal decompositions of M(NAr)(CH-t-Bu)(CH₂-t-Bu)(OR) and related alkylidene complexes that lead to species that contain a M=M bond (M = Mo, W²⁴) will be reported elsewhere. Addition of 1.1 equiv of PMe_3 to $Mo(NAr)(CH\text{-}t\text{-}Bu)(CH_2\text{-}t\text{-}Bu)(OC_6F_5)$ in benzene resulted in total disappearance of the parent alkylidene resonance. A proton NMR spectrum of the Table 2. Formation of Complexes of the Types $M(NAr)(CH-t-Bu)(CH_2-t-Bu)(OR)$ (B) and $M(NAr)(CH_2-t-Bu)_3(OR)$ (A) | ROH | pK_a in H_2O^{21-23} | Mo | W | |---------------------------------------|--------------------------|------------|-------| | Me ₃ COH | 19.2 | В | В | | 1-adamantanol | 18 | В | В | | Me ₂ (CF ₃)COH | 12.6 | | В | | $2,6$ -i- $Pr_2C_6H_3OH$ | 11 | В | В | | Me(CF ₃) ₂ COH | 9.8 | В | В | | (CF ₃) ₂ CHOH | 9.3 | A or B^a | A + B | | (CF ₃) ₃ COH | 5.4 | A + B | A | | C_6F_5OH | 5.5 | A | A | | | | | | a Neat only. Table 3. Rate Constants $(10^{-5}~s^{-1})$ for Conversion of M(NAr)(CH₂-t-Bu)₃X into M(NAr)(CH₂-t-Bu)(CH-t-Bu)X in C₆D₆ at 60 °C (Except Where Noted) | | Mo | W | |---|------|--------------------------| | M(NAr)(CH ₂ -t-Bu) ₃ Cl | 3014 | 11 | | $M(NAr)(CH_2$ -t-Bu) ₃ (OR_{F9}) | 72 | 17 | | | | 43 (tol- d_8 at 80 °C) | | $M(NAr)(CH_2-t-Bu)_3(OC_6F_5)$ | 10 | 7.0 | solution showed two new alkylidene resonances at 13.3 and 10.8 ppm in approximately a 1:1 ratio. On the basis of the chemical shift and coupling constant values, the resonance at 13.3 ppm $(J_{\rm CH}=136.1~{\rm Hz})$ is assigned to the anti base adduct, while that at 10.8 ppm ($J_{CH} = 107.7 \text{ Hz}$) is assigned to the syn base adduct.²⁵ The 13.3 ppm resonance is a doublet due to splitting by ^{31}P ($^{3}J_{HP} = 3.5$ Hz). The ^{31}P NMR spectrum shows two resonances at -10.9 and -14.9 ppm that correspond to the phosphines in anti and syn base adducts. In the ¹³C NMR spectrum in toluene, the alkylidene carbon resonance for the anti base adduct appears at 309.7 ppm and for the syn base adduct at 278.7 ppm. The anti to syn ratio does not change over a period of 3 days. When only 0.5 equiv of PMe3 was added to Mo(NAr)(CH-t-Bu)(CH₂-t-Bu)(OC₆F₅) in benzene, a sharp anti base adduct resonance was observed along with a broad alkylidene proton resonance for the syn adduct and the basefree species at room temperature. Apparently trimethylphosphine is lost more readily from the syn adduct than from the anti adduct. A weaker coordination of a base to a syn isomer is a common finding for bis(alkoxide) imido alkylidene complexes.^{2,15,17,18} The ready loss of trimethylphosphine from the syn isomer suggests that the constant ratio of anti to syn adducts is the result of ready equilibration of the two through loss of phosphine. When Mo(NAr)(CH-t-Bu)(CH₂-t-Bu)(OAr) is treated with 1 equiv of ROH (OR = OCMe₃, OAd, OC₆F₅), a mixture containing both Mo(NAr)(CH-t-Bu)(CH₂-t-Bu)(OAr) and Mo(NAr)(CH-t-Bu)(CH₂-t-Bu)(OR) (and the expected alcohols) is obtained (eq 4). On the basis of the structure obtained for Mo- $$\begin{array}{c} Ar \\ N \\ N \\ Ho \\ ArO \end{array} + ROH \\ Ar \\ Ar \\ - Bu \\ - Bu \\ - Mo \\ - t-Bu \\ - ArOH \\ - (4)$$ ⁽²¹⁾ Timperleya, C. M.; White, W. E. J. Fluorine Chem. 2003, 123, 65.(22) Willis, C. J. Coord. Chem. Rev. 1988, 88, 133. ⁽²³⁾ Patai, S., Ed. *The Chemistry of the Hydroxyl Group*; Wiley: New York, 1971. ⁽²⁴⁾ Lopez, L. P. H.; Schrock, R. R.; Müller, P. Submitted for publication in *Organometallics*. ⁽²⁵⁾ Schrock, R. R.; Crowe, W. E.; Bazan, G. C.; DiMare, M.; O'Regan, M. B.; Schofield, M. H. *Organometallics* **1991**, *10*, 1832. (NAr)(CH-t-Bu)(CH₂-t-Bu)(OC₆F₅)(PMe₃) (vide infra), we believe that the donor, in this case ROH, initially approaches the electrophilic metal center trans to the alkyl group: i.e., on the C_{ene}/N/O face (Scheme 1). The proton in theory could then migrate to the imido nitrogen, the alkylidene α -carbon atom, or the alkoxide oxygen. Reaction of Mo(NAr)(CHCMe₂Ph)-(CH₂CMe₃)₂ with ArOH in benzene-d₆ gave Mo(NAr)(CHCMe₂-Ph)(CH₂CMe₃)(OAr) in situ, which upon treatment with 1 equiv of Me₃COH produced a mixture that contained Mo(NAr)-(CHCMe₂Ph)(CH₂CMe₃)(OCMe₃) and Mo(NAr)(CHCMe₂Ph)-(CH₂CMe₃)(OAr) exclusively (along with ArOH and tert-butyl alcohol). If the proton were to migrate to the alkylidene α -carbon to give Mo(NAr)(CH2-t-Bu)2(OR)(OAr), that species either would be relatively
stable toward loss of neopentane (W(NAr)-(O-t-Bu)₂(CH₂-t-Bu)₂ is known¹⁹) or would lose neopentane to yield Mo(NAr)(CHR')(OR)(OAr), in which R' would most likely be either t-Bu or CMe₂Ph. Migration of the proton to the imido group at a rate that is faster than migration to the alkoxide cannot be ruled out, although migration to the imido α -nitrogen would have to be readily reversible. (Proton migration to the imido group to give an amido complex has not been observed for NAr = N-2,6-diisopropylphenyl).²⁶ Rearrangement of the new five-coordinate species containing ArOH (Scheme 1), e.g., via a turnstile mechanism, would yield a ArOH adduct of the same type that was formed initially (or its enantiomer), from which ArOH would be lost to generate the new monoalkoxide species. (As we will show in the X-ray section below, the structure of Mo(NAr)(CH-t-Bu)(CH₂-t-Bu)(OC₆F₅)(PMe₃) is highly distorted from any ideal; thus, a discussion of exchange in terms of ideal structures, rearrangements, etc. may not be valid.) The fact that even relatively acidic C₆F₅OH simply exchanges with OAr on the metal suggests that these catalysts may be "stable" in the presence of an alcohol functionality, at least if any mono(alkoxide) alkylidene that results from reaction with any alcohol in the system is itself reactive toward olefins. When a 0.05 M solution Mo(NAr)(CH-t-Bu)(CH₂-t-Bu)-(OC₆F₅) in benzene- d_6 was treated with 1 equiv of C₆F₅OH and the mixture was heated to 70 °C, what appears to be Mo(NAr)-(CH₂-t-Bu)(OC₆F₅)₃ (according to its proton NMR spectrum) is formed, along with unreacted Mo(NAr)(CH-t-Bu)(CH₂-t-Bu)-(OC₆F₅). When 2 equiv of C₆F₅OH was employed in a similar experiment, Mo(NAr)(CH₂-t-Bu)(OC₆F₅)₃ was then formed in good yield. Therefore, we suspect that under forcing conditions, at least with a relatively small and acidic alcohol, Mo(NAr)-(CH-t-Bu)(OC₆F₅)₂ is formed either directly (through addition of C₆F₅OH to Mo—C) or indirectly (through addition of C₆F₅OH to Mo—C followed by α abstraction) and that Mo(NAr)-(CH-t-Bu)(OC₆F₅)₂ reacts with C₆F₅OH rapidly to yield Mo-(NAr)(CH₂-t-Bu)(OC₆F₅)₃. X-ray Structures. The structure of Mo(NAr)(CH₂-t-Bu)₃-(OC₆F₅) is shown in Figure 1. Crystallographic details are given in Table 4 and selected distances and angles in Table 5. Mo-(NAr)(CH₂-t-Bu)₃(OC₆F₅) is a pseudo trigonal bipyramid with the imido and phenoxide ligands in the axial positions. The three equatorial neopentyl ligands are approximately 120° apart. All Mo-ligand distances are normal. The Mo-N-C(21) bond angle is 169.9(3)°, but the Mo-O-C(11) bond angle (163.0-(3)°) seems large for a phenoxide. It is not clear whether steric factors or π bonding from oxygen to Mo, or both, are responsible for the large Mo-O-C(11) angle. The Mo-C(31)-C(32), Mo-C(41)-C(42), and Mo-C(51)-C(52) angles are all near 120°, with no evidence of an α agostic CH interaction with the metal in preparation for α-hydrogen abstraction. Almost certainly, this TBP species rearranges into another in order that neopentane can be lost and Mo(NAr)(CH-t-Bu)(CH2-t-Bu)-(OC₆F₅) generated. In the species from which neopentane is lost, one neopentyl ligand must be in a relatively more crowded environment, with another neopentyl ligand approximately 90° to it that behaves as the leaving group. The structure of Mo(NAr)(CH-t-Bu)(CH₂-t-Bu)[OSi(O-t-Bu)₃]²⁰ (Tables 4 and 6; Figure 2) is typical of pseudotetrahedral species of this type.