Reactions of Ring-Slipped Iron Complexes Derived from P(=S)Ph-Bridged [1]Ferrocenophane: Synthesis of Bis(half-sandwich) Heterodinuclear Complexes

Yuki Imamura, Kazuyuki Kubo, Tsutomu Mizuta,* and Katsuhiko Miyoshi

Department of Chemistry, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Japan

Received January 7, 2006

P(=S)Ph-bridged [1]ferrocenophane, [Fe{ $(\eta^5-C_5H_4)_2P(=S)Ph$ }] (1), reacted under UV-vis photoirradiation with P(OMe)₃, P(OMe)₂Ph, or PMe₃ to give respective ring-slipped products. The reaction with $P(OMe)_3$ afforded [Fe{ $(\eta^5-C_5H_4)(\eta^1-C_5H_4)P(=S)Ph$ }{ $P(OMe)_3$ }] (2a), while the bulkier $P(OMe)_2Ph$ gave initially the similar complex **2b**, but gradual dissociation of the η^1 -C₅H₄ moiety took place from the iron center in THF to form $[Fe{\eta^5-C_5H_4P(=S)Ph(C_5H_4)-\kappa S}{P(OMe)_2Ph}_2]$ (4b), in which the $\eta^5-C_5H_4$ ring bearing a P=S pendant group adopted an unprecedented $\eta^5 - \kappa S$ coordination mode and the other C₅H₄ group left the coordination sphere of the iron atom. The reaction with PMe₃ gave directly the corresponding η^5 - κS product 4c in ether, but its P=S group was replaced in THF with the remaining PMe₃ to give $[Fe{(\eta^5-C_5H_4)P(=S)Ph(C_5H_4)}(PMe_3)_3]$ (3c) with the P(=S)Ph(C_5H_4) group dangling from the $\eta^5-C_5H_4$ ring. When **2a** having an η^1 -C₅H₄ group was allowed to react with [M(CO)₃(NCMe)₃] (M = Mo, W), the iron-molybdenum and -tungsten heterodinuclear complexes $\{\mu - \eta^5: \eta^5: (C_5H_4)_2P(=S)Ph-\kappa S\}[Fe\{P(OMe)_3\}_2]$ $[M(CO)_3]$ (M = Mo (5-Mo), W (5-W)) were obtained, in which the two metal fragments were linked with an η^5 -C₅H₄P(=S)Ph(η^5 -C₅H₄)- κS bridge. In addition, **5-Mo** and **5-W** were readily converted in acetonitrile to the respective acetonitrile complexes $\{\mu - \eta^5: \eta^5 - (C_5H_4)_2 P(=S)Ph\}[Fe(NCMe)\{P(OMe)_3\}_2]$ $[M(CO)_3]$, with the P=S group giving up coordination to the iron center. A variety of these reaction patterns observed were discussed in terms of steric bulkiness and basicity of the phosphorus ligands concerned.

Introduction

Dinuclear metal complexes in which two metal centers are held in close proximity have received continuous interest, because a cooperative interaction with a substrate is expected for the two metal centers.¹ A linked bis(cyclopentadienyl) ligand ($C_5H_4-ER_n-C_5H_4^{2-}$) is a useful bridging system for the dinuclear bis(half-sandwich)-type complexes, in which each cyclopentadienyl ring holds a respective metal center firmly. A variety of such dinuclear complexes have been reported, but most of them are those whose ER_n group is CR_2 or SiR_2 , simply because free ligands are readily available as alkali-metal salts.^{2,3} On the other hand, the phosphorus analogues ($ER_n = PR$, P(= O)R, P(=S)R) are considerably limited in number,^{4,5} primarily because of the difficulty of preparing a free bridging ligand $(C_5H_5)_2$ PR due to its instability,⁶ though some of its derivatives have been reported as noted below. One notable example is a thallium salt, Tl₂(C₅H₄)₂PPh, which was prepared and used by Anderson and Lin⁷ for the preparation of an *ansa*-zirconocene dichloride derivative, but the toxicity of Tl limits its utility. Other examples classified broadly as a phosphorus-linked bis(cyclopentadienyl) ligand are (indenyl)₂PPh^{2-,8} (fluorenyl)₂PPh^{2-,9} and

^{*} To whom correspondence should be addressed. Fax: +81-82-424-0729. E-mail: mizuta@sci.hiroshima-u.ac.jp.

^{(1) (}a) Ceccon, A.; Santi, S.; Orian, L.; Bisello, A. Coord. Chem. Rev. **2004**, 248, 683–724. (b) Roesky, H. W.; Haiduc, I.; Hosmane, N. S. Chem. Rev. **2003**, 103, 2579–2595. (c) Albinati, A.; Venanzi, L. M. Coord. Chem. Rev. **2000**, 200–202, 687–715. (d) Wheatley, N.; Kalck, P. Chem. Rev. **1999**, 99, 3379–3419. (e) Stephan, D. W. Coord. Chem. Rev. **1989**, 95, 41–107.

^{(2) (}a) Bitterwolf, T. E.; Gallagher, S.; Rheingold, A. L.; Guzei, A. I.; Liable-Sands, L. Inorg. Chim. Acta 2005, 358, 449-451. (b) Bitterwolf, T. E.; Saygh, A.; Haener, J. L.; Fierro, R.; Shade, J. E.; Rheingold, A. L.; Liable-Sands, L.; Alt, H. G. Inorg. Chim. Acta 2002, 334, 54-58. (c) Bitterwolf, T. E.; Everly, S. C.; Rheingold, A. L.; Yapp, G. J. Organomet. Chem. 1997, 531, 1-7. (d) Mkoyan, S. G.; Aliev, Z. G.; Urazovskii, I. F.; Atovmyan, L. O.; Nifant'ev, I. E.; Butakov, K. A. Izv. Akad. Nauk, Ser. Khim. 1996, 9, 2269-2272. (e) County, G. R.; Dickson, R. S.; Fallon, G. D.; Jenkins, S. M.; Johnson, J. J. Organomet. Chem. 1996, 526, 279-294. (f) Fierro, R.; Bitterwolf, T. E.; Rheingold, A. L.; Yap, G. P. A.; Liable-Sands, L. M. J. Organomet. Chem. 1996, 524, 19-30. (g) Bitterwolf, T. E.; Shade, J. E.; Hansen, J. A.; Rheingold, A. L. J. Organomet. Chem. 1995, 503, 277-287.

^{(3) (}a) Zhang, Y.; Cervantes-Lee, F.; Pannell, K. H. J. Organomet. Chem. 2001, 634, 102–108. (b) Zhang, Y.; Wang, B.; Xu, S.; Zhou, X.; Sun, J. *Transition Met. Chem.* 1999, 24, 722–725. (c) Froehlich, R.; Gimeno, J.; Gonzalez-Cueva, M.; Lastra, E.; Borge, J.; Garcia-Granda, S. Organometallics 1999, 18, 3008–3015. (d) Amor, F.; de Jesus, E.; Perez, A. I.; Royo, P.; Vazquez de Miguel, A. Organometallics 1996, 15, 365–369. (e) Sharma, S.; Cervantes, J.; Mata-Mata, J. L.; Brun, M.-C.; Cervantes-Lee, F.; Pannell, K. H. Organometallics 1995, 14, 4269–4274. (f) Galakhov, M. V.; Gil, A.; de Jesus, E.; Royo, P. Organometallics 1995, 14, 3746–3750.

