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Summary: The insertion of alkenes into an (NHC)copper(I) boryl
affords isolableâ-boroalkyl complexes in high yields; competi-
tion experiments using substituted styrenes show that electron-
donating substituents slow the reaction. Although the insertion
products are stable at ambient temperature, aâ-hydride
elimination/reinsertion sequence affords a rearrangedR-boro-
alkyl complex on heating.

The formation of alkylboron reagents from alkenes has
generated notable interest due to the synthetic versatility of the
carbon-boron bond.1 In the catalytic addition of diboron
reagents to alkenes, which forms two carbon-boron bonds and
permits a wide range of subsequent elaboration, a key step is
the insertion of a CdC bond into a metal-boron bond.2-6 This
insertion has been implicated as competitive with metal-hydride

insertion in some metal-catalyzed hydroboration reactions.7 The
â-boroalkyl intermediates formed through this insertion are
typically prone to â-hydride elimination,8 and the discrete
borometalation of alkenes, in contrast to that of alkynes,9 has
not been reported to date.

We recently reported the first well-characterized copper boryl
complex,10,11 which is highly reactive toward carbon dioxide,
and we were interested in examining its reactions with other
unsaturated substrates such as alkenes. Although alkyl com-
plexes of d10 metal centers undergoâ-hydride elimination less
readily than those of metals with partially filled d-orbitals,
copper(I) alkyls have been shown to decompose by this route
as well as by net Cu-C bond homolysis.12,13 Because N-
heterocyclic carbene (NHC) ligands impart considerable stability
to σ-organocopper(I) complexes, we hoped that alkene insertion
into the (NHC)copper boryl complex would lead to isolable
products. Herein we report the regioselective insertion of alkenes
into the copper-boron bond, with a Hammett study of sub-
stituent electronic effects on the reactivity of vinylarenes. The
structurally characterized styrene insertion product does undergo
â-hydrogen elimination, resulting in rearrangement to an
R-boroalkyl complex, but only at elevated temperatures.

The structurally characterized copper(I) boryl complex (IPr)-
CuB(pin)10 (IPr ) 1,3-bis(2′,6′-diisopropylphenyl)imidazol-2-
ylidene), pin ) pinacolate: 2,3-dimethyl-2,3-butanediolate)
reacts rapidly and cleanly with styrene (Scheme 1) to form a
single product as judged by1H NMR spectroscopy. Protonolysis
of the styrene insertion product1 with ethanol produces
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2-phenethyl(pinacol)boronate as the only boron-containing
product, corroborating its assignment as anR-phenyl-â-boroethyl
complex.

The results of insertion reactions using styrenes and other
alkene substrates are given in Table 1. A number ofpara-
substituted styrenes (entry 1) react efficiently, forming a single
regioisomer in each case. Although alkyl-substituted alkenes
such as 1-hexene and cyclopentene react very slowly with (IPr)-
CuB(pin), ethylene itself undergoes insertion in high yield (entry
2). Both trans- and cis-stilbene (entries 3, 4) show high
selectivity forsynaddition, although the insertion ofcis-stilbene
leads to a detectable degree of isomerization (∼5% as judged
by 1H NMR spectroscopy) to form theanti product, suggesting
that a radical pathway may be involved to some extent. It is
worth noting that an internal alkyne, 2-butyne, also inserts
readily, affording the correspondingcis-2-borovinylcopper
complex in an isolated yield of 90%.

Single crystals of1 were grown by the diffusion of pentane
vapor into an ether solution at-40 °C. Analysis by X-ray
diffraction revealed a nearly linear two-coordinate structure and
confirmed the regiochemistry of the styrene insertion (Figure
1).14 Although the complex (IPr)CuEt was recently isolated and
characterized spectroscopically,12e structurally characterized
copper alkyl complexes possessingâ-hydrogens are rare.12d,13c,d

The Cu(1)-Calkyl bond distance in1 (1.948(3) Å) is similar to
that of (IPr)CuCH3 (1.913(6) Å).15

To examine the role of electronic effects, competitive insertion
experiments were carried out usingpara-substituted styrenes.16

A benzene solution containing styrene (2.0 equiv) and 4-XC6H4-
CHdCH2 (X ) NMe2, OMe, Me, F; 2.0 equiv) was rapidly
added to a solution of (IPr)CuB(pin). The relative product ratios,
assessed by1H NMR spectroscopy, indicated that electron-
donating substituents slow the reaction: styrene reacts ca. 60
times more rapidly than 4-(dimethylamino)styrene. The reactions
were complete within minutes after mixing, and the product
ratios did not change over several hours. Competition experi-
ments using more electron-poor styrenes (p-Cl, p-CF3) gave
qualitatively similar results; however, these substrates undergo
observable side-reactions17 and are not included in the study.

A plot of the relative ratios of the insertion products against
σp gave a moderate fit (R2 ) 0.92) withF ) +1.9( 0.4 (Figure
2).18 If alkene insertion into the copper-boron bond is rate-
determining, theF value is consistent with the buildup of
negative charge on the incipiently copper-bound carbon. The
carbocupration of enones and alkynes by dialkylcuprate(I)
reagents has been described in terms of significant electron
donation from the electron-rich copper center to the substrate,19

followed by rate-determining insertion; both substrate binding
and insertion are facilitated by theπ-acidity of the substrate.20

Here, the relative rates for the borocupration of styrenes suggest
that the substrate likewise behaves essentially as an electrophile.
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Scheme 1

Table 1. Insertion of Alkenes into (IPr)CuB(pin)a

a (IPr)CuB(pin) was generated in situ from (IPr)CuOtBu and (pin)BB(pin)
(1 equiv). Unless noted otherwise, insertions were carried out inn-pentane
solvent at room temp for 20 min, using 1.1 equiv of alkene.b Carried out
under 1 atm of C2H4. c Reaction time was 15 h.d 2 equiv ofcis-stilbene
used; yield refers to both isomers.e Indicated stereochemistry is relative.

