Chiral Ruthenium PNNP Complexes of Non-Enolized 1,3-Dicarbonyl Compounds: Acidity and Involvement in Asymmetric Michael Addition

Martin Althaus, Cristina Bonaccorsi, Antonio Mezzetti,* and Francesco Santoro

Department of Chemistry and Applied Biosciences, ETH Zu¨rich, CH-8093 Zu¨rich, Switzerland

*Recei*V*ed May 8, 2006*

Summary: The chiral complexes [Ru(2)(PNNP)]2⁺ *(4a) and [Ru-* $(3)(PNNP)$ ²⁺ (4**b**), containing the non-enolized 1,3-dicarbonyl *compounds 2-((tert-butoxy)carbonyl)cyclopentanone (2) or* R*-acetyl-N-benzyl-δ-*V*alerolactam (3), were deprotonated to the enolato complexes 5a,b. Complex 4a has a pseudo-aqueous pKa value of 4.6* \pm 0.5 (with $pK_a(Ph_3PH^+)$ = 2.7 as reference) and *catalyzes the 1,4-addition of 2 to methyl vinyl ketone with up to 79% ee.*

1,3-Dicarbonyl compounds are widely used nucleophiles for carbon-carbon and carbon-heteroatom bond-forming reactions,¹ in particular in enantioselective catalytic processes.^{2,3} A recent development in this area is the discovery of Lewis acidic complexes based on ruthenium(II)^{2a} (d⁶) and palladium(II)^{3a} (d⁸) that catalyze Michael additions and related reactions. Following seminal work on the enantioselective α -functionalization of 1,3dicarbonyl compounds catalyzed by Ti/TADDOLato complexes that includes fluorination,⁴ chlorination,⁵ hydroxylation,⁶ and sulfenylation, 7 we applied Ru/PNNP complexes to the asymmetric hydroxylation⁶ and fluorination⁸ of β -keto esters and β -keto amides. We find now that the activation of $[RuCl_2$ -(PNNP)] (**1**; PNNP is (1*S,*2*S*)-*N,N*′-bis[*o*-(diphenylphosphino) benzylidene]cyclohexane-1,2-diamine) with $(Et₃O)PF₆$,⁹ followed by reaction with the β -keto ester 2 (or with the β -keto lactam **3**) (1 equiv) in CD_2Cl_2 gives the dicationic adduct **4a** (or $4b$) as a single diastereoisomer (Scheme 1).¹⁰ These species

(3) (a) Hamashima, Y.; Hotta, D.; Sodeoka, M. *J. Am. Chem. Soc*. **2002**, *124*, 11240. For fluorination and Mannich-type reactions, see: (b) Hamashima, Y.; Yagi, K.; Takano, H.; Tamàs, L.; Sodeoka, M. *J. Am. Chem. Soc.* **2002**, *124*, 14530. (c) Hamashima, Y.; Sasamoto, N.; Hotta, D.; Somei, H.; Umebayashi, N.; Sodeoka, M. *Angew. Chem., Int. Ed*. **2005**, *44*, 1525.

(4) (a) Hintermann, L.; Togni, A. *Hel*V*. Chim. Acta* **²⁰⁰⁰**, *⁸³*, 2425. (b) Frantz, R.; Hintermann, L.; Perseghini, M.; Broggini, D.; Togni A. *Org. Lett.* **²⁰⁰³**, *⁵*, 1709. (c) Ibrahim, H.; Kleinbeck, F.; Togni, A. *Hel*V*. Chim. Acta* **2004**, *87*, 605.

(5) Hintermann, L.; Togni, A. *Angew. Chem., Int. Ed*. **2000**, *39*, 4359. (6) Toullec, P. Y.; Bonaccorsi, C.; Mezzetti, A.; Togni, A. *Proc. Natl. Acad. Sci. U.S.A.* **2004**, *101*, 5810.

(7) Jereb, M.; Togni, A. *Org. Lett*. **2005**, *7*, 4041.