⁽⁴⁾ Although bis(ferrocenyl)phosphines also have a C_5H_4 -PR- $C_5H_4^{2-}$ bridge, they are eliminated from the present classification, because the iron center of the ferrocenyl unit is practically inert to substitution and other chemical transformations.

^{(5) (}a) Wrackmeyer, B.; Biersack, M.; Brendel, H. D.; Herberhold, M. Z. Naturforsch., B: Chem. Sci. **1992**, 47, 1397–1402. (b) Herberhold, M.; Biersack, M. J. Organomet. Chem. **1990**, 381, 379–389. (c) Mathey, F.; Lampin, J. P. J. Organomet. Chem. **1977**, 128, 297–304. (d) Nesmeyanov, A. N.; Anisimov, K. N.; Valueva, Z. P. Dokl. Akad. Nauk SSSR **1974**, 216, 106–109

⁽⁶⁾ Mathey, F.; Lampin, J.-P. Tetrahedron 1975, 31, 2685.

^{(7) (}a) Anderson, G. K.; Lin, M. *Inorg. Chim. Acta* **1988**, *142*, 7–8. (b) Anderson, G. K.; Lin, M. *Organometallics* **1988**, *7*, 2285–2288. The Tl₂- $(C_{5}H_{4})_{2}PPh$ they prepared is not a simple salt of Tl⁺ but is actually a Tl⁺ complex whose central metal is readily replaced with transition-metal halides.

 $(C_5Me_4)_2PPh^{2-}$,¹⁰ all of which carry substituents stabilizing the cyclopentadienyl ring electronically and/or sterically.

In the course of our studies on a ring-opening reaction of the phosphorus-bridged [1]ferrocenophane **1**,¹¹ **1** was found to give the ring-slippage product **2** upon photoirradiation.^{11e} Since **2** has an η^{1} -C₅H₄ moiety available for η^{5} coordination toward a second metal fragment, it is considered to be a promising precursor for the preparation of C₅H₄-P(=S)R-C₅H₄²⁻-bridged heterodinuclear complexes. In addition, a P=S group of the P(= S)R linker can work as a Lewis base, in contrast with the usual C₅H₄-ER₂-C₅H₄²⁻ systems (ER₂ = CR₂, SiR₂), for which no such additional functionality is expected. Here, we report a novel synthetic route to C₅H₄-P(=S)R-C₅H₄²⁻-bridged heterodinuclear complexes which have a C₅H₄-P=S moiety adopting an unprecedented η^{5} - κS coordination mode.

Results and Discussion

Ring-Slippage Reaction. The P(=S)Ph-bridged [1]ferrocenophane 1 suffers severe steric strain, 12 because the two C₅H₄ rings are bridged with a single phosphorus atom. Upon photoirradiation of 1 in the presence of an excess amount of phosphite or phosphine, ring slippage of one of the C₅H₄ rings takes place to relieve the steric strain (Scheme 1).^{11e,13} The structure of the slipped ring depends on the phosphorus ligand used, as follows. Photolysis in the presence of P(OMe)₃ in THF gives the piano-stool-type iron complex 2a, bearing an η^1 -C₅H₄ group and two P(OMe)₃ ligands as legs, whereas the corresponding photolysis with PMe_3 gives the complex 3c, bearing three PMe₃ legs with the $P(=S)PhC_5H_4$ group dangling from the η^5 -C₅H₄ group bound to the metal center.^{11e} To obtain more information controlling the reaction patterns, a similar reaction was carried out using P(OMe)₂Ph. The cone angles of P(OMe)₂Ph, $P(OMe)_3$, and PMe_3 and pK_a values of their conjugate acids are 120, 107, and 118° and 2.6, 2.6, and 8.65, respectively;^{14,15} P(OMe)₂Ph has a basicity similar to that of P(OMe)₃ but has a large cone angle comparable to that of PMe₃.

After photoirradiation of a THF solution of **1** in the presence of $P(OMe)_2Ph$, a ³¹ $P{^1H}$ NMR spectrum of the reaction mixture showed major signals at 208.8 and 30.6 ppm and minor signals

(10) (a) Shin, J. H.; Bridgewater, B. M.; Churchill, D. G.; Parkin, G. *Inorg. Chem.* **2001**, *40*, 5626–5635. (b) Shin, J. H.; Hascall, T.; Parkin, G. Organometallics **1999**, *18*, 6–9. (c) Shin, J. H.; Parkin, G. *Inorg. Chem. Commun.* **1999**, *2*, 428–430.

(11) (a) Mizuta, T.; Imamura, Y.; Miyoshi, K.; Yorimitsu, H.; Oshima, K. Organometallics **2005**, 24, 990–996. (b) Mizuta, T.; Onishi, M.; Nakazono, T.; Nakazawa, H.; Miyoshi, K. Organometallics **2002**, 21, 717–726. (c) Mizuta, T.; Onishi, M.; Miyoshi, K. Organometallics **2000**, 19, 5005–5009. (d) Mizuta, T.; Yamasaki, T.; Nakazawa, H.; Miyoshi, K. Organometallics **1996**, 15, 1093–1100. (e) Mizuta, T.; Imamura, Y.; Miyoshi, K. J. Am. Chem. Soc. **2003**, 125, 2068–2069.

(12) (a) Butler, I. R.; Cullen, W. R.; Einstein, F. W. B.; Rettig, S. J.; Willis, A. J. Organometallics **1983**, 2, 128–135. (b) Seyferth, D.; Withers, H. P. J. Organometallics **1982**, 1, 1275–1282. (c) Withers, H. P. J.; Seyferth, D.; Fellmann, J. D.; Garrou, P. E.; Martin, S. Organometallics **1982**, 1, 1283–1288. (d) Osborne, A. G.; Whiteley, R. H.; Meads, R. E. J. Organomet. Chem. **1980**, 193, 345–357. (e) Stoeckli-Evans, H.; Osborne, A. G.; Whiteley, R. H. J. Organomet. Chem. **1980**, 194, 91–101.

(13) Tanabe, M.; Bourke, S. C.; Herbert, D. E.; Lough, A. J.; Manners, I. Angew. Chem., Int. Ed. 2005, 44, 5886.

(14) Tolman, C. A. Chem. Rev. 1977, 77, 313-348.