^{1,17} The structure shows extensive disorder, in which only the Mo atom is not involved. (See the Experimental Section for a discussion of the disorder.) Only the major component of the disorder is shown in Figure 2, although both sets of selected bond lengths and angles are listed in Table 6. The neopentylidene ligand in each molecule has a syn orientation in which the *tert*-butyl group points toward the imido nitrogen. The Mo–C(1) bond lengths (1.831(3) and 1.860(6) Å) and Mo–C(1)–C(2) bond angles (146.5(4) and 151.5(8)°) are typical for syn isomers. The neopentyl ligands appear to be normal, with Mo–C(6) distances of 2.144(5) and 2.259(6) Å and Mo–C(6)–C(7) angles of 118.1(5) and 116.6(6)°. Perhaps the largest differences between the two molecules are the Mo– **Figure 1.** Thermal ellipsoid drawing of $Mo(NAr)(CH_2-t-Bu)_3-(OC_6F_5)$. Table 4. Crystal Data and Structure Refinement Details for $Mo(NAr)(CH_2-t-Bu)_3(OC_6F_5)$, $Mo(NAr)(CH-t-Bu)(CH_2-t-Bu)[OSi(O-t-Bu)_3]$, $[Mo(NAr)(CH-t-Bu)(CH_2-t-Bu)(OC_6F_5)]_2$, and $Mo(NAr)(CH-t-Bu)(CH_2-t-Bu)(OC_6F_5)(PMe_3)^\alpha$ | | $\begin{array}{c} Mo(NAr)(CH_2\text{-}t\text{-}\\ Bu)_3(OC_6F_5) \end{array}$ | Mo(NAr)(CH-t-Bu)-
(CH ₂ -t-Bu)[OSi(O-
t-Bu) ₃] | [Mo(NAr)(CH-t-Bu)-
(CH ₂ -t-Bu)(OC ₆ F ₅)] ₂ | Mo(NAr)(CH-t-Bu
(CH ₂ -t-Bu)(OC ₆ F ₅
(PMe ₃) | |--|---|---|--|--| | identification code | 03254 | 05165 | 04051 | 04088 | | empirical formula | $C_{33}H_{50}F_5MoNO$ | C ₃₄ H ₆₅ MoNO ₄ Si | $C_{56}H_{76}F_{10}Mo_2N_2O_2$ | C ₃₁ H ₄₇ F ₅ MoNOP | | formula wt | 667.68 | 675.90 | 1191.07 | 671.61 | | temp (K) | 193(2) | 100(2) | 194(2) | 194(2) | | cryst syst | monoclinic | triclinic | triclinic | monoclinic | | space group | $P2_1/n$ | $P\overline{1}$ | $P\overline{1}$ | $P2_1/n$ | | unit cell dimens | - | | | | | a (Å) | 10.2823(7) | 9.7654(5) | 11.0135(14) | 11.0422(6) | | b (Å) | 17.4374(11) | 11.4342(5) | 11.2803(14) | 17.2364(9) | | c (Å) | 18.7360(12) | 18.8010(8) | 13.7273(17) | 18.4223(9) | | α (deg) | 90 | 97.7880(10) | 106.623(2) | 90 | | β (deg) | 92.240(2) | 97.465(2) | 98.447(2) | 105.176(2) | | γ (deg) | 90 | 108.6840(10) | 111.854(2) | 90 | | $V(\mathring{A}^3)$ | 3356.7(4) | 1936.44(15) | 1453.8(3) | 3484.0(3) | | \mathbf{Z} | 4 | 2 | 1 | 4 | | calcd density (Mg/m ³) | 1.321 | 1.159 | 1.360 | 1.318 | | abs coeff (mm ⁻¹) | 0.443 | 0.402 | 0.503 | 0.485 | | F(000) | 1400 | 728 | 616 | 1400 | | cryst size (mm ³) | $0.26 \times 0.21 \times 0.16$ | $0.20 \times 0.20 \times 0.07$ | $0.20 \times 0.16 \times 0.12$ | $0.16 \times 0.13 \times 0.1$ | | θ range (deg) | 1.60 - 27.48 | 1.11-29.13 | 1.62-28.26 | 1.65-25.68 | | index ranges | $-12 \le h \le 12$ | $-13 \le h \le 13$ | $-13 \le h \le 14$ | $-13 \le h \le 12$ | | | $-20 \le k \le 20$ | $-15 \le k \le 15$ | $-14 \le k \le 12$ | $-20 \le k \le 12$ | | | $-22 \le l \le 12$ | $-25 \le l \le 25$ | $-14 \le l \le 18$ | $-21 \le l \le 21$ | | no. of rflns collected | 20 925 | 42 470 | 9217 | 20 039 | | no. of indep rflns (<i>R</i> (int)) | 7666 (0.0689) | 10 424 (0.0283) | 6454 (0.0211) | 6423 (0.0466) | | completeness to $\theta = 29.13^{\circ}$ (%) | 99.5 | 99.8 | 89.6 | 99.9 | | abs cor | semiempirical | semiempirical | semiempirical | semiempirical | | max and min transmission | 0.9325 and 0.8934 | 0.9724 and 0.9239 | 0.9421 and 0.9061 | 0.9396 and 0.9264 | | no. of data/restraints/params | 7666/19/401 | 10 424/1389/750 | 6454/3/344 | 6423/126/416 | | goodness of fit on F^2 | 1.122 | 1.106 | 1.062 | 1.042 | | final R indices $(I > 2\sigma(I))$ | | | | | | R1 | 0.0722 | 0.0442 | 0.0471 | 0.0575 | | wR2 | 0.1211 | 0.1133 | 0.1215 | 0.1535 | | R indices (all data) | | | | | | R1 | 0.1122 | 0.0485 | 0.0521 | 0.0703 | | wR2 | 0.1318 | 0.1165 | 0.1264 | 0.1630 | | largest diff peak and hole (e $Å^{-3}$) | 0.732 and -1.285 | 1.642 and -0.559 | 1.965 and -0.807 | 1.667 and -0.809 | ^a In all cases the wavelength was 0.710 73 Å and the refinement method was full-matrix least squares on F². Table 5. Selected Bond Lengths (Å) and Angles (deg) for Mo(NAr)(CH₂-t-Bu)₃(OC₆F₅) | | ` /\ 2 | 75 (0 57 | | |----------------|------------|----------------|------------| | Mo-N(1) | 1.747(3) | Mo-C(41) | 2.140(4) | | Mo-O(1) | 2.006(2) | Mo-C(51) | 2.126(4) | | Mo-C(31) | 2.145(4) | | | | N(1)-Mo-O(1) | 174.34(14) | C(51)-Mo-C(31) | 121.33(16) | | N(1)-Mo-C(31) | 89.92(16) | C(51)-Mo-C(41) | 116.75(17) | | N(1)-Mo-C(41) | 92.87(16) | Mo-N(1)-C(21) | 169.9(3) | | N(1)-Mo-C(51) | 94.68(16) | Mo-O(1)-C(11) | 163.0(2) | | O(1)-Mo-C(31) | 84.51(14) | Mo-C(31)-C(32) | 121.3(3) | | O(1)-Mo-C(41) | 90.91(14) | Mo-C(41)-C(42) | 126.1(3) | | O(1)-Mo-C(51) | 87.36(14) | Mo-C(51)-C(52) | 121.5(3) | | C(41)-Mo-C(31) | 121.37(17) | Mo-O-C(11) | 162.9(2) | | | | | | O(1)—Si(1) angles of 134.5(2) and 148.8(3)°. We ascribe these variations to subtle differences in steric crowding in the two molecules. An X-ray study of [Mo(NAr)(CH-t-Bu)(CH₂-t-Bu)(OC₆F₅)]₂ shows it to be a centrosymmetric dimeric species in which the phenoxide unsymmetrically bridges two metals (Tables 4 and 7; Figure 3). Each phenoxide is covalently bound to one metal and behaves as a donor toward the other. The donor interaction takes place roughly trans to the alkylidene ligand (C(1)–Mo–O(1A) = 158.76(10)°) at a typical distance (Mo–O(1A) = 2.3509(19) Å). Formation of an adduct in which the base is trans to the alkylidene ligand has been observed in various base adducts through NMR spectroscopy, ²⁵ although structures of Table 6. Selected Bond Lengths (Å) and Angles (deg) for Mo(NAr)(CH-t-Bu)(CH₂-t-Bu)[OSi(O-t-Bu)₃] | | molecule 1 | molecule 2 | |---------------|------------|------------| | Mo-N(1) | 1.725(5) | 1.753(11) | | Mo-C(1) | 1.831(3) | 1.860(6) | | Mo-O(1) | 1.973(3) | 1.842(4) | | Mo-C(6) | 2.144(5) | 2.259(6) | | N(1)-Mo-C(1) | 106.8(4) | 109.5(8) | | N(1)-Mo-O(1) | 125.1(4) | 126.3(8) | | N(1)-Mo-C(6) | 103.1(4) | 98.1(8) | | C(1)-Mo-O(1) | 109.13(13) | 114.3(3) | | C(1)-Mo-C(6) | 98.11(17) | 92.7(3) | | O(1)-Mo-C(6) | 111.15(17) | 109.0(2) | | C(7)-C(6)-Mo | 118.1(5) | 116.6(6) | | Mo-N(1)-C(11) | 158.5(9) | 165.4(18) | | Mo-C(1)-C(2) | 146.5(4) |