(8) Becker, C. ETH, Ph.D. Thesis No. 15699, Zurich, Switzerland, 2004. (9) (a) [RuCl₂(PNNP)] (30 mg, 36 μ mol, prepared as described in ref 9b) and $(Et₃O)PF₆$ (18.3 mg, 74 μ mol, 2.04 equiv) were dissolved in dry CD_2Cl_2 (0.8 mL) in an NMR tube fitted with a Young valve and stirred at room temperature for 14 h, after wich **2** or **3** (1.0 equiv) was added. (b) Gao, J. X.; Ikariya, T.; Noyori, R. *Organometallics* **1996**, *15*, 1087.

are rare examples of complexes containing 1,3-dicarbonyl compounds in their non-enolized form.¹¹

Complex **4a** decomposes upon isolation and was, therefore, characterized in solution,12 whereas **4b** was isolated in 91% yield by crystallization from CH_2Cl_2 /hexane.¹³ Thus, the ¹H NMR spectrum of $4a$ features the signal of the methine proton H^d of **2** at *δ* 3.78 (*δ* 3.04 in the free *â*-keto ester **2**) (Figure 1). The one-bond ${}^{13}C-{}^{1}H$ HMOC spectrum proves that this is the signal of the hydrogen atom H^d bound to the 2-carbon atom $(C-H^d)$, whose ¹³C NMR signal appears at δ 55.5. The long-range ¹³C ¹H HMOC shows correlations from H^d to both carbonyl carbons and to the adjacent methylene group in the cyclopentanone ring.¹⁴

(11) Ruthenium acacH and *N,N*′-diphenylmalonamide complexes: (a) Sahai, R.; Kabisatpathy, A. K.; Petersen, J. D. *Inorg. Chim. Acta* **1986**, *115*, L33. (b) Blum, J.; Fisher, A.; Greener, E. *Tetrahedron* **1973**, *29*, 1073. For an overview on different coordination modes of 1,3-dicarbonyl ligands in Ni(II), Co(II), and Zn(II) complexes with acetylacetone, malonate, and malonamide, see: (c) Kawaguchi, S. *Coord. Chem. Re*V*.* **¹⁹⁸⁶**, *⁷⁰*, 51. (d) Cramer, R. E.; Cramer, S. W.; Cramer, K. F.; Chudyk, M. A.; Seff, K. *Inorg. Chem.* **1977**, *16*, 219. (e) Rodrìguez-Martìn, Y.; Luis, P. A. L.; Ruiz-

Pérez, C. *Inorg. Chim. Acta* **2002**, 328, 169.

(12) Selected NMR data of **4a**: ³¹P{¹H} NMR (CD₂Cl₂, 101 MHz) *δ* 61.2 (d, 1 P, $J_{\rm P,P'} = 29.1$ Hz), 51.3 (d, 1 P, $J_{\rm P,P'} = 29.1$ Hz); ¹H NMR
(CD₂Cl₂, 250 MHz) δ 9.03 (d, 1 H, $J = 9.0$ Hz, $H^bC=N$), 8.83 (s, 1 H, $H^bC=N$), 3.78 (dd, 1 H, $J = 10.2$, 10.2 Hz, $C(O)CH^dCOO$), 3.40–3 *H*^b[']C=N), 3.78 (dd, 1 H, *J* = 10.2, 10.2 Hz, C(O)C*H*^dCOO), 3.40–3.32
(m, 1 H, *H*^aC-N), 2.42–2.35 (m, 1 H, *H*^aC-N); ¹³C{¹H} NMR (CD₂Cl₂) (m, 1 H, *H*^αC−N), 2.42−2.35 (m, 1 H, *H*^α[′]C−N); ¹³C{¹H} NMR (CD₂Cl₂, 126 MHz) δ 227 3 (C(O)CHCOO), 175 2 (C(O)CHCOO), 170 9 (d, J = 126 MHz) *^δ* 227.3 (*C*(O)CHCOO), 175.2 (C(O)CH*C*OO), 170.9 (d, *^J*) 4.8 Hz, *C*=N), 168.6 (d, *J* = 4.9 Hz, *C*=N), 55.5 (C(O)*C*H^dCOO).

(13) Selected NMR data of 4b: $31P{1H}$ NMR (CD₂Cl₂, 101 MHz) δ 60.7 (d, 1 P, *J*_{P,P'} = 28.9 Hz), 50.5 (d, 1 P, *J*_{P,P'} = 28.9 Hz); ¹H NMR
(CD₂Cl₂, 250 MHz) *δ* 8.90 (d, 1 H, *J* = 9.5 Hz, *H*^{*b*}C=N), 8.36 (s, 1 H, *H^{<i>b*}C=N), 3.63</sup> (dd, 1 H, *J* = 11.0, 5.5 Hz, *C*(O)C*H H*^b[']C=N), 3.63 (dd, 1 H, *J* = 11.0, 5.5 Hz, C(O)C*H*^IC(O)N), 2.73-2.65
(m, 1 H, *H*^{*e*}C-N), 1.97-1.88 (m, 1 H, *H*^d[']C-N)^{, 13}C^{*I*</sub>¹H₃ NMR (CD₂Cl₂)} (m, 1 H, *H^a*C-N), 1.97–1.88 (m, 1 H, *H^a*'C-N); ¹³C{¹H} NMR (CD₂Cl₂, 176 MHz) δ 218.8 (*C*(O)CHC(O)N), 169.2 (d, *J* = 5.0 Hz, *C*=N), 167.4 176 MHz) δ 218.8 (*C*(O)CHC(O)N), 169.2 (d, $J = 5.0$ Hz, *C*=N), 167.4 (d, $J = 5.0$ Hz, $C=N$), 167.2 (C(O)CHC(O)N), 50.5 (C(O)CHC(O)N).
(14) See the Supporting Information (14) See the Supporting Information.