(15) (a) Suresh, C. H.; Koga, N. *Inorg. Chem.* 2002, *41*, 1573–1578.
(b) Rahman, M. M.; Liu, H. Y.; Eriks, K.; Prock, A.; Giering, W. P. *Organometallics* 1989, 8, 1–7.

at 205.8 and 204.1 ppm (AB quartet, $J_{\rm PP} = 124$ Hz) and at 28.5 ppm. The major signals decreased significantly in intensity after several hours, while the minor signals increased. This change was found to be suppressed almost completely in a less polar solvent such as ether. Thus, the product 2b, giving the major signals, was isolated successfully by a separate reaction in ether. The molecular structure of 2b was determined by X-ray analysis, as shown in Figure 1, where the $C_5H_4-P(=S)Ph C_5H_4{}^{2-}$ moiety adopts a coordination mode similar to that in 2a reported previously,^{11e} and the iron fragment adopts a pianostool geometry with η^5 -C₅H₄, η^1 -C₅H₄, and two P(OMe)₂Ph groups as ligands. Positions of the two C=C bonds in the η^{1} -C₅H₄ ring were readily assigned on the basis of the geometrical parameters; summations of bond angles around C6 and C7 atoms are 359.1 and 360.0°, respectively, and the C6-C7 and C9-C10 bond lengths are 1.378(2) and 1.335(3) Å, respectively, which are significantly smaller than those of the other three C-C bonds in the η^1 -C₅H₄ ring. These structural characteristics are consistent with the right-hand structure in Figure 1 and are similar to those of 2a.^{11e} However, notable structural differences were found between 2a and 2b in bond angles around the iron center; the P-Fe-P angle of 101.02(2)° in the P(OMe)₂Ph complex 2b is larger than the corresponding angle of 95.67(7)° in the P(OMe)₃ analogue 2a, whereas the two P-Fe-C7(η^{1} - C_5H_4) angles of 88.87(5) and 93.60(5)° in **2b** are smaller than those of 93.3(2) and 95.3(2)° in 2a. These differences indicate that the two bulkier P(OMe)₂Ph ligands in 2b bring about a severe steric congestion around the iron center to exert a larger steric demand on the η^1 -C₅H₄ ring, which is probably responsible for the spontaneous dissociation of the η^1 -C₅H₄ ring from the iron center in a polar solvent (vide infra). Since 2b dissolved in CDCl₃ also transformed gradually to 4b, which gave the minor ³¹P NMR signals in the reaction mixture mentioned above, we were obliged to measure the ¹H NMR spectrum of 2b contaminated with 4b in CDCl₃. However, the signals at 3.09 and 3.22 ppm and at 6.46 and 6.53 ppm were identified as those due to the CH₂ and two olefin protons, respectively, of the η^{1} - C_5H_4 ring in **2b**, though several signals of **2b** overlapped with those of 4b. These assignments are consistent with the X-ray structure of the η^1 -C₅H₄ ring found in **2b**.

^{(8) (}a) Adams, J. J.; Berry, D. E.; Curnow, O. J.; Fern, G. M.; Hamilton, M. L.; Kitto, H. J.; Pipal, J. R. *Aust. J. Chem.* **2003**, *56*, 1153–1160. (b) Brady, E. D.; Hanusa, T. P.; Pink, M.; Young, V. G. J. *Inorg. Chem.* **2000**, *39*, 6028–6037. (c) Paine, R. T.; Light, R. W.; Maier, D. E. *Inorg. Chem.* **1979**, *18*, 368–371.

⁽⁹⁾ Alt, H. G.; Jung, M. J. Organomet. Chem. 1998, 568, 127-131.

Figure 1. ORTEP drawing of **2b** with 50% thermal ellipsoids. Selected bond distances (Å) and angles (deg): Fe-C7 = 1.9791-(16), Fe-C1 = 2.0886(17), Fe-P2 = 2.1392(5), Fe-P3 = 2.1530-(5), S-P1 = 1.9602(7), P1-C6 = 1.7627(18), P1-C1 = 1.8063-(19), C6-C10 = 1.466(2), C6-C7 = 1.378(2), C7-C8 = 1.527(2), C8-C9 = 1.504(3), C9-C10 = 1.335(3); P2-Fe-P3 = 101.02-(2), C7-Fe-P2 = 88.87(5), C7-Fe-P3 = 93.60(5), C6-P1-C1 = 98.38(8), P1-C1-Fe = 115.15(9), C7-C6-P1 = 117.69(13), C7-C6-C10 = 112.31(16), C10-C6-P1 = 129.10(14), C6-C7-Fe = 122.89(12), C8-C7-Fe1 = 132.78(12), C6-C7-C8 = 104.33(14).

4b was isolated after a THF solution of 2b was allowed to stand for several hours (Scheme 1). ³¹P{¹H} NMR signals of 4b were found to be shifted as a whole only slightly upfield compared with those of 2b as stated above, suggesting a structural resemblance of 4b to 2b around the phosphorus atom. Notable differences between them in the ¹H NMR spectra were discerned with respect to the signals assigned to the slipped C₅H₄ ring; the CH₂ signals of the η^1 -C₅H₄ ring observed in **2b** disappeared completely in 4b, while the total intensity of the olefinic proton signals around 6.0-6.5 ppm increased from 2H to 4H. In addition, ¹³C{¹H} NMR signals of the olefinic carbons appearing at 113.6 and 115.3 ppm in 4b could be assigned to the anionic $C_5H_4^-$ freed from coordination, judging from their chemical shifts close to 109.9 and 114.6 ppm of the $C_5H_4^-$ group in the complex 3c reported previously^{11e} and to the 114.3 and 116.9 ppm signals of $Ph_3P^+-C_5H_4^{-.16}$ In contrast, the chemical shift of the ipso carbon of the C₅H₄⁻ group showed some difference among the above three compounds: 105.2, 88.7, and 127 ppm, respectively. These spectral data indicate that one of the C₅H₄ rings in **4b** has completely dissociated from the iron center, the resulting vacant coordination site having been occupied probably with a sulfur atom of the P=S group. Although, to our knowledge, 4b seems to provide the first example of an η^5 - κS coordination mode with a P=S pendant attached to the η^{5} -C₅H₄ ring,¹⁷ a similar coordination mode is definitely established in the dinuclear complexes **5-Mo** and **5-W**, which be described in the next section (vide infra).

The driving force for the facile dissociation of the n^1 -C₅H₄ ring in 2b to form 4b in THF is considered to be the steric demand exerted by the two P(OMe)₂Ph ligands as mentioned above. In fact, $P(OMe)_3$ in **2a** having basicity comparable to, but a cone angle smaller than, those of P(OMe)₂Ph does not induce such dissociation in THF at room temperature. Because PMe₃ has a cone angle comparable to that of P(OMe)₂Ph, the PMe₃ analogue (4c) of 4b is expected to be formed when 1 is allowed to react with PMe₃. 4c was actually obtained directly by the photolysis of 1 in ether containing excess PMe₃, where immediate precipitation of 4c took place, enabling us to isolate 4c (Scheme 1). However, when the photolysis was carried out in THF, the free PMe₃ ligand present gradually replaced the coordinating P=S group in 4c to eventually give 3c with the coordination-free P(=S)Ph(C₅H₄) group dangling from the η^5 -C₅H₄ ring, as stated earlier (Scheme 1). However, a complex having an η^1 -C₅H₄ ring, that is, the PMe₃ analogue (2c) of 2a, was not observed. It is likely that 2c was once formed also in this case, but probably it immediately transformed to 4c through the more facile dissociation of the η^1 -C₅H₄ ring in **2c** compared to that in 2a. Since the steric demand of PMe₃ is comparable to that of P(OMe)₂Ph, as judged from their similar cone angles, a much greater donating ability of the two PMe₃ ligands is considered to be one of the probable factors which contribute additionally to the more facile dissociation in 2c.

Preparation of Heterodinuclear Complexes. The ringslippage product **2a** was allowed to react with $M(CO)_3(NCMe)_3$ (M = Mo, W) in THF (eq 1).