151.5(8) | | Mo-O(1)-Si(1) | 134.5(2) | 148.8(3) | such species have been elucidated recently.²⁷ The neopentylidene has the syn orientation with normal bond lengths and angles $(Mo-C(1) = 1.912(3) \text{ Å} \text{ and } Mo-C(1)-C(2) = 143.9(2)^{\circ})$. The imido ligand is normal. This is a rare example of a dimeric form of a pseudotetrahedral high-oxidation-state imido alkylidene species, although other species that contain a relatively small alkoxide and a neopentylidene or neophylidene ligand almost certainly could form analogous dimeric species in the ⁽²⁷⁾ Schrock, R. R.; Gabert, A. J.; Singh, R.; Hock, A. S. *Organometallics* **2005**, *24*, 5058. **Figure 2.** Thermal ellipsoid drawing of Mo(NAr)(CH-t-Bu)(CH₂-t-Bu)[OSi(O-t-Bu)₃]. **Figure 3.** Thermal ellipsoid drawing of [Mo(NAr)(CH-t-Bu)(CH₂-t-Bu)(OC₆F₅)]₂. Table 7. Selected Bond Lengths (Å) and Angles (deg) for $[Mo(NAr)(CH-t-Bu)(CH_2-t-Bu)(OC_6F_5)]_2$ | Mo(1)-N(1) | 1.727(2) | Mo(1)=O(1) | 2.1112(19) | |-------------------------|------------|-----------------------|------------| | Mo(1)-C(1) | 1.912(3) | Mo(1) - O(1A) | 2.3509(19) | | Mo(1)-C(24) | 2.139(3) | | | | C(1)-Mo(1)-O(1) | 93.42(11) | N(1)-Mo(1)-O(1) | 135.69(10) | | O(1)- $Mo(1)$ - $C(24)$ | 114.79(10) | C(6)-O(1)-Mo(1A) | 119.31(16) | | N(1)-Mo(1)-C(1) | 100.63(12) | N(1)-Mo(1)-O(1A) | 98.24(9) | | C(12)-N(1)-Mo(1) | 168.2(2) | Mo(1) - O(1) - Mo(1A) | 113.89(8) | | N(1)-Mo(1)-C(24) | 104.00(12) | C(1)-Mo(1)-O(1A) | 158.76(10) | | Mo(1) - O(1) - C(6) | 126.71(16) | O(1A)-Mo(1)-C(24) | 85.02(10) | | C(1)-Mo(1)-C(24) | 99.69(13) | O(1)-Mo(1)-O(1A) | 66.11(8) | | C(2)-C(1)-Mo(1) | 143.9(2) | | | | | | | | solid state but simply have not been crystallographically characterized. "Ate" species are also known when the alkoxide is small; for example, addition of 3 equiv of LiOCH(CF₃)₂ to Mo(NAd)(CHCMe₂Ph)(OTf)₂(DME)²⁸ (Ad = 1-adamantyl) in diethyl ether yields off-white, crystalline, pentane-soluble Li-(DME)Mo(NAd)(CHCMe₂Ph)[OCH(CF₃)₂]₃.²⁹ The structure of $Mo(NAr)(CH-t-Bu)(CH_2-t-Bu)(OC_6F_5)-(PMe_3)$ (Tables 4 and 8; Figure 4) is a distorted trigonal bipyramid in which trimethylphosphine is approximately trans Table 8. Selected Bond Lengths (Å) and Angles (deg) for Mo(NAr)(CH-t-Bu)(CH₂-t-Bu)(OC₆F₅)(PMe₃) | Mo(1)-N(1) | 1.737(3) | Mo(1)=O(1) | 2.051(3) | |------------------|------------|----------------------|------------| | Mo(1)-C(1) | 1.881(8) | Mo(1) - C(6) | 2.199(4) | | Mo(1)-C(1A) | 1.96(3) | Mo(1)-P(1) | 2.5680(10) | | | | | | | N(1)-Mo(1)-C(1) | 113.0(3) | C(1)-Mo(1)-P(1) | 93.8(3) | | N(1)-Mo(1)-C(1A) | 93.5(6) | C(1A)-Mo(1)-P(1) | 93.8(7) | | N(1)-Mo(1)-O(1) | 134.93(15) | O(1)-Mo(1)-C(6) | 81.76(13) | | N(1)-Mo(1)-C(6) | 102.37(13) | O(1)-Mo(1)-P(1) | 73.84(9) | | N(1)-Mo(1)-P(1) | 90.34(10) | C(2)-Mo(1)-P(1) | 154.63(11) | | C(1)-Mo(1)-O(1) | 110.0(3) | Mo(1)-N(1)-C(17) | 162.5(3) | | C(1)-Mo(1)-C(1A) | 19.6(6) | Mo(1) - O(1) - C(11) | 141.7(3) | | C(1A)-Mo(1)-O(1) | 128.7(6) | Mo(1)-C(6)-C(7) | 126.1(3) | | C(1)-Mo(1)-C(6) | 101.0(3) | Mo(1)-C(1)-C(2) | 149.6(7) | | C(1A)-Mo(1)-C(6) | 107.0(7) | Mo(1)-C(1A)-C(2A) | 134(2) | to the neopentyl ligand (C(6)-Mo(1)-P(1) = 154.63(11)°); the neopentylidene, imido, and alkoxide ligands are all located in "equatorial" positions. The alkylidene ligand was found in two orientations (syn and anti) in a ratio of \sim 70:30, a circumstance not encountered in compounds of this type before. This disorder was refined with the help of restraints on the thermal parameters while setting the total occupancy to unity. The hydrogen atom on the major isomer was located in the difference map and refined using distance restraints. The H atom on the minor isomer was included on its geometrically calculated position and refined using a riding model. None of the bond lengths and angles is unusual, with one exception: The Mo(1)-P(1) bond length (2.5680(11) Å) is relatively long, which suggests that trimethylphosphine is relatively weakly bound and should be relatively labile, as found experimentally. In the syn form **Figure 4.** Thermal ellipsoid drawings of (A, top) *syn*-Mo(NAr)-(CH-t-Bu)(CH₂-t-Bu)(OC₆F₅)(PMe₃) and (B, bottom) *anti*-Mo-(NAr)(CH-t-Bu)(CH₂-t-Bu)(OC₆F₅)(PMe₃). ⁽²⁸⁾ Oskam, J. H.; Fox, H. H.; Yap, K. B.; McConville, D. H.; O'Dell, R.; Lichtenstein, B. J.; Schrock, R. R. *J. Organomet. Chem.* **1993**, 459, 185. ⁽²⁹⁾ Schrock, R. R.; Luo, S.; Lee, J. C. J.; Zanetti, N. C.; Davis, W. M. J. Am. Chem. Soc. **1996**, 118, 3883. the Mo–C(1) bond length is 1.881(8) Å and the Mo–C(1)–C(2) bond angle is 149.6(7)°. In the anti form the Mo–C(1A) bond length is 1.96(3) Å and the Mo–C(1A)–C(2A) bond angle is 137(2)°. Each is typical of a syn or anti isomer. The angle between the two α -carbon atoms in the two neopentylidene ligands in the two different isomers is 19.6(6)°. Therefore, angles at Mo for the two isomers differ slightly: e.g., N(1)–Mo–C(1) = 113.0(3)° (syn), while N(1)–Mo–C(1A) = 93.5(6)° (anti). It is striking that the structures of two species that differ so little are maintained in solution: i.e., distinct syn and anti adducts are observed in NMR spectra (vide supra). Syntheses of Tungsten Complexes. W(NAr)(CH-t-Bu)(CH₂t-Bu)₂ is a known compound that has been synthesized in six steps from WCl_6 ($WCl_6 \rightarrow WOCl_4 \rightarrow W(NAr)Cl_4(ether) \rightarrow$ $W(NAr)(O-t-Bu)_2Cl_2 \rightarrow W(NAr)(O-t-Bu)_2(CH_2-t-Bu)_2 \rightarrow W (NAr)(CH-t-Bu)Cl_2(dme) \rightarrow W(NAr)(CH-t-Bu)(CH_2-t-Bu)_2).$ ¹⁹ W(NAr)(CH-t-Bu)(CH₂-t-Bu)₂ also may be prepared through alkylation of W(NAr)(CH-t-Bu)(OTf)₂(dme).¹⁹ A third method of synthesis is to treat W(NAr)Cl₄(ether) with 4 equiv of LiCH₂t-Bu. So far, in our hands W(NAr)(CH-t-Bu)(CH₂-t-Bu)₂ obtained by the third method has been isolated only as a redbrown oil, even though its proton NMR spectrum showed it to be essentially pure. Alkylation of W(NAr)Cl₄(ether) with 4 equiv of neopentylmagnesium chloride in ether led to a mixture of W(NAr)(CH-t-Bu)(CH₂-t-Bu)₂ and W(NAr)(CH₂-t-Bu)₃Cl that could not be separated through recrystallization. However, if only 3 equiv of neopentylmagnesium chloride in ether are employed in pentane at -78 °C, then W(NAr)(CH₂-t-Bu)₃Cl can be isolated in pure form, but only in 35% yield (eq 5). The $$W(NAr)Cl_4(ether) \longrightarrow 3 t-BuCH_2MgCl$$ $$\downarrow t-Bu \longrightarrow t-Bu$$ $$t-Bu relatively low yield is largely a consequence of the high solubility of W(NAr)(CH₂-t-Bu)₃Cl in common organic solvents, which thereby complicates its separation from other highly soluble products of the reaction (e.g. W(NAr)(CH-t-Bu)(CH₂t-Bu)₂). The proton NMR spectrum of W(NAr)(CH₂-t-Bu)₃Cl suggests a pseudo-trigonal-bipyramidal structure, with three equivalent equatorial neopentyl groups, analogous to the structure of W(NAr)(CH₂-t-Bu)₃(OC₆F₅) shown in Figure 1. Further alkylation of W(NAr)(CH₂-t-Bu)₃Cl with LiCH₂-t-Bu then gives the desired W(NAr)(CH-t-Bu)(CH₂-t-Bu)₂ as a yellow-orange powder in quantitative yield (eq 5). Despite the low yield of isolated W(NAr)(CH₂-t-Bu)₃Cl prepared in this manner, and therefore the relatively high consumption of the neopentyl source (neopentyl chloride), this four-step synthesis $(WCl_6 \rightarrow WOCl_4 \rightarrow W(NAr)Cl_4(ether) \rightarrow W(NAr)(CH_2-t-Bu)_3-t-Bu)_3$ $Cl \rightarrow W(NAr)(CH-t-Bu)(CH_2-t-Bu)_2)$ is relatively facile; the first two steps are essentially quantitative and can be carried out on a large scale. This synthesis is analogous to the reported synthesis of W(NPh)(CH-t-Bu)(CH₂-t-Bu)₂ from W(NPh)(CH₂t-Bu)₃Cl.