Figure 1. Solid-state structure of1‚(0.5 C5H12) shown as 50%
ellipsoids. For clarity, hydrogen atoms, disorder, and solvent have
been omitted. Select bond lengths (Å) and angles (deg): Cu(1)-
C(28) 1.948(3), Cu(1)-C(1) 1.898(4), C(28)-C(29) 1.526(5),
C(29)-B(1) 1.579(6), B(1)-O(1) 1.353(6), B(1)-O(2) 1.359(5),
C(1)-Cu(1)-C(28) 175.07(16), Cu(1)-C(28)-C(29) 114.9(3), Cu-
(1)-C(28)-C(30) 104.5(2).
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In contrast, the small and negativeF values determined for
hydroboration reactions suggest the buildup of some positive
charge in the substrate during insertion.21,22 A more detailed
mechanistic discussion must await further investigation.

Although 1 is stable for prolonged periods at ambient
temperature, heating in benzene solution at 70°C for 20 h
resulted in the formation of a new complex, along with some
deposition of elemental copper (Scheme 2). Analysis by1H
NMR spectroscopy indicated the formation of the rearranged
alkyl complex (IPr)CuCH[B(pin)]CH2Ph (2a). This rearrange-
ment presumably occurs viaâ-hydride elimination followed by
reinsertion of the resulting olefin into a Cu-H bond. In a
separate experiment,trans-2-phenylvinyl(pinacol)boronate, which
should be formed byâ-hydride elimination from1, reacted
cleanly and rapidly with the previously characterized23 copper
hydride [(IPr)CuH]2 to form 2a. The rapidity of this hydro-
metalation suggests thatâ-hydride elimination is the slow step
in the rearrangement of1 to 2a. The thermal rearrangement of
1 was also conducted in the presence oftrans-2-(p-tolyl)vinyl-
(pinacol)boronate (1.5 equiv). The resulting1H NMR spectrum
indicated the formation of both2aand (IPr)CuCH[B(pin)]CH2-
(p-tolyl) (2b) and the presence of freetrans-2-phenylvinyl-

(pinacol)boronate. This observation is consistent with the
generation of a copper-alkene complex, in which the alkene is
substitutionally labile, as an intermediate in the rearrangement.
Heating a benzene solution of2a in the presence of 2-(p-tolyl)-
vinyl(pinacol)boronate (1.5 equiv) for 20 h likewise leads to a
mixture of 2a and 2b,24 indicating that theR-boroalkyl
complexes can also undergoâ-hydride elimination and hinting
at the participation of a similar intermediate.

An X-ray diffraction study was performed on single crystals
grown by vapor diffusion of pentane into a toluene solution of
2a (Figure 3).25 Other metalR-boroalkyls show varying degrees
of metal-boron orbital interaction.26 The somewhat acute Cu-
(1)-C(28)-B(1) angle of 96.3(2)° might indicate an attractive
copper-boron interaction; however, the long Cu(1)-B(1) bond
distance of 2.608(3) Å (the only measured Cu-B σ-bond is
2.002(3) Å) and the trigonal planar geometry about boron imply
that any such interaction is weak in this case. In solution, no
boron-copper interaction is observed for2a on the basis of its
11B NMR spectrum: The chemical shift observed for2a (33.4
ppm) is typical of neutral, three-coordinate boron27 and differs
only slightly from that of1 (34.7 ppm).

In conclusion, alkenes insert cleanly and regioselectively into
(IPr)CuB(pin) to give isolableâ-boroalkyl complexes. A Ham-
mett study using 4-substituted styrenes showed that electron-
releasing substituents slow the reaction markedly. At elevated
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Figure 2. Hammett plot of the relative rates of insertion of
4-substituted styrenes into (IPr)CuB(pin) at room temperature in
C6H6.

Scheme 2a

a (a) C6H6, 70°C, 24 h; 54%. (b) [(IPr)CuH]2 generated in situ from
(IPr)CuOtBu and (EtO)3SiH; n-pentane, room temp, 1 h; 91%. (c) C6D6,
70 °C, 24 h; mixture of2b and2a observed.

Figure 3. Solid-state structure of2a‚(0.5C7H8) shown as 50%
ellipsoids. For clarity, hydrogen atoms, disorder, and solvent have
been omitted. Select bond lengths (Å) and angles (deg): Cu(1)-
C(28) 1.959(3), Cu(1)-C(1) 1.895(3), Cu(1)-B(1) 2.608(3),
C(28)-C(29) 1.536(5), C(28)-B(1) 1.520(5), B(1)-O(1) 1.393-
(5), B(1)-O(2) 1.371(4), C(1)-Cu(1)-C(28) 169.51(13), Cu(1)-
C(28)-C(29) 106.9(2), Cu(1)-C(28)-B(1) 96.3(2).
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temperatures, the styrene insertion product rearranges via
â-hydrogen elimination and reinsertion to give an (R-boroalkyl)-
copper(I) complex.
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