In the IR spectrum of the resulting product, $\nu(CO)$ absorptions were observed at 1914 and 1806 cm^{-1} for M = Mo and at 1907 and 1802 cm⁻¹ for M = W, indicating the C₅H₄ group adopting an η^5 coordination mode to the M(CO)₃ fragment.¹⁸ Structures of the products 5-Mo and 5-W were determined by X-ray analysis, as shown in Figures 2 and 3, respectively, where the Fe fragment and the Mo or W fragment are linked through an $(\eta^5-C_5H_4)_2P(=S)Ph^{2-}$ bridging ligand. Bitterwolf et al. reported a similar η^{1} - to η^{5} -C₅H₄ conversion, in which Ru(CO)₂(η^{5} : η^{1} - $C_5H_4CR_2C_5H_4$) reacted with M(CO)₃(NCMe)₃ (M = Mo, W), to give a heterodinuclear complex having a direct Ru-M bond, i.e., $(\mu - \eta^5 : \eta^5 - C_5 H_4 CR_2 C_5 H_4) [Ru(CO)_2] [M(CO)_3]$.¹⁹ In **5-Mo** and 5-W, the Fe atom is not bonded to the Mo or W atom, resulting in a zwitterionic dinuclear structure. The absence of a Fe-M bond in 5-Mo and 5-W is attributable to the steric bulkiness of the P(OMe)₃ ligands on the Fe fragment, which blocks a close

^{(16) (}a) Gray, G. A. J. Am. Chem. Soc. 1973, 95, 5092-5094. (b)
Ammon, H. L.; Wheeler, G. L.; Watts, P. H., Jr. J. Am. Chem. Soc. 1973, 95, 6158-6163. (c) Holy, N. L.; Baenziger, N. C.; Flynn, R. M.; Swenson, D. C. J. Am. Chem. Soc. 1976, 98, 7823-7824.

^{(17) (}a) Okuda, J. Dalton Trans. 2003, 12, 2367–2378. (b) Britovsek,
G. J. P.; Gibson, V. C.; Wass, D. F. Angew. Chem., Int. Ed. 1999, 38, 428–447. (c) McKnight, A. L.; Waymouth, R. M. Chem. Rev. 1998, 98, 2587–2598.

^{(18) (}a) Brumas-Soula, B.; Dahan, F.; Poilblanc, R. *New J. Chem.* **1998**, 22, 15–23. (b) Gladysz, J. A.; Williams, G. M.; Tam, W.; Johnson, D. L.; Parker, D. W.; Selover, J. C. *Inorg. Chem.* **1979**, *18*, 553–558. (c) Goldman, A. S.; Tyler, D. R. *J. Am. Chem. Soc.* **1986**, *108*, 89–94.

⁽¹⁹⁾ Bitterwolf, T. E.; Saygh, A. A.; Shade, J. E.; Rheingold, A. L.; Yap, G. P. A.; Liable-Sands, L. M. *Inorg. Chim. Acta* **2000**, *300*–302, 800–809.

Figure 2. ORTEP drawing of **5-Mo** with 50% thermal ellipsoids. Selected bond distances (Å) and angles (deg): Mo-C23 = 1.933-(3), Mo-C24 = 1.945(3), Mo-C25 = 1.945(3), Fe-C1 = 2.060-(3), Fe-P3 = 2.1415(8), Fe-P2 = 2.1501(9), Fe-S = 2.3646(8), S-P1 = 2.0075(9), P1-C6 = 1.756(3), P1-C1 = 1.797(3), P1-C11 = 1.801(3); P3-Fe-P2 = 94.34(3), P3-Fe-S = 93.66(3), P2-Fe-S = 94.29(3), P1-S-Fe = 83.20(3), C6-P1-C1 = 111.89(13), C6-P1-S = 113.41(9), C1-P1-S = 97.42(9).

Figure 3. ORTEP drawing of **5-W** with 50% thermal ellipsoids. Selected bond distances (Å) and angles (deg): W-C24 = 1.947-(6), W-C25 = 1.964(6), W-C23 = 1.970(7), Fe-C1 = 2.058-(6), Fe-P3 = 2.1431(16), Fe-P2 = 2.1446(17), Fe-S = 2.3820-(17), S-P1 = 1.999(2), P1-C6 = 1.758(6), P1-C1 = 1.787(6), P1-C11 = 1.793(6); P3-Fe-S = 93.24(7), P2-Fe-S = 95.22-(7), P1-S-Fe = 83.40(7), C6-P1-C1 = 109.2(3), C6-P1-S = 114.5(2), C1-P1-S = 97.78(19).

approach of the two metal centers. The coordination site from which the η^{1} -C₅H₄ group has dissociated is now occupied with a sulfur atom of the P=S group, as seen in Figures 2 and 3. Cyclopentadienyl ligands bearing a pendant group capable of coordinating to the metal center have been intensively investigated in the past decade with reference to the potential utility of their metal complexes as so-called "constrained geometry" catalysts for olefin polymerization.¹⁷ However, no example adopting the η^{5} - κ S coordination mode is known to date, which is found for the first time in **5-Mo** and **5-W**, and probably in **4b** and **4c** as well. Similar dinuclear complexes are expected to be formed when **2b** is used in place of **2a**. **4b** and **4c** should also serve as a precursor of them.

The Mo or W fragment obviously constitutes the anionic part of the zwitterionic dinuclear complexes **5-Mo** and **5-W**, as

Figure 4. Geometrical parameters relevant to the P=S pendant group in $dppfS_2$ (a) and **5-Mo** (b).

evidenced by their ν (CO) absorptions being comparable in wavenumber to those reported for the anionic carbonyl complexes [MCp(CO)₃]⁻ (M = Mo, W).¹⁸ The cationic charge is thus located formally at the iron center, but the highly polarized P–S bond renders such a simple formalism fruitless. An exact nature of the P–S bond in R₃P=S has been a subject of controversy.²⁰ On the basis of recent theoretical studies, the bond is considered as a highly polarized σ -bond with a strong electrostatic attraction between P^{δ +} and S^{δ -} atoms,²¹ and thus the cationic charge is delocalized to some extent to the bridging P atom in **5-Mo** and **5-W**.

The coordination of the pendant P=S group to the iron center forms a four-membered ring comprised of Fe, C(ipso-Cp), P(bridge), and S atoms in 5-Mo and 5-W. Bond angles within the ring are summarized in Figure 4 for 5-Mo, where the corresponding angles for the related ferrocene derivative [Fe- $\{C_5H_4P(S)Ph_2\}_2$ (abbreviated as dppfS₂) are also given for comparison.²² In dppfS₂, the Fe-C(Cp)-P and C(Cp)-P-S angles are 126.0 and 113.4°, respectively, and the S atom is separated by ca. 3.79 Å from the iron center. The corresponding angles (97.9 and 97.4°) in 5-Mo are significantly reduced as compared with those of dppfS₂ so as to form the Fe-S bond. As a result, the bridging P atom is displaced from the η^5 -C₅H₄ ring plane toward the iron center considerably, the displacement angle being 26.5°, comparable to those of the highly strained complex 1, in which the two η^5 -C₅H₄ rings of the ferrocene unit are linked with one P atom.^{12a} Such steric strain is also inferred from the ${}^{13}C{}^{1}H$ NMR spectrum of the ipso carbon atom of the η^5 -C₅H₄ group on the iron atom;²³ Mo-5, W-5, 4c, and 1, all suffering the strain, show the signals at 69.0, 68.4, 71.5, and 28.9 ppm, respectively, while the strain-free 2a, 3c, and 6-W (vide infra) show the carbon atom at a lower field (114.4, 96.2, and 92.8 or 94.0 ppm, respectively).²⁴ Such steric strain built into 5-Mo is probably responsible for its spontaneous ring-opening reaction taking place in neat MeCN (vide infra). The P=S bond (2.008(1) Å) in **5-Mo** is longer by 0.042 Å than that of **2a**,^{11e} indicating reduced electrostatic interaction between the $P^{\delta+}$ and $S^{\delta-}$ atoms in **5-Mo**, as is generally observed upon coordination of R₃P=S to a metal fragment.²⁵ The structural