³⁰ As found for the analogous molybdenum complex, W(NAr)-(CH-t-Bu)(CH₂-t-Bu)₂ reacts with 1 equiv of alcohol in pentane or benzene at room temperature to give two types of products, W(NAr)(CH₂-t-Bu)₃(OR) (type $\bf A$) and W(NAr)(CH-t-Bu)(CH₂-t-Bu)(OR) (type $\bf B$). As shown in Table 2, the nature of the product obtained correlates roughly with the acidity of the alcohol used and approximately mirrors the results obtained for $Mo(NAr)(CH-t-Bu)(CH_2-t-Bu)_2$. Among the alcohols screened for this reaction, and under the conditions employed, only $(CF_3)_2CHOH$ gave a mixture of products **A** and **B**. Heating solutions of W(NAr)(CH₂-t-Bu)₃OR (OR = OC-(CF₃)₃, OC₆F₅) at 60 °C in benzene or toluene gave W(NAr)-(CH-t-Bu)(CH₂-t-Bu)(OR) species, a process that is analogous to that shown for the Mo species in eq 2. It should be noted that W(NAr)(CH-t-Bu)(CH₂-t-Bu)(OC₆F₅) was obtained in good yields only by heating *dilute* solutions (<0.05 M) of W(NAr)-(CH₂-t-Bu)₃(OC₆F₅). Attempts to isolate W(NAr)(CH-t-Bu)-(CH₂-t-Bu)(OC₆F₅) by heating progressively more concentrated solutions of W(NAr)(CH₂-t-Bu)₃(OC₆F₅) gave progressively higher percentages of [W(NAr)(CH₂-t-Bu)(OC₆F₅)]₂, the bimolecular decomposition product of W(NAr)(CH-t-Bu)(CH₂-t-Bu)-(OC₆F₅). ¹⁰ Interestingly, heating a solution of W(NAr)(CH₂-t-Bu)₃Cl gave W(NAr)(CH-t-Bu)(CH₂-t-Bu)Cl, which has been obtained only as an oil. Its 1 H and 13 C NMR spectra in C₆D₆ show a singlet at 8.83 ppm ($J_{HW} = 16$ Hz) and a doublet at 261.0 ppm ($J_{CH} = 114$ Hz, $J_{CW} = 171$ Hz), respectively. With the synthesis of $W(NAr)(CH_2-t-Bu)_3Cl$, a third route to $W(NAr)(CH-t-Bu)(CH_2-t-Bu)(OR)$ became accessible, e.g., the reaction between $W(NAr)(CH_2-t-Bu)_3Cl$ and a lithium alkoxide to give $W(NAr)(CH_2-t-Bu)_3(OR)$ followed by heating to give $W(NAr)(CH-t-Bu)(CH_2-t-Bu)(OR)$ (eq 6). In this manner $\begin{array}{lll} W(NAr)(CH-t-Bu)(CH_2-t-Bu)(OR) & complexes & with & OR = OCMe_2CF_3, OCMe(CF_3)_2, OCH(CF_3)_2, OCMe_3 & were prepared. \\ W(NAr)(CH-t-Bu)(CH_2-t-Bu)(OCMe_3), &
W(NAr)(CH-t-Bu)-(CH_2-t-Bu)-($ OCH(CF₃)₂, OCMe₃ Metathesis Activity. We were interested in whether M(NAr)-(CH-t-Bu)(CH₂-t-Bu)(OR) species would metathesize olefins. We now know that many M(NAr)(CHR')(CH₂-t-Bu)(OR) species that are formed when M(NAr)(CH-t-Bu)(CH₂-t-Bu)(OR) reacts with an internal olefin such as 3-hexene are unstable toward bimolecular decomposition to yield M=M-bonded species in which the neopentyl group is intact. Therefore, we felt that the neopentyl group should survive at least some metathesis reactions. Although this initial exploration of metathesis activity is relatively qualitative, it is important to establish some initial benchmarks. Complexes of the type Mo(NAr)(CH-t-Bu)(CH₂-t-Bu)(OR) (2b-e) are catalysts for various ring-closing metathesis reac- tions. Ring-closing of diallyl ether with either 2b or 2c is slow and incomplete. However, both 2d (OR = OAr) and 2e (OR = OC₆F₅) are relatively efficient, with 92% conversion in 6 min with 5% loading at 13.6 mM concentration of catalyst in C₆D₆. However, 2e appears to be relatively short-lived; a second 20 equiv was not metathesized rapidly when added to the first reaction mixture. However, when an additional 20 equiv was added after 15 min to the first reaction mixture involving 5% 2d, it was converted to product in 91% yield in \sim 1 h. Therefore, 2d appears to be the most efficient catalyst for diallyl ether under these conditions. Ring-closings of the amine substrates C, D, 31 and E^{32} by 2d and 2e (3.0–4.2 M (5%) in C_6D_6) were also fast, being complete in 5–30 min in C_6D_6 at room temperature. However, the reaction involving substrate ${\bf E}$ in the case of ${\bf 2e}$ went to only 85% completion, presumably as a consequence of decomposition of intermediates. Similar results were observed with analogous tungsten catalysts. Only the $OC(CF_3)_3$ and OAr catalysts ring-closed diallyl ether efficiently in 20 min (5 mol % loading) in C_6D_6 (0.01 M; 5%); the yields are 24% when $OR = OCMe_3$, 35% for $OR = OCMe_2CF_3$, 57% for $OR = OCMe(CF_3)_2$, 95% for $OR = OC(CF_3)_3$, 43% for $OR = OC_6F_5$, and 96% for OR = OAr. $W(NAr)(CH-t-Bu)(CH_2-t-Bu)_2$ is virtually inactive, while $W(NAr)(CH-t-Bu)(CH_2-t-Bu)C1$ (10% loading) yielded only 5% product in 20 min. The pentafluorophenoxide system again apparently is highly active, but intermediates also decompose rapidly in a bimolecular fashion to yield $[W(NAr)(CH_2-t-Bu)-(OC_6F_5)]_2$, 10 according to proton NMR spectra. W(NAr)(CH-t-Bu)(CH₂-t-Bu)[OC(CF₃)₃] and W(NAr)(CH-t-Bu)(CH₂-t-Bu)(OAr) were employed in ring closings of substrates **C**, **D**, **F**,³³ and **G**³¹ (5% in benzene). The reactions were >95% complete in 20 min at room temperature. In all cases an additional 20 equiv of substrate was not metathesized when added to the first completed reaction, even upon heating. The same general trend in reactivity was observed for the metathesis of cis-2-pentene by tungsten catalysts (5 mol % in benzene). Catalyst activity varied in the order $OR = OAr \approx OC(CF_3)_3 > OCMe(CF_3)_2 > OCMe_2CF_3 > OCMe_3$. Using 5 mol % catalyst, equilibrium was achieved within 20 min at room temperature when OR = OAr, $OC(CF_3)_3$ and 120 min when $OR = OCMe(CF_3)_2$. Equilibrium was not established within a period of 1 day at 25 °C using catalysts where $OR = OCMe_2$ - CF_3 , $OCMe_3$, only 50% and 30% conversion being observed, Scheme 2. Mechanism of Alcohol Addition to Dineopentyl Alkylidene Imido Species respectively. Again, bimolecular decomposition of the intermediate alkylidenes is a likely problem, although that remains to be proven. #### Discussion The results reported here suggest that alcohols can add cleanly to $M(NAr)(CH-t-Bu)(CH_2-t-Bu)_2$ and related species (M = Mo, W) to yield either M(NAr)(CH-t-Bu)(CH₂-t-Bu)(OR) or M(N-Ar)(CH₂-t-Bu)₃(OR) and that the latter can be transformed into the former upon heating (Scheme 2). Whether the alcohol adds to the M=C or M-C bond varies dramatically with the size and pK_a value of the alcohol and the conditions under which the reaction is run (e.g., in benzene or neat alcohol). In general, the higher the pK_a value of the alcohol, the more readily it adds to the M-C bond. It is not clear to us why this should be the case, nor can we assume that the imido group is innocent in such reactions. This selectivity recently has allowed the synthesis of well-defined analogues of Mo(NAr)(CH2-t-Bu)(CH2-t-Bu)-(OR) species on the surface of silica in which the silanols (Si_{surf}-OH) are relatively isolated from one another: i.e., Mo(NAr)-(CH₂-t-Bu)(CH₂-t-Bu)(OSi_{surf}).