ring.14 (1) (a) Stowell, J. C. *Carbanions in Organic Synthesis*; Wiley: New York, 1979; Chapter 6. (b) Moreno-Mañas, M.; Marquet, J.; Vallribera, A. *Tetrahedron* **1996**, *52*, 3377. (c) Benetti, S.; Romagnoli, R.; De Risi, C.; Spalluto, G.; Zanirato, V. *Chem. Re*V. **¹⁹⁹⁵**, *⁹⁵*, 1065.

⁽²⁾ Selected papers: (a) Watanabe, M.; Ikagawa, A.; Wang, H.; Murata, K. Ikariya, T. *J. Am. Chem. Soc.* **2004**, *126*, 11148. (b) Guo, R. W.; Morris, R. H.; Song, D. *J. Am. Chem. Soc.* **2005**, *127*, 516. For related reactions, see: (c) Culkin, D. A.; Hartwig, J. F. *Acc. Chem. Res.* **2003**, *36*, 234. For seminal papers, see: (d) Slough, G. A.; Bergman, R. G.; Heathcock, C. H. *J. Am. Chem. Soc.* **1989**, *111*, 938. (e) Murahashi, S.-I.; Naota, T.; Taki, H.; Mizuno, M.; Takaya, H.; Komiya, S.; Mizuho, Y.; Oyasato, N.; Hiraoka, M.; Hirano, M.; Fukuoka, A. *J. Am. Chem. Soc.* **1995**, *117*, 12436.

⁽¹⁰⁾ Part of this work has appeared in a short conference report: Bonaccorsi, C.; Althaus, M.; Becker, C.; Togni, A.; Mezzetti, A. *Pure Appl. Chem.* **2006**, *78*, 391. We have also recently reported the related dicationic diaqua complexes $[Ru(OH₂)₂(PNNP)]²⁺$: Bonaccorsi, C.; Santoro, F.; Gischig, S.; Mezzetti, A. *Organometallics* **2006**, *25*, 2002.

Figure 1. Selected NOE contacts in **4a** and **5a**.

As all attempts at isolating **4a** and crystallizing **4b** have been unsuccessful so far, structural information was gathered by comparing their NMR spectra with those of the enolato analogues **5a**,**b**, 15,16 which were prepared and structurally characterized (see below). Thus, the ¹H and ¹H-¹H NOESY NMR spectral patterns indicate that **4a** and **5a** are structurally similar. Both complexes feature NOE contacts of the *tert*-butyl group of β -keto ester 2 to one imine hydrogen and to one PNNP benzylidene, suggesting that these complexes have similar structures and the same relative configuration (Figure 1). Additionally, the NOESY spectrum of **4a** shows contacts between the methine hydrogen of the β -keto ester (H^d) and three protons of the PNNP ligand, namely the cyclohexyl ipso hydrogen H^a, the imine hydrogen H^b, and the benzylidene hydrogen H^c, indicating that H^d points up toward the cyclohexane backbone of the PNNP ligand.

In an analogous manner, the relative configuration of **4b** was determined by comparison with **5b**. In both complexes, the endo benzylic hydrogen and the N-benzyl ortho H of the *â*-keto lactam **3** display NOE contacts to the same imine hydrogen and benzylidene ortho H atoms of the PNNP ligand.14 Again, the enolizable hydrogen of the coordinated *â*-keto lactam points up toward the cyclohexane backbone, as indicated by its NOE contacts involving the PNNP cyclohexane ipso Hª, the imine hydrogen H^b , and H^c of one PNNP benzylidene.

Deprotonation of $4a$, b with Et₃N (1 equiv) gives the monocationic enolato complexes **5a**,**b** as a single diastereoisomer (Scheme 2).15,16 The reaction is reversed by addition of HBF4'

Figure 2. ORTEP drawing of the enolato complex **5a**.

Scheme 3

OEt₂ (1 equiv, $pK_a^{aq} = -3.6$). The pK_a of **4a** on the pseudo-
aqueous