^{(20) (}a) Cook, J. B.; Nicholson, B. K.; Smith, D. W. J. Organomet. Chem. 2004, 689, 860–869. (b) Chutia, P.; Kumari, N.; Sharma, M.; Woollins, J. D.; Slawin, A. M. Z.; Dutta, D. K. Polyhedron 2004, 23, 1657–1661. (c) Burford, N. Coord. Chem. Rev. 1992, 112, 1–18. (d) Moran, M.; Cuadrado, I.; Pascual, C.; Masaguer, J. R.; Losada, J. Inorg. Chim. Acta 1987, 132, 257–262.

^{(21) (}a) Chesnut, D. B. J. Phys. Chem. A 2003, 107, 4307–4313. (b) Dobado, J. A.; Martinez-Garcia, H.; Molina, J. M.; Sundberg, M. R. J. Am. Chem. Soc. 1998, 120, 8461–8471.

⁽²²⁾ Fang, Z.-G.; Hor, T. S. A.; Wen, Y.-S.; Liu, L.-K.; Mak, T. C. W. Polyhedron 1995, 14, 2403–2409.

⁽²³⁾ For example: Resendes, R.; Nelson, J. M.; Fischer, A.; Jakle, F.; Bartole, A.; Lough, A. J.; Manners, I. *J. Am. Chem. Soc.* **2001**, *123*, 2116–2126.

⁽²⁴⁾ The corresponding signal was not detected for **4b** and **6-Mo** because of its inherently low intensity and their low solubility.

^{(25) (}a) Saak, W.; Pohl, Š. Z. Naturforsch., B: Chem. Sci. **1988**, 43, 813–817. (b) Saak, W.; Haase, D.; Pohl, S. Z. Naturforsch., B: Chem. Sci. **1988**, 43, 289–294.

characteristics of **5-W** are naturally similar to those of **5-Mo**, in particular with respect to the Fe-C(Cp)-P-S four-membered ring.

The pendant P=S group of **5-Mo** and **5-W** was found to dissociate spontaneously from the iron center when they were dissolved in MeCN. The resulting vacant coordination site was occupied with MeCN to form **6-Mo** and **6-W** (eq 2).

In the ${}^{31}P{}^{1}H{}$ NMR spectrum, signals of **6-Mo** appeared at slightly higher fields than those of **5-Mo**. The ${}^{1}H{}$ NMR signals at 2.38 ppm and the ${}^{13}C{}^{1}H{}$ signals at 6.7 and 135.0 ppm observed in **6-Mo** were assigned to the MeCN ligand coordinating to the iron center, as judged from the corresponding chemical shifts, 2.39 ppm in the ${}^{1}H{}$ NMR spectrum and 4.29 and 135.7 ppm in the ${}^{13}C{}^{1}H{}$ NMR spectrum of the related [FeCp- ${P(OMe)_{3}_{2}(NCMe)]^{+}.^{26}}$ Other signals in the ${}^{1}H{}$ and ${}^{13}C{}^{1}H{}$ NMR spectra of **5-Mo** and **6-Mo** indicate that the two $P(OMe)_{3}$ groups on Fe and the three CO groups on Mo stay almost intact in the present ring-opening reaction in eq 2. Similar spectral changes were observed between **5-W** and **6-W**.

A driving force for the facile substitution of the P=S group with MeCN in 5-Mo and 5-W is probably the strain built into the four-membered ring shown in Figure 4. Ph₃P=S is known to possess a strong donation ability comparable to that of PPh₃, MeCN, CO, or C₂H₄.^{20d} In addition, several examples of the reversed substitution have been reported; that is, MeCN coordinating to a metal fragment is readily replaced with Ph₃P= S, indicative of the latter having a stronger coordination ability than MeCN.²⁷ Thus, the spontaneous substitution with MeCN observed in 5-Mo and 5-W is attributable to the aforementioned severe ring strain, which is relieved upon the substitution. In other words, the dissociation of the η^1 -C₅H₄ ring and the subsequent formation of the unstable four-membered ring in Scheme 1 or eq 1 must be substantiated by the stabilization gained by the accompanying transformation of the nonaromatic η^1 -C₅H₄ ring to the more stable aromatic C₅H₄ ring. The η^5 coordination of the latter C5H4 ring to the M(CO)3 fragment also adds to the stabilization of 5-Mo or 5-W in eq 1. The Fe-S bond is maintained in 5-Mo, 5-W, 4b, and 4c unless a competing ligand such as phosphine or MeCN is present.

Experimental Section

General Remarks. All reactions were carried out under an atmosphere of dry nitrogen using Schlenk tube techniques. All solvents were dried and distilled from sodium (hexane), sodium/ benzophenone (ether and THF), or P_2O_5 (acetonitrile). These purified solvents were stored under an N_2 atmosphere. P(OMe)₂-Ph²⁸ and [M(CO)₃(NCMe)₃] (M = Mo, W)²⁹ were prepared according to previously described methods. Other reagents were used as received.

NMR spectra were recorded on a JEOL LA-300 spectrometer. ¹H and ¹³C NMR chemical shifts were reported relative to Me₄Si and were determined by reference to the residual solvent peaks. ³¹P NMR chemical shifts were reported relative to H_3PO_4 (85%) used as an external reference. Elemental analyses were performed with a Perkin-Elmer 2400CHN elemental analyzer, but satisfactory results could not be obtained for **4b**, **5-Mo**, **6-Mo**, and **6-W**.

Photolysis was carried out with Pyrex-glass-filtered emission from a 400 W mercury arc lamp (Riko-Kagaku Sangyo UVL-400P). The emission lines used (nm) and their relative intensities (in parentheses) are as follows: 577.0 (69), 546.1 (82), 435.8 (69), 404.7 (42), 365.0 (100), 334.1 (7), 312.6 (38), and 302.2 (9).