²⁰ These surface-supported species show olefin metathesis activities that appear to be higher than those of a homogeneous analogue. There are some parallels between the reactions reported here and those that involve Re(C-t-Bu)(CH-t-Bu)(CH₂-t-Bu)₂.⁶ The reaction between Re(C-t-Bu)(CH-t-Bu)(CH₂-t-Bu)₂ and a silica surface produces a Re(C-t-Bu)(CH-t-Bu)(CH₂-t-Bu)(OSi_{surf}) species that has been deduced to form via addition of Si_{surf}OH to both the Re-C and Re=C bonds (followed by rapid α abstraction under the conditions employed);^{3,34} no addition of Si_{surf}OH to the neopentylidyne ligand took place. The Re(C-t-Bu)(CH-t-Bu)(CH₂-t-Bu)(OSi_{surf}) species is an active olefin metathesis catalyst at room temperature. In solution Re(C-t-Bu)(CH-t-Bu)(CH₂-t-Bu)₂ was shown to react with Ph₃SiOH over a period of 12 h at room temperature to yield Re(C-t-Bu)-(CH-t-Bu)(CH₂-t-Bu)(OSiPh₃) as a 10:1 mixture of syn and anti isomers.³⁴ It is also known that HX ($X^- = C_6F_5O^-$, $CF_3SO_3^-$, BF₄⁻) reacts with Re(C-t-Bu)(CH-t-Bu)(CH₂-t-Bu)₂ rapidly in solution to give Re(C-t-Bu)(CH₂-t-Bu)₃X species, which upon subsequent treatment with L (L = py, CH_3CN , CD_3OD , THF) yield neopentane and $Re(C-t-Bu)(CH-t-Bu)(CH_2-t-Bu)(L)_nX$ (n = 1-3) species.³⁵ The preliminary metathesis results by catalysts of this type are encouraging. It is especially striking to note that M(NAr)-(CH-t-Bu)(CH₂-t-Bu)₂ species are virtually inactive for metath- ⁽³¹⁾ Dolman, S. J.; Sattely, E. S.; Hoveyda, A. H.; Schrock, R. R. J. Am. Chem. Soc. **2002**, *124*, 6991. ⁽³²⁾ Dolman, S. J.; Schrock, R. R.; Hoveyda, A. H. Org. Lett. 2003, 5, 4899 ⁽³³⁾ Alexander, J. B.; La, D. S.; Cefalo, D. R.; Hoveyda, A. H.; Schrock, R. R. J. Am. Chem. Soc. **1998**, 120, 4041. ⁽³⁴⁾ Chabanas, M.; Baudouin, A.; Copéret, C.; Basset, J.-M.; Lukens, W.; Lesage, A.; Hediger, S.; Emsley, L. J. Am. Chem. Soc. 2003, 125, 492. ⁽³⁵⁾ LaPointe, A. M.; Schrock, R. R. Organometallics 1995, 14, 1875. esis, while M(NAr)(CH-t-Bu)(CH₂-t-Bu)(OR) species can be highly active (OR = OAr, OC(CF₃)₃, OC₆F₅), although they also can be short-lived, especially for $OR = OC_6F_5$. Detailed investigations of the various steps in the metathesis reactions, as well as the stability of intermediates, clearly must be carried out in order to establish (inter alia) how stable the intermediate alkylidenes and metallacyclobutanes are. We already know that several of these neopentylidene species react readily with internal olefins to yield homochiral or heterochiral dimeric species of the type [M(NAr)(CH₂-t-Bu)(OR)]₂. At this stage we presume that dimers form through bimolecular decomposition of new and relatively small alkylidenes (e.g., propylidene).¹⁰ However, we cannot discount at this stage that metallacyclobutane¹⁷ rearrangement to an olefin is at least a competitive mode of "reduction" of the metal. We aim to establish the stability of metallacyclobutane species in future studies. Another factor that could prove to be important in the long run is that most of the (possibly interconverting) metallacy-clobutane intermediates that one can imagine as intermediates in these reactions are "electronically" unsymmetric at the metal: i.e., unsymmetric as a consequence of different elements being present in α positions, not unsymmetric merely as a consequence of asymmetry in the ligands themselves, as in a chiral diolate derivative. This stands in contrast to both trigonal-bipyramidal (TBP) and square-pyramidal (SP) metallacyclobutane
complexes derived from bis(alkoxide) species. ¹⁷ An electronically unsymmetric metallacyclobutane may more rapidly eject an olefin than one that is not electronically unsymmetric. Relevant to the results described here are some recent DFT-(B3PW91) calculations on systems of the type Re(C-t-Bu)(CH-t-Bu)(X)(Y), which are isoelectronic with Mo(NAr)(CH-t-Bu)(CH₂-t-Bu)(OR) species when X = alkyl and Y = alkoxide.³⁶ A key step in the reaction of Re(CR)(CHR')(alkyl)(alkoxide) species with an olefin is a distortion toward a trigonal monopyramid in which the alkyl ligand is in the axial position. This distortion prepares the metal for a weak interaction with an olefin (see **H**, where the incoming olefin is ethylene), and facile formation of a heavily distorted TBP metallacyclobutane intermediate with an "axial" alkylidyne and "axial" alkoxide. When both X and Y are alkoxides, then the barrier for addition of the olefin and conversion to the metallacycle is higher by several kilocalories. When both X and Y are alkyls, the barrier is higher still. These calculations help explain why addition of Re(C-t-Bu)(CH-t-Bu)(CH₂-t-Bu)₂ to silica(700) yielded a well-defined Re(C-t-Bu)(CH-t-Bu)(CH₂-t-Bu)(OSi_{surf}) species, which has an unusually high metathesis activity, ^{7,37} while homogeneous Re(C-t-Bu)(CH-t-Bu)(OR)₂ species are relatively poor metathesis catalysts. ^{38,39} Although bimolecular decomposition reactions are essentially eliminated on the surface at the mild temperatures employed, it seems plausible that there is not a linear relationship between the electron-withdrawing ability of the two atoms attached to the metal and reactivity and that "distorted" and, in particular, *unsymmetric* (at the metal) species have shallower energy surfaces leading to and from a metallacyclobutane intermediate. This is potentially an important new insight in olefin metathesis reactions with well-defined species. ## **Experimental Section** General Considerations. All operations were performed under a nitrogen atmosphere in the absence of oxygen and moisture in a Vacuum Atmospheres glovebox or using standard Schlenk procedures. The glassware, including NMR tubes, were flame- and/or oven-dried prior to use. Ether, pentane, toluene, and benzene were degassed with dinitrogen and passed through activated alumina columns. Dimethoxyethane was distilled from a dark purple solution of sodium benzophenone ketyl and degassed three times by freezepump—thaw techniques. Dichloromethane was distilled from CaH₂ under N₂. All dried and deoxygenated solvents were stored over 4 Å molecular sieves in a nitrogen-filled glovebox. ¹H, ¹³C, and ¹⁹F NMR spectra were acquired at room temperature (unless otherwise noted) using Varian Mercury (1H, 300 MHz; 13C, 75 MHz; 19F, 282 MHz) and Varian Inova (1H, 500 MHz; 13C, 125 MHz) spectrometers and referenced to the residual protio solvent resonances or external C₆F₆ (-163.0 ppm). Elemental analyses were performed by H. Kolbe Mikroanalytisches Laboratorium, Mülheim an der Ruhr, Germany. Mo(NAr)(CH-t-Bu)(OTf)2(dme) was prepared as described in the literature. 16 Neopentylmagnesium chloride and neophylmagnesium chloride were titrated against propanol in a THF solution using 1,10-phenanthroline as an indicator immediately prior to use. All other chemicals were procured from commercial sources and used as received. W(NAr)Cl₄(Et₂O), $W(NAr)(CH_2-t-Bu)_3(OC_6F_5)$, $W(NAr)(CH_2-t-Bu)_3Cl$, $W(NAr)(CH_2-t-Bu)_3Cl$ t-Bu)(CH₂-t-Bu)₂, W(NAr)(CH-t-Bu)(CH₂-t-Bu)[OC(CF₃)₃], and W(NAr)(CH-t-Bu)(CH₂-t-Bu)(OAd) were prepared as described in the literature. 10,19 Mo(NAr)(CH-t-Bu)(CH₂-t-Bu)₂ (1a). A solution (23.5 mL) of 1.85 M neopentylmagnesium chloride solution in ether was added dropwise to a prechilled solution of 15.88 g (21.76 mmol) of Mo-(NAr)(CH-t-Bu)(OTf)₂(dme) in 270 mL of ether. The color changed from yellow to deep red-orange as a precipitate formed. The mixture was stirred for 12 h, ether was removed in vacuo, and the residue was extracted with pentane. The pentane extract was filtered through Celite, and the pentane was removed in vacuo to afford 9.75 g of a red powder (93% yield) that was pure enough for further reactions: ${}^{1}\text{H NMR (C}_{6}\text{D}_{6}) \delta 9.50 \text{ (s, 1, C} H\text{CMe}_{3}, J_{\text{CH}} = 108 \text{ Hz),}$ 7.05 (br s, 3, Ar H), 3.99 (sept, 2, CHMe₂), 2.76 (d, 2, CHHCMe₃), 1.30 (d, 12, CHMe₂), 1.22 (s, 18, CH₂CMe₃), 1.17 (s, 9, CHCMe₃), $0.62 (d, 2, CHHCMe_3); {}^{13}C NMR (C_6D_6) \delta 255.0 (CHCMe_3), 154.2$ (C_{ipso}), 144.8 (C_{ortho}), 127.2 (C_{para}), 123.5 (C_{meta}), 77.9 (CH₂CMe₃), 47.1 (CHCMe₃), 34.8 (CH₂CMe₃), 34.1 (CH₂CMe₃), 32.7 (CHC- Me_3), 29.2 (CHMe₂), 24.9 (CHMe₂). Anal. Calcd for C₂₇H₄₉NMo: C, 67.05; H, 10.21; N, 2.90; Mo, 19.84. Found: C, 66.79; H, 10.08; N, 3.18; Mo, 20.04. **Mo(NAr)(CHCMe₂Ph)(CH₂-t-Bu)**₂ (**1b).** A 4.27 mmol reaction was carried out in a manner virtually identical with that above for **1** to give 1.52 g (65%) of the product as a red-orange powder: 1 H NMR (1 C₆D₆) δ 9.69 (s, 1, CHCMe₂Ph), 7.44 (d, 2, CHCMe₂Ph), 7.16 (m, 2, CHCMe₂Ph), 7.05 (br s, 3, Ar 1 H), 3.97 (sept, 2, CHMe₂), 2.71 (d, 2, CH 1 CHCMe₃), 1.54 (s, 6, CHC 1 CHCMe₂Ph), 1.26 (d, 12, CH 1 CH 1 Ph), 1.14 (s, 18, CH 1 CCMe₃), 0.74 (d, 2, CH 1 CCMe₃); 13 C NMR (1 C₆D₆) δ 252.8, 154.2, 149.5, 145.0, 128.7, 127.4, 126.6, 126.5, 123.6, 78.3, 52.9, 34.5, 33.9, 32.1, 28.8, 24.5. Anal. Calcd for 1 C₃CH 1 CMCC, 70.43; H, 9.42; N, 2.57. Found: C, 70.25; H, 9.27; N, 2.56. Mo(NAr)(CH-t-Bu)(CH₂CMe₂Ph)₂ (1c). This complex was obtained as a deep red oil from the reaction between Mo(NAr)-(CH-t-Bu)(OTf)₂(dme) and neophylmagnesium chloride in a pro- ⁽³⁶⁾ Solans-Monfort, X.; Clot, E.; Copéret, C.; Eisenstein, O. J. Am. Chem. Soc. 2005, 127, 14015. ⁽³⁷⁾ Chabanas, M.; Baudouin, A.; Copéret, C.; Basset, J. M. J. Am. Chem. Soc. 2001, 123, 2062. ⁽³⁸⁾ Toreki, R.; Schrock, R. R. J. Am. Chem. Soc. 1990, 112, 2448. (39) Toreki, R.; Vaughan, G. A.; Schrock, R. R.; Davis, W. M. J. Am. Chem. Soc. 1993, 115, 127. cedure analogous to the preparation of **1a**: ${}^{1}H$ NMR ($C_{6}D_{6}$) δ 8.85 (s, 1, CHCMe₃), 7.38-7.16 (overlapping resonances, 10, CHCMe₂Ph), 7.07 (br s, 3, Ar H), 4.00 (sept, 2, CHMe₂), 2.65 (d, 2, CHHCMe₂Ph), 1.44-0.99 (33, CHCMe₂Ph, CHMe₂, CH₂CMe₃), 0.63 (d, 2, CHHCMe₂Ph); 13 C NMR (C₆D₆) δ 259.4, 154.2, 152.8, 149.7, 145.1, 129.1, 127.3, 126.6, 126.4, 123.7, 77.1, 46.6, 40.6, 34.7, 34.1, 32.9, 32.1, 31.8, 29.6, 28.6, 24.6, 24.1. Mo(NAr)(CH-t-Bu)(CH₂-t-Bu)[OCH(CF₃)₂] (2a). Perfluoro-2-propanol (97 μ l, 0.91 mmol, 2.2 equiv) was added to a solution of 200 mg (0.41 mmol) of Mo(NAr)(CH-t-Bu)(CH₂-t-Bu)₂ in 5 mL of toluene. The reaction mixture was stirred for 16 h and stored at −20 °C to afford red-orange crystals in 52% yield (124 mg): ¹H NMR (C_6D_6) δ 11.80 (s, 1, CHCMe₃, $J_{CH} = 116$ Hz), 6.99 (m, 3, Ar H), 4.55 (sept, 1, (CF₃)₂CHO), 3.73 (sept, 2, CHMe₂), 2.42 (d, 1, CHHCMe₃, $J_{CH} = 13$ Hz), 2.16 (d, 1, CHHCMe₃), 1.27 (d, 6, CHMe₂), 1.24 (d, 6, CHMe₂), 1.18 (s, 9, CH₂CMe₃), 1.11 (s, 9, CHCMe₃); 13 C NMR (C₇D₈) δ 284.5, 153.2, 146.5, 123.7, 58.7, 48.1, 33.7, 32.7, 31.9, 31.4, 30.5, 28.4, 24.6, 23.8; ¹⁹F NMR (C₆D₆) δ –74.97 (CF₃), –75.17 (CF₃). Anal. Calcd for $C_{25}H_{39}NOF_6Mo$: C, 51.81; H, 6.78; N, 2.42. Found: C, 51.64; H, 6.79; N, 2.36. $Mo(NAr)(CH-t-Bu)(CH_2-t-Bu)(OAd)$ (2b). Mo(NAr)(CH-t-t-Bu)(CH-t-t-Bu)(CH-t-t-Bu)(CH-t-Bu)(Bu)(CH₂-t-Bu)₂ (520 mg, 1.07 mmol) was placed in a 25 mL scintillation vial, and 1-adamantanol (163 mg, 1.07 mmol) and 6 mL of pentane were added. The reaction mixture was stirred overnight at room temperature. Removing the volatiles in vacuo afforded an orange-yellow powder that could be washed with cold pentane to obtain a fine yellow powder, yield 502 mg (83%): ¹H NMR (C₆D₆) δ 11.71 (s, 1, CHCMe₃, J_{CH} = 115 Hz), 7.07 (br s, 3, Ar H), 3.99 (sept, 2, CHMe₂), 2.38 (d, 1, CHHCMe₃, $J_{CH} = 13$ Hz), 2.12 (d, 1, CHHCMe₃), 2.05 (br s, 3, CH), 1.92 (m, 6, CH₂), 1.51 (s, 6, CH₂),
1.29 (m, 30, CHMe₂, CH₂CMe₃, CHCMe₃); ¹³C NMR (C_6D_6) δ 275.7, 153.2, 145.3, 126.6, 123.6, 79.0, 52.7, 46.7, 36.7, 34.5, 32.2, 31.9, 29.2, 24.9, 24.1. Anal. Calcd for C₃₂H₅₃-NOMo: C, 68.18; H, 9.48; N, 2.48. Found: C, 68.03; H, 9.32; N, Mo(NAr)(CH-t-Bu)(CH₂-t-Bu)(OCMe₃) (2c). Mo(NAr)(CH-t-Bu)(CH₂-t-Bu)₂ (1 g, 2.07 mmol) was placed in a 100 mL heavywalled pressure vessel along with a magnetic stirrer, and 1.1 equiv of t-BuOH (169 mg, 2.28 mmol) and 10 mL of toluene were added to it. Stirring the reaction mixture at 80 °C for 2 h caused the color of the solution to change from red to dark yellow-orange. Removing toluene in vacuo resulted in a dark orange oil that was dissolved in a minimum amount of pentane and stored at -20 °C to give 0.97 g (96%) of a yellow-brown powder: 1 H NMR ($C_{6}D_{6}$) δ 11.63 (s, 1, CHCMe₃, $J_{CH} = 115$ Hz), 7.05 (br s, 3, Ar H), 3.96 (sept, 2, $CHMe_2$), 2.38 (d, 1, $CHHCMe_3$, $J_{CH} = 13$ Hz), 2.09 (d, 1, CHHCMe₃), 1.35 (s, 9, OCMe₃), 1.29 (d, 12, CHMe₂), 1.26 (s, 9, CH_2CMe_3), 1.21 (s, 9, $CHCMe_3$); ¹³C NMR (C_6D_6): δ 275.9, 153.1, 145.3, 126.6, 123.5, 79.8, 52.7, 46.7, 34.5, 32.9, 32.2, 29.2, 24.9, 24.1. Anal. Calcd for C₂₆H₄₇NOMo: C, 64.31; H, 9.76; N, 2.88. Found: C, 64.38; H, 9.69; N, 2.81. Alternatively, when a pentane solution of 1a and 1.1 equiv of t-BuOH is stirred for 12 h, the product is obtained quantitatively as an orange powder. $Mo(NAr)(CH-t-Bu)(CH_2-t-Bu)(OAr)$ (2d). To Mo(NAr)(CH-t-Bu)(CHt-Bu)(CH₂-t-Bu)₂ (500 mg, 1.03 mmol) in 5 mL of pentane was added 210 μ L (203 mg, 1.13 mmol) of 2,6-diisopropylphenol, and the reaction mixture was stirred for 12 h at room temperature. After the solvent was removed, a red waxy material was obtained. This waxy material was dissolved in a minimum amount of pentane, and the solution was stored at -20 °C; a red-orange solid (575 mg) was filtered off (95% yield): ^{1}H NMR ($C_{6}D_{6}$) δ 11.99 (s, 1, $CHCMe_3$, $J_{CH} = 116 Hz$), 7.07 (d, 2, Ar H), 7.00 (t, 1, Ar H), 6.97 (br s, 3, Ar H), 3.55 (sept, 4, CHMe₂), 2.72 (d, 1, CHHCMe₃, J_{CH} = 13 Hz), 2.35 (d, 1, CHHCMe₃), 1.34–1.13 (overlapping signals, 42, CHMe₂, CH₂CMe₃, CHCMe₃); 13 C NMR (C₆D₆): δ 277.7, 159.1, 153.4, 145.6, 137.2, 127.3, 123.8, 123.5, 122.4, 59.5, 47.7, 33.9, 32.2, 30.0, 28.4, 24.7, 24.0, 23.2. Anal. Calcd for C₃₄H₅₅-NOMo: C, 69.24; H, 9.40; N, 2.37. Found: C, 69.26; H, 9.29; N, Mo(NAr)(CH-t-Bu)(CH₂-t-Bu)(OC₆F₅) (2e). A solution of Mo- $(NAr)(CH_2-t-Bu)_3(OC_6F_5)$ (1.4 g, 2.10 mmol) in 11 mL of toluene was stirred and heated at 60 °C for 8 h in a heavy-walled pressure vessel. The light yellow color of the solution darkened. Toluene was removed in vacuo to leave an orange-yellow solid. Washing this solid with cold pentane over a fine-porosity