[Fe{(η^5 -C₅H₄)(η^1 -C₅H₄)P(=S)Ph}{P(OMe)₂Ph}₂] (2b). 1¹² (94 mg, 0.29 mmol), ether (20 mL), and P(OMe)₂Ph (0.45 mL, 2.84 mmol) were added to a Pyrex Schlenk tube, and the solution was irradiated with a 400 W mercury arc lamp at 0 °C for 30 min. The yellow precipitate that formed was separated by decantation and washed with hexane. The residue was dried in vacuo to give **2b** as a yellow powder (154 mg, 80%). ¹H NMR (300.4 MHz, CDCl₃): δ 3.09 (d, $J_{\rm HH} = 24.3$ Hz, 1H, CH₂), 3.22 (d, $J_{\rm HH} = 24.3$ Hz, 1H, CH₂), 3.18 (m, 3H, OMe), 3.45 (m, 3H, OMe), 3.55 (m, 6H, OMe), 3.78 (br, 1H, η^5 -C₅H₄), 4.09(br, 1H, η^5 -C₅H₄), 5.72 (br, 1H, η^5 -C₅H₄), 6.46 (m, 1H, η^1 -C₅H₄), 6.53 (m, 1H, η^1 -C₅H₄). Other signals overlapped with those of **4b**. ³¹P{¹H} NMR (121.5 MHz, in CDCl₃): δ 32.5 (s, P(S)Ph), 209.5 (s, P(OMe)₂Ph). Anal. Calcd for C₃₂H₃₅FeO₄P₃S: C, 57.84; H, 5.31. Found: C, 57.85; H, 5.26.

 $[Fe{\eta^5-C_5H_4P(=S)Ph(C_5H_4)-\kappa S}{P(OMe)_2Ph}_2]$ (4b). A solution of 2b (26 mg, 0.04 mmol) in THF (8 mL) was stirred for several hours. After almost complete conversion of 2b to 4b was confirmed by monitoring the ³¹P{¹H} NMR signals, the solution was reduced in volume to 1 mL, and then the product was precipitated by addition of hexane (10 mL). The product was separated by decantation and washed with hexane. The residue was dried in vacuo to give yellow 4b in almost quantitative yield. ¹H NMR (300.4 MHz, CDCl₃): δ 3.39 (d, $J_{PH} = 10.1$ Hz, 3H, OMe), 3.40 (d, $J_{\rm PH} = 10.1$ Hz, 3H, OMe), 3.51 (d, $J_{\rm PH} = 10.1$ Hz, 3H, OMe), 3.58 (d, $J_{\rm PH} = 10.3$ Hz, 3H, OMe), 3.58 (br, 1H, η^{5} -C₅H₄), 3.92 (br, 1H, η^{5} -C₅H₄), 4.15 (br, 1H, η^{5} -C₅H₄), 4.77 (br, 1H, η^{5} -C₅H₄), 6.12 (m, 2H, C₅H₄⁻), 6.25 (m, 2H, C₅H₄⁻), 7.29 (m, 2H, Ph), 7.37-7.63 (m, 9H, Ph), 7.81 (m, 2H, Ph), 7.94 (m, 2H, Ph). ¹³C{¹H} NMR (75.45 MHz, CDCl₃): δ 53.0 (d, J_{PC} = 6 Hz, OMe), 53.1 (d, $J_{PC} = 9$ Hz, OMe), 53.3 (d, $J_{PC} = 8$ Hz, OMe), 53.7 (d, $J_{PC} =$ 6 Hz, OMe), 79.4 (d, $J_{PC} = 9$ Hz, η^5 -C₅H₄), 81.4 (m, 2C, η^5 -C₅H₄), 85.0 (d, $J_{PC} = 9$ Hz, η^{5} -C₅H₄), 105.2 (d, $J_{PC} = 97$ Hz, *ipso*-C₅H₄⁻), 113.6 (d, $J_{PC} = 19$ Hz, $C_5H_4^{-}$), 115.3 (d, $J_{PC} = 18$ Hz, $C_5H_4^{-}$), 127.9 (d, $J_{PC} = 13$ Hz, 2C, Ph), 128.0 (d, $J_{PC} = 14$ Hz, Ph), 129.2 (d, $J_{PC} = 10$ Hz, Ph), 129.7 (s, Ph), 130.2 (d, $J_{PC} = 9$ Hz, Ph), 130.2 (s, Ph), 131.5 (d, $J_{PC} = 3$ Hz, Ph), 131.8 (d, $J_{PC} = 11$ Hz, Ph), 139.3 (d, $J_{PC} = 97$ Hz, *ipso*-Ph), 140.2 (d, $J_{PC} = 96$ Hz, *ipso*-Ph). ³¹P{¹H} NMR (121.5 MHz, in CDCl₃): δ 31.2 (s, P(S)Ph), 205.0 (d, $J_{PP} = 124$ Hz, P(OMe)₂Ph), 206.9 (d, $J_{PP} = 125$ Hz, P(OMe)₂Ph).

[Fe{ η^5 -C₅H₄P(=S)Ph(C₅H₄)- κ S}(PMe₃)₂] (4c). 1 (117 mg, 0.36 mmol) and an ether solution of PMe₃ (0.212 mol/L, 17 mL, 3.60 mmol) were added to a Pyrex Schlenk tube, and the solution was irradiated with a 400 W mercury arc lamp at 0 °C for 20 min. The pale green precipitate that formed was separated by decantation and washed with ether. The residue was dried in vacuo to give 4c as a pale green powder (160 mg, 93%). ¹H NMR (300.4 MHz, CDCl₃): δ 1.39 (d, J_{PH} = 8 Hz, 9H, PMe₃), 1.61 (d, J_{PH} = 8 Hz, 9H, PMe₃), 3.49 (br, 1H, η^5 -C₅H₄), 3.80 (br, 1H, η^5 -C₅H₄), 4.27 (br, 1H, η^5 -C₅H₄), 5.01 (br, 1H, η^5 -C₅H₄), 6.29 (m, 4H, C₅H₄⁻), 7.51-7.65 (m, 3H, Ph), 8.05 (m, 2H, Ph). ¹³C{¹H} NMR (75.45 MHz, CDCl₃): δ 20.9 (dd, J_{PC} = 22 Hz, J_{PC} = 3 Hz, PMe₃), 21.2 (dd, J_{PC} = 22 Hz, J_{PC} = 3 Hz, PMe₃), 71.5 (d, J_{PC} = 86 Hz, *ipso*- η^5 -C₅H₄), 76.0 (d, J_{PC} = 9 Hz, η^5 -C₅H₄), 80.0 (d, J_{PC} = 9 Hz, η

⁽²⁶⁾ Schumann, H.; Eguren, L.; Ziller, J. W. J. Organomet. Chem. 1991, 408, 361–380.

⁽²⁷⁾ Baker, P. K.; Ridyard, S. D. Polyhedron 1993, 12, 915–919.
(28) Collins, D. J.; Drygala, P. F.; Swan, J. M. Aust. J. Chem. 1983, 36, 2095–2110.

^{(29) (}a) Gibson, D. H.; Owens, K.; Mandal, S. K.; Sattich, W. E.; Franco, J. O. *Organometallics* **1989**, *8*, 498–505. (b) Edelmann, F.; Behrens, P.; Behrens, S.; Behrens, U. J. Organomet. Chem. **1986**, *310*, 333–355.