frit gave 1.01 g (81%) of a pale yellow powder: ¹H NMR (C_6D_6) δ 12.07 (s, 1, $CHCMe_3$, $J_{CH} = 116 \text{ Hz}$), 6.99 (m, 3, Ar H), 3.75 (sept, 2, $CHMe_2$), 2.61 (d, 1, CHHCMe₃, $J_{CH} = 13$ Hz), 2.22 (d, 1, CHHCMe₃), 1.24 (d, 12, CH Me_2), 1.22 (s, 9, CH₂C Me_3), 1.08 (s, 9, CHC Me_3); ¹³C NMR (C_6D_6) δ 286.5, 153.3, 146.5, 123.8, 60.4, 48.2, 33.6, 32.8, 31.2, 30.7, 29.9, 24.5, 23.8; ¹⁹F NMR (C_6D_6) δ -160.83 (d, 2), -165.07 (t, 2), -169.83 (t, 1). Anal. Calcd for $C_{28}H_{38}NOF_5Mo$: C, 56.47; H, 6.43; N, 2.35. Found: C, 56.28; H, 6.28; N, 2.40. Mo(NAr)(CH₂-t-Bu)₃[OCH(CF₃)₂] (3a). A few drops of neat (CF₃)₂CHOH were added to 20 mg (0.04 mmol) of Mo(NAr)(CHt-Bu)(CH₂-t-Bu)₂; a yellow suspension formed immediately. The reaction mixture was stirred for 10 min and the excess alcohol removed in vacuo to yield the product quantitatively: ¹H NMR (C_6D_6) δ 6.98 (m, 3, Ar H), 5.22 (sept, 1, $(CF_3)_2CHO$), 4.06 (sept, 2, CHMe₂), 2.51 (s, 6, CH₂CMe₃), 1.24 (d, 12, CHMe₂), 1.13 (s, 27, CH₂CMe₃); ¹³C NMR (C₆D₆) δ 146.4, 124.6, 123.7, 82.9, 58.6, 47.9, 37.1, 33.7, 31.9, 31.3, 30.4, 29.7, 25.6, 24.6, 23.8. Mo(NAr)(CH₂-t-Bu)₃(OC₆F₅) (3e). Pentafluorophenol (761 mg, 4.14 mmol) was added all at once to a solution of Mo(NAr)(CHt-Bu)(CH₂-t-Bu)₂ (2 g, 4.14 mmol) in 10 mL of pentane. Stirring the reaction mixture for 6 h and removing the volatile components in vacuo afforded an orange-brown solid, which was washed with cold pentane to get a bright yellow solid (1.80 g, 66%). Alternatively, the orange-brown solid can be dissolved in a minimum amount of pentane and the solution stored at −20 °C for 24 h to afford a yellow crystalline material in 75% yield: ¹H NMR (C₆D₆) δ 6.99 (br s, 3, Ar H), 4.14 (sept, 2, CHMe₂), 2.73 (s, 6, CH₂-CMe₃), 1.28 (d, 12, CHMe₂), 1.14 (s, 27, CH₂CMe₃); ¹³C NMR (C_6D_6) δ 150.5, 128.7, 124.9, 123.8, 84.5, 36.9, 33.7, 31.9, 29.9, 28.9, 25.7, 24.5, 23.7; ^{19}F NMR (C₆D₆) δ -157.39 (d, 2), -165.53(t, 2), -171.94 (t, 1). Anal. Calcd for C₃₃H₅₀NOF₅Mo: C, 59.36; H, 7.55; N, 2.10; Mo, 14.37; F, 14.23. Found C, 59.40; H, 7.42; N, 2.12; Mo, 14.40; F, 14.16. $Mo(NAr)(CH_2-t-Bu)_3[OC(CF_3)_3]$ (3f). Neat $(CF_3)_3COH$ was added to 20 mg (0.04 mmol) of Mo(NAr)(CH-t-Bu)(CH₂-t-Bu)₂ to obtain a yellow-orange suspension immediately. Stirring the reaction mixture for 10 min and removing the excess alcohol yielded a yellow-orange solid almost quantitatively that contains <5% of **2f**: 1 H NMR (C₆D₆) δ 7.03 (m, 3, Ar H), 4.21 (sept, 1, CHMe₂), 2.84 (s, 6, CH₂CMe₃), 1.35 (d, 12, CHMe₂), 1.24 (s, 27, CH₂CMe₃); ¹³C NMR (C_6D_6): δ 151.2, 150.3, 128.7, 125.1, 83.9, 37.9, 33.8, 31.1, 28.7, 25.5. 22.9. Conversion of Mo(NAr)(CH₂-t-Bu)₃[OCH(CF₃)₂] (3a) into Mo(NAr)(CH-t-Bu)(CH₂-t-Bu)[OCH(CF₃)₂] (2a). Mo(NAr)(CH₂t-Bu)₃[OCH(CF₃)₂] (20 mg) was dissolved in 0.6 mL of C₆D₆ in a J. Young NMR tube to give a yellow solution. Heating the tube to 60 °C overnight resulted in darkening of the color of the solution. The ¹H NMR spectrum showed that **3a** had been converted quantitatively into 2a. Mo(NAr)(CH-t-Bu)(CH₂-t-Bu)(OC₆F₅)(PMe₃). Mo(NAr)(CH₂t-Bu)₃(OC₆F₅) (200 mg, 0.34 mmol) was taken up in 2 mL of pentane, and 5 equiv of PMe₃ (174 μ L, 1.68 mmol) was added to it via a microsyringe. Stirring for 2 h afforded a green suspension, from which volatiles were removed in vacuo to obtain a lime-lemon (green-yellow) solid in almost quantitative yield. Recrystallization in a minimum amount of pentane at -20 °C overnight afforded yellow crystals in 72% yield (162 mg): ^{1}H NMR (C₆D₆) δ 13.3 (d, $J_{\text{CH}} = 136.1 \text{ Hz}$, ${}^{3}J_{\text{HP}} = 3.5 \text{ Hz}$, 1, anti-CHCMe₃), 10.8 (s, J_{CH} = 107.7 Hz, 1, syn-CHCMe₃); 13 C NMR (toluene- d_8) δ 309.7, 278.7; 31 P NMR (C_6D_6) δ -10.9, -14.9. Conversion of Mo(NAr)(CH₂-*t*-Bu)₃[OC(CF₃)₃] (3f) into Mo(NAr)(CH-*t*-Bu)(CH₂-*t*-Bu)[OC(CF₃)₃] (2f). A yellow solution was obtained when 20 mg of 3f was dissolved in 0.6 mL of C_6D_6 in a J. Young NMR tube. Heating the tube to 60 °C overnight produced a darker solution whose ¹H NMR spectrum (C_6D_6) was consistent with the formation of 2f: δ 12.21 (s, 1, CHCMe₃, J_{CH} = 116 Hz), 6.98 (m, 3, Ar H), 3.71 (sept, 2, CHMe₂), 2.54 (d, 1, CHHCMe₃, J_{CH} = 13 Hz), 2.18 (d, 1, CHHCMe₃), 1.21 (d, 6, CH Me_2), 1.24 (d, 6, CH Me_2), 1.15 (s, 9, CH₂C Me_3), 1.07 (s, 9, CHC Me_3). General Method Employed for Metathesis Reactions. In all reactions involving diallyl ether, a \sim 0.3 M solution of diallyl ether in C_6D_6 and 10 μL of anisole (an internal standard) were placed in a J. Young NMR tube and 5 mol % of the catalyst was then added. The tube was capped, and the solution was allowed to stand at room temperature. In other cases, 10 mg of the substrate was taken up in 0.5 mL of C_6D_6 followed by addition of 5 mol % of catalyst. Conversions were determined by 1H NMR spectroscopy (500 MHz). W(NAr)(CH-t-Bu)(CH₂-t-Bu)(OC₆F₅). A solution of 2.00 g of W(NAr)(CH₂-t-Bu)₃(OC₆F₅) in ~150 mL of benzene was heated at 60 °C for 12 h. After this time, the solution was concentrated
to dryness. The product was then taken up in pentane and the solution filtered. Removal of volatiles in vacuo from the filtrate gave a yellow powder, which was collected on a frit, washed with cold pentane, and dried in vacuo to give 1.5 g (88% yield) of the product: 1 H NMR (C_6D_6) δ 9.29 (s, 1, J_{HW} = 15 Hz), 7.10 (m, 3), 3.76 (m, 2), 2.80 (d, 1, J_{HH} = 15 Hz), 2.34 (d, 1, J_{HH} = 15 Hz), 1.28 (d, 6), 1.26 (d, 6), 1.21 (s, 9), 1.14 (s, 9); 19 F NMR (C_6D_6) δ –160.0 (d, 2), –164.2 (t, 2), –167.3 (td, 1); 13 C NMR (C_6D_6) δ 260.5 (J_{CH} = 105 Hz, J_{CW} = 178 Hz), 152.5, 145.8, 145.2, 141.4, 139.5, 137.4, 135.3, 127.3, 123.5, 61.8 (J_{CW} = 123 Hz), 46.8, 34.0, 32.9, 29.6, 24.4, 23.7. Anal. Calcd for WNOC₂₈H₃₈F₅: C, 49.21; H, 5.60; N, 2.05. Found: C, 49.09, H, 5.51, N, 1.97. W(NAr)(CH₂-t-Bu)(CH₂-t-Bu)Cl. W(NAr)(CH₂-t-Bu)₃Cl (500 mg, 0.822 mmol) was dissolved in a minimum amount of benzene and heated at 60 °C for 8 h. The volatiles were then removed in vacuo to give a red oil which was pure by NMR: ¹H NMR (toluene- d_8 , 500 MHz) δ 8.83 (s, 1, $J_{\rm HW}$ = 16 Hz), 7.05 (m, 3), 3.74 (m, 2), 2.84 (d, 1, $J_{\rm HH}$ = 15 Hz), 1.87 (d, 1, $J_{\rm HH}$ = 15 Hz), 1.26 (d, 6), 1.24 (d, 6), 1.19 (s, 9), 1.09 (s, 9); ¹³C NMR (C₆D₆) δ 261.0 ($J_{\rm CH}$ = 114 Hz, $J_{\rm CW}$ = 171 Hz), 145.05, 127.55, 123.43, 71.84 (t) ($J_{\rm CW}$ = 117 Hz), 62.33, 47.32, 35.04, 33.90, 32.75, 29.35, 24.26, 23.98. Anal. Calcd for WNC₂₂H₃₈Cl: C, 49.31; H, 7.15; Cl, 6.62; N, 2.61. Found: C, 49.24, H, 7.09, Cl, 6.71; N, 2.68. Representative Procedure for the Reaction between W(NAr)-(CH-t-Bu)(CH₂-t-Bu)₂ and ROH To Give the Corresponding W(NAr)(CH-t-Bu)(CH₂-t-Bu)(OR). One equivalent of the alcohol was added to a solution of W(NAr)(CH-t-Bu)(CH₂-t-Bu)₂ in pentane, and the resulting mixture was stirred for 8 h at room temperature. Removal of the solvent in vacuo gave the crude product, which may be recrystallized from pentane to give the pure compound. Representative Procedure for the Reaction between W(NAr)-(CH₂-t-Bu)₃Cl and LiOR To Give W(NAr)(CH-t-Bu)(CH₂-t-Bu)(OR). To a solution of W(NAr)(CH₂-t-Bu)₃Cl in benzene was added as a solid 1 equiv of LiOR. The reaction mixture was stirred and heated at 60 °C overnight as it was being stirred. It was filtered through a bed of Celite, and the filtrate was concentrated to dryness to give the desired product. **W(NAr)(CH-t-Bu)(CH₂-t-Bu)(OCMe₃).