Table 1. Crystallographic Data

	2a	5-Мо	5-W
formula	C ₃₂ H ₃₅ FeO ₄ P ₃ S	C ₂₅ H ₃₁ FeMoO ₉ P ₃ S	C ₂₅ H ₃₁ FeO ₉ P ₃ SW
cryst color	orange	red	red
cryst syst	monoclinic	monoclinic	orthorhombic
space group	$P2_1/n$ (No. 14)	$P2_1/c$ (No. 14)	P2 ₁ 2 ₁ 2 ₁ (No. 19)
a (Å)	13.6210(2)	9.7390(1)	9.7430(1)
$b(\mathbf{A})$	16.9900(3)	21.0770(2)	13.2490(1)
c (Å)	14.0890(2)	14.9500(1)	23.1550(2)
α (deg)	90	90	90
β (deg)	107.170(1)	90.583(1)	90
γ (deg)	90	90	90
$V(Å^3)$	3115.18(8)	3068.61(5)	2988.96(5)
Z	4	4	4
temp (K)	200	200	200
$\mu(Mo K\alpha) (mm^{-1})$	0.741	1.154	4.610
no. of rflns			
measd	7068	6857	6824
obsd $(I \ge 2\sigma(I), 2\theta \le 55^\circ)$	6410	6816	6778
no. of variables	511	368	368
R1	0.0390	0.0388	0.0397
wR2 $(I > 2\sigma(I))^a$	0.0815	0.0988	0.1046
Flack param			0.370 (8)
largest diff peak($e/Å^3$)	0.33 (0.879 Å from P1)	1.95 (1.420 Å from P1)	2.85 (0.779 Å from W)
a/b	0.0361/2.6791	0.0459/6.6913	0.0730/13.6135

 ${}^{a} \text{ wR2} = \{\sum [w(F_{o}^{2} - F_{c}^{2})^{2}] / \sum [w(F_{o}^{2})^{2}] \}^{1/2}; w = 1 / [\sigma^{2}(F_{o}^{2}) + (ap)^{2} + bp]; p = (F_{o}^{2} + 2F_{c}^{2}) / 3.$

 $η^5$ -C₅H₄), 96.5 (d, $J_{PC} = 105$ Hz, ipso-C₅H₄⁻), 113.2 (d, $J_{PC} = 19$ Hz, C₅H₄⁻), 114.6 (d, $J_{PC} = 17$ Hz, C₅H₄⁻), 128.1 (d, $J_{PC} = 12$ Hz, Ph), 131.4 (d, $J_{PC} = 11$ Hz, Ph), 131.7 (d, $J_{PC} = 2$ Hz, Ph). ³¹P{¹H} NMR (121.5 MHz, in CDCl₃): δ 25.0 (d, $J_{PP} = 69$ Hz, PMe₃), 26.0 (d, $J_{PP} = 69$ Hz, PMe₃), 34.6 (s, P(S)Ph). Anal. Calcd for C₃₂H₃₅FeO₄P₃S: C, 55.48; H, 6.56. Found: C, 55.52; H, 6.52.

 $\{\mu - \eta^5: \eta^5 - (C_5H_4)_2P(=S)Ph - \kappa S\}[Fe\{P(OMe)_3\}_2][Mo(CO)_3]$ (5-Mo). 2a^{11e} (115 mg, 0.20 mmol), Mo(CO)₃(NCMe)₃ (61 mg, 0.20 mmol), and THF (15 mL) were added to a Pyrex Schlenk tube, and the solution was stirred for 3 h. After the solvent and volatile species were removed under reduced pressure, the residue was recrystallized from THF/hexane and washed with hexane. The product was dried in vacuo to give 5-Mo as a brown powder (139 mg, 92%). ¹H NMR (300.4 MHz, CDCl₃): δ 3.57 (t, $J_{PH} = 5.1$ Hz, 9H, OMe), 3.75 (t, $J_{\rm PH} = 5.1$ Hz, 9H, OMe), 3.96 (br, 1H, C₅H₄), 4.33 (br, 1H, C₅H₄), 4.76 (br, 1H, C₅H₄), 5.15 (br, 1H, C₅H₄), 5.31 (br, 2H, C₅H₄), 5.36 (br, 2H, C₅H₄), 7.55-7.72 (m, 3H, Ph), 8.07 (m, 2H, Ph). ¹³C{¹H} NMR (75.45 MHz, CDCl₃): δ 52.6 (s, OMe), 53.0 (s, OMe), 69.0 (d, $J_{PC} = 89$ Hz, *ipso*-C₅H₄), 79.9 (d, $J_{PC} = 17$ Hz, C₅H₄), 80.2 (s, C₅H₄), 80.7 (d, $J_{PC} = 14$ Hz, C₅H₄), 82.9 (d, $J_{PC} = 96$ Hz, *ipso*-C₅H₄), 84.2 (d, $J_{PC} = 9$ Hz, C₅H₄), 89.8 (d, $J_{PC} = 13$ Hz, C_5H_4), 90.7 (d, $J_{PC} = 13$ Hz, C_5H_4), 93.4 (d, J_{PC} = 15 Hz, C₅H₄), 94.4 (d, J_{PC} = 16 Hz, C₅H₄), 126.8 (d, J_{PC} = 87 Hz, *ipso*-Ph), 128.5 (d, $J_{PC} = 13$ Hz, Ph), 131.3 (d, $J_{PC} = 12$ Hz, Ph), 133.3 (s, Ph), 230.7 (s, CO). ³¹P{¹H} NMR (121.5 MHz, in CDCl₃): δ 38.1 (s, P(S)Ph), 178.4 (s, P(OMe)₃).

 $\{\mu - \eta^5 : \eta^5 - (C_5H_4)_2P(=S)Ph - \kappa S\}[Fe\{P(OMe)_3\}_2][W(CO)_3]$ (5-W). 2a (118 mg, 0.210 mmol), W(CO)₃(NCMe)₃ (75 mg, 0.19 mmol), and THF (15 mL) were added to a Pyrex Schlenk tube, and the solution was stirred for 3 h. After the solvent and volatile species were removed under reduced pressure, the residue was washed with ether and dried in vacuo to give 5-W as a brown powder (117 mg, 73%). ¹H NMR (300.4 MHz, CDCl₃): δ 3.57 (t, $J_{\rm PH} = 5.3$ Hz, 9H, OMe), 3.75 (t, $J_{\rm PH} = 5.3$ Hz, 9H, OMe), 3.97 (br, 1H, C₅H₄), 4.32 (br, 1H, C₅H₄), 4.77 (br, 1H, C₅H₄), 5.09 (br, 1H, C₅H₄), 5.32 (m, 4H, C₅H₄), 7.55-7.72 (m, 3H, Ph), 8.06 (m, 2H, Ph). ¹³C{¹H} NMR (75.45 MHz, CDCl₃): δ 52.8 (s, OMe), 53.2 (s, OMe), 68.4 (d, $J_{PC} = 90$ Hz, *ipso*-C₅H₄), 80.0 (d, $J_{PC} = 16$ Hz, C₅H₄), 80.3 (d, $J_{PC} = 10$ Hz, C₅H₄), 81.1 (d, $J_{PC} = 14$ Hz, C_5H_4), 81.3 (d, $J_{PC} = 96$ Hz, *ipso*- C_5H_4), 84.2 (d, $J_{PC} = 10$ Hz, C_5H_4), 87.6 (d, $J_{PC} = 12$ Hz, C_5H_4), 88.4 (d, $J_{PC} = 12$ Hz, C_5H_4), 90.4 (d, $J_{PC} = 14$ Hz, C_5H_4), 91.4 (d, $J_{PC} = 15$ Hz, C_5H_4), 126.4 (d, $J_{PC} = 88$ Hz, *ipso*-Ph), 128.7 (d, $J_{PC} = 14$ Hz, Ph), 131.5 (d, $J_{PC} = 12$ Hz, Ph), 133.6 (s, Ph), 220.9 (s, $J_{CW} = 198$ Hz, CO). ³¹P{¹H} NMR (121.5 MHz, in CDCl₃): δ 37.4 (s, P(S)Ph), 178.2 (s, P(OMe)₃). Anal. Calcd for C₂₅H₃₁FeO₉P₃SW: C, 35.74; H, 3.72. Found: C, 35.48; H, 3.69.