** The product was obtained as a yellow powder in quantitative yield: ¹H NMR (C_6D_6 , 500 MHz) δ 8.80 (s, 1, J_{HW} = 14 Hz), 7.17 (d, 2), 7.12 (t, 1), 3.95 (m, 2), 2.53 (d, 1, J_{HH} = 15 Hz), 2.16 (d, 1, J_{HH} = 15 Hz), 1.36 (s, 27), 1.34 (d, 6), 1.28 (d, 6); ¹³C NMR (C_6D_6) δ 253.6 (J_{CH} = 106 Hz), 152.95, 144.28, 128.68, 125.63, 123.31, 82.10, 56.37 (J_{CW} = 122 Hz), 50.07, 45.74, 34.62, 33.81, 32.49, 32.35, 28.85, 24.67, 24.01. Anal. Calcd for $C_{26}H_{47}NOW$: C, 54.45; H, 8.26; N, 2.44. Found: C, 54.36, H, 8.18, N, 2.41. W(NAr)(CH-t-Bu)(CH₂-t-Bu)[OCMe₂(CF₃)]. The product was obtained as a yellow powder in quantitative yield: 1 H NMR (C₆D₆, 500 MHz) δ 8.88 (s, 1, $J_{\rm HW} = 16$ Hz), 7.17 (d, 2), 7.13 (t, 1), 3.89 (m, 2), 2.59 (d, 1, $J_{\rm HH} = 15$ Hz), 2.19 (d, 1, $J_{\rm HH} = 15$ Hz), 1.43 (s, 3), 1.40 (s, 3), 1.35 (d, 6), 1.34 (d, 6), 1.26 (s, 9), 1.25 (s, 9); 19 F NMR (C₆D₆) $^{-}$ 82.1 (s); 13 C NMR (C₆D₆) δ 256.05 ($J_{\rm CH} = 109$ Hz, $J_{\rm CW} = 180$ Hz), 152.64, 144.80, 128.68, 126.40, 126.13, 123.40, 81.91, 58.79 ($J_{\rm CW} = 122$ Hz), 46.17, 34.81, 34.33, 33.42, 32.55, 28.95, 26.78, 25.56, 25.14, 24.74, 23.89. Anal. Calcd for C₂₆H₄₄F₃-NOW: C, 49.77; H, 7.07; N, 2.23. Found: C, 49.62, H, 7.16, N, 2.27 W(NAr)(CH-t-Bu)(CH₂-t-Bu)[OCMe(CF₃)₂]. The product was obtained as a yellow powder in quantitative yield: 1 H NMR (2 C₆D₆, 500 MHz) δ 9.00 (s, 1, $J_{HW} = 15$ Hz), 7.08 (d, 2), 7.05 (t, 1), 3.75 (m, 2), 2.59 (d, 1, $J_{HH} = 15$ Hz), 2.16 (d, 1, $J_{HH} = 15$ Hz), 1.46 (s, 3), 1.28 (d, 6), 1.25 (d, 6), 1.16 (s, 9), 1.13 (s, 9); 19 F NMR (2 C₆D₆) δ -77.3 (q, 3) and -77.9 (q, 3); 13 C NMR (2 C₆D₆) δ 259.15 ($J_{CH} = 115$ Hz, $J_{CW} = 180$ Hz), 152.42, 145.23, 128.69, 127.05, 125.39, 123.50, 61.17 ($J_{CW} = 123$ Hz), 46.61, 34.80, 34.07, 33.07, 32.81, 29.05, 24.85, 23.81, 19.86. Anal. Calcd for 2 C₂G₄H₄F₆NOW: C, 45.83; H, 6.06; N, 2.06. Found: C, 46.04, H, 6.15, N, 2.18. **W(NAr)(CH-t-Bu)(CH₂-t-Bu)[OC(H)(CF₃)₂].** The product was obtained as a red oil in quantitative yield: ¹H NMR (C_6D_6) δ 8.96 (s, 1, $J_{\rm HW}=15$ Hz), 7.05 (m, 3), 4.50 (m, 1), 3.70 (m, 2), 2.58 (d, 1, $J_{\rm HH}=15$ Hz), 2.13 (d, 1, $J_{\rm HH}=15$ Hz), 1.28 (d, 6), 1.26 (d, 6), 1.14 (s, 9), 1.12 (s, 9); ¹⁹F NMR (C_6D_6) δ -74.0 (q, 3) and -74.3 (q, 3). W(NAr)(CH-t-Bu)(CH₂-t-Bu)(OAr). The product was obtained as a yellow-orange powder: 1 H NMR (C_6D_6 , 500 MHz) δ 9.37 (s, 1, $J_{\rm HW}=15$ Hz), 7.06 (d, 2), 7.02 (t, 1), 6.97 (m, 3), 3.58 (m, 2), 3.52 (m, 2), 2.96 (d, 1), 2.31 (d, 1), 1.34 (s, 9), 1.30 (s, 9), 1.26 (d, 6), 1.21 (d, 6), 1.20 (d, 6), 1.03 (d, 6); 13 C NMR (C_6D_6) δ 255.15 ($J_{\rm CH}=116$ Hz), 158.44, 152.83, 150.80, 144.46, 137.52, 134.13, 126.33, 124.16, 123.82, 123.34, 123.21, 121.47, 117.91, 62.12 ($J_{\rm CW}=123$), 46.60, 34.13, 33.90, 29.68, 29.31, 25.56, 24.50, 23.10. Anal. Calcd for $C_{35}H_{59}$ NOW: C, 60.60; H, 8.57; N, 2.02. Found: C, 60.48, H, 8.51, N, 2.04. X-ray Structures. Low-temperature diffraction data were collected on a Siemens Platform three-circle diffractometer coupled to a Bruker-AXS Smart Apex CCD detector with graphitemonochromated Mo K α radiation ($\lambda = 0.71073$ Å), performing φ - and ω -scans. All structures were solved by direct methods using SHELXS⁴⁰ and refined against F^2 on all data by full-matrix least squares with SHELXL-97.41 All non-hydrogen atoms were refined anisotropically. All hydrogen atoms (except the hydrogen atoms on carbon that binds directly to molybdenum in the structures of $Mo(NAr)(CH_2-t-Bu)_3(OC_6F_5)$, $Mo(NAr)(CH-t-Bu)(CH_2-t-Bu)(OC_6F_5)$, and (NAr)(CH-t-Bu)(CH₂-t-Bu)(OC₆F₅)(PMe₃), which have been taken from the difference Fourier synthesis and refined semi-freely with the help of distance restraints) were included into the model at geometrically calculated positions and refined using a riding model. The isotropic displacement parameters of all hydrogen atoms were fixed to 1.2 times the U value of the atoms they are linked to (1.5 times for methyl groups). Details of the data quality and a summary of the residual values of the refinements are given in Table The structure of Mo(NAr)(CH-t-Bu)(CH₂-t-Bu)[OSi(O-t-Bu)₃] shows extensive disorder, in which only the Mo atom is not involved. The NAr ligand displays a 64:36 disorder, corresponding to an approximate rotation about the Mo—N axis. All other nonmetal atoms are involved in a 56:44 disorder, also corresponding to an approximate rotation about the Mo—N axis. It would seem most ⁽⁴⁰⁾ Sheldrick, G. M. Acta Crystallogr., Sect. A 1990, 46, 467. ⁽⁴¹⁾ Sheldrick, G. M. SHELXL-97; Universität Göttingen, Göttingen, Germany, 1997. likely that the nitrogen atom should not be disordered at all. However, the model improved significantly (both in the geometry and in the residual factors of the refinement) when the nitrogen position was split. The Mo atom may also be disordered (relatively high displacement parameters), but the fact that the two relative occupancies of the described disorders are refined to significantly different values speaks against a whole-molecule disorder. Thus, the Mo atom was refined as not disordered and the two disorders were treated as independent. They were refined with the help of similarity restraints on 1-2 and 1-3 distances and displacement parameters as well as rigid bond restraints for anisotropic displacement parameters. The ratios were refined freely, while the total occupancy of both components was constrained to unity. The hydrogen atoms on the carbon atoms that bind directly to the Mo atom (C1, C1A, C6, and C6A) have all been located in the difference Fourier synthesis and were refined semi-freely with the help of distance restraints. **Acknowledgment.** We thank Dr. William M. Davis for collecting data for **3e**, members of the group of A. H. Hoveyda for gifts of metathesis substrates, and the National Science Foundation (Grant Nos. CHE-9988766 and CHE-0138495) for supporting this research. **Supporting Information Available:** Tables and figures giving crystal data and structure refinement details, atomic coordinates and equivalent isotropic displacement parameters, bond lengths and angles, anisotropic displacement parameters, hydrogen coordinates, and isotropic displacement parameters and additional views for Mo-(NAr)(CH₂-*t*-Bu)₃(OC₆F₅), [Mo(NAr)(CH-*t*-Bu)(CH₂-*t*-Bu)(OC₆F₅)]₂, Mo(NAr)(CH-t-Bu)(CH₂-t-Bu)(OC₆F₅)(PMe₃). This material is available free of charge via the Internet at http://pubs.acs.org. Data for the four structures are also available to the public at http://www.reciprocalnet.org/. The identification code in Table 4 identifies each structure at this site. OM050978A