 $\{\mu - \eta^{5}: \eta^{5} - (C_{5}H_{4})_{2}P(=S)Ph\}[Fe(NCMe)\{P(OMe)_{3}\}_{2}][Mo-$ (CO)₃] (6-Mo). 5-Mo (30 mg, 0.04 mmol) was dissolved in acetonitrile (3 mL). After the mixture was stirred for several hours, the solvent was removed under reduced pressure. The residue was recrystallized from THF/hexane and then washed with hexane. The product was dried in vacuo to give 6-Mo quantitatively as a yellow powder. ¹H NMR (300.4 MHz, CDCl₃): δ 2.38 (s, 3H, CH₃CN) 3.46 (br, 1H, C₅H₄), 3.56 (t, $J_{PH} = 5.5$ Hz, 9H, OMe), 3.76 (t, J_{PH} = 5.3 Hz, 9H, OMe), 4.56 (br, 1H, C₅H₄), 4.95 (br, 1H, C₅H₄), 5.23 (br, 2H, C₅H₄), 5.34 (br, 1H, C₅H₄), 5.62 (br, 1H, C₅H₄), 6.05 (br, 1H, C₅H₄), 7.50 (m, 3H, Ph), 8.25 (m, 2H, Ph). ¹³C{¹H} NMR $(75.45 \text{ MHz}, \text{CDCl}_3)$: δ 6.7 (s, CH₃CN), 52.8 (m, OMe), 53.3 (m, OMe), 69.9 (d, $J_{PC} = 11$ Hz, C_5H_4), 79.7 (d, $J_{PC} = 10$ Hz, C_5H_4), 85.7 (d, $J_{PC} = 12$ Hz, 2C, C_5H_4), 85.9 (d, $J_{PC} = 10$ Hz, 2C, C_5H_4), 88.1 (d, $J_{PC} = 11$ Hz, C_5H_4), 90.3 (d, $J_{PC} = 12$ Hz, C_5H_4), 93.6 (d, $J_{\rm PC} = 15$ Hz, C₅H₄), 94.3 (d, $J_{\rm PC} = 13$ Hz, C₅H₄), 127.9 (d, $J_{\rm PC} =$ 12 Hz, Ph), 131.3 (s, Ph), 132.4 (d, $J_{PC} = 11$ Hz, Ph), 135.0 (s, CH₃CN), 232.8 (s, CO).³¹P{¹H} NMR (121.5 MHz, in CDCl₃): δ 30.9 (s, P(S)Ph), 176.6 (s, P(OMe)₃).

{ μ - η ⁵: η ⁵-(C₅H₄)₂P(=S)Ph}[Fe(NCMe){P(OMe)₃}₂]-[W(CO)₃] (6-W). The preparation of 6-W was carried out in a manner similar to that described above for 6-Mo, using 5-W (25 mg 0.03 mmol). ¹H NMR (300.4 MHz, CDCl₃): δ 2.39 (s, 3H, CH₃CN), 3.48 (br, 1H, C₅H₄), 3.53 (t, $J_{PH} = 5.3$ Hz, 9H, OMe), 3.76 (t, $J_{\text{PH}} = 5.3$ Hz, 9H, OMe), 4.55 (br, 1H, C₅H₄), 4.93 (br, 1H, C₅H₄), 5.18 (br, 2H, C₅H₄), 5.30 (br, 1H, C₅H₄), 5.53 (m, 1H, C_5H_4), 5.92 (br, 1H, C_5H_4), 7.51 (m, 3H, Ph), 8.23 (m, 2H, Ph). ¹³C{¹H} NMR (75.45 MHz, CDCl₃): δ 6.6 (s, CH₃CN), 52.9 (s, OMe), 53.4 (s, OMe), 70.1 (d, $J_{PC} = 9$ Hz, C_5H_4), 79.7 (d, $J_{PC} =$ 10 Hz, C₅H₄), 85.9 (d, $J_{PC} = 11$ Hz, 2C, C₅H₄), 86.4 (d, $J_{PC} = 11$ Hz, C₅H₄), 88.1 (d, $J_{PC} = 12$ Hz, C₅H₄), 90.9 (d, $J_{PC} = 14$ Hz, C_5H_4), 91.6 (d, $J_{PC} = 12$ Hz, C_5H_4), 92.8 (d, $J_{PC} = 91$ Hz, *ipso-* C_5H_4), 94.0 (d, $J_{PC} = 104$ Hz, *ipso*- C_5H_4), 128.0 (d, $J_{PC} = 12$ Hz, Ph), 131.4 (d, $J_{PC} = 2$ Hz, Ph), 132.5 (d, $J_{PC} = 11$ Hz, Ph), 132.7 (d, $J_{PC} = 88$ Hz, *ipso*-Ph), 135.2 (s, CH₃CN), 223.3 (s, $J_{CW} = 199$ Hz, CO). ³¹P{¹H} NMR (121.5 MHz, in CDCl₃): δ 30.6 (s, P(S)-Ph), 175.9 (s, P(OMe)₃).

X-ray Crystallography. Suitable crystals of 2b, 5-Mo, and 5-W were mounted separately on a glass fiber. All measurements were

Bis(half-sandwich) Heterodinuclear Complexes

made on a Mac Science DIP2030 imaging plate area detector. The data were collected to a maximum 2θ value of 55.8°. Cell parameters and intensities for the reflections were estimated using the program packages of HKL.³⁰ The structures were solved by direct methods and expanded using Fourier techniques. Nonhydrogen atoms were refined anisotropically. Hydrogen atoms were located at ideal positions. All calculations were performed using a SHELXL-97 crystallographic software package.³¹ Details of the data

Analysis; University of Göttingen, Göttingen, Germany, 1997.

collection and refinement are given in Table 1, and bond distances and angles, atomic coordinates, and anisotropic thermal parameters are given as Supporting Information.

Acknowledgment. This work was supported by Grants-in-Aid for Scientific Research (Nos. 15350035, 16033245, 17036045, and 17550061) from the Ministry of Education, Culture, Sports, Science, and Technology of Japan.

Supporting Information Available: Full crystallographic data given in as CIF files. This material is available free of charge via the Internet at http://pubs.acs.org.

OM060020V

⁽³⁰⁾ Otwinowski, Z.; Minor, W. In Processing of X-ray Diffraction Data Collected in Oscillation Mode. Methods in Enzymology; Carter, C. W., Jr., Sweet, R. M., Eds.; Academic Press: New York, 1997; Vol. 276 (Macromolecular Crystallography, part A), pp 307–326, (31) Sheldrick, G. M. SHELX-97: Programs for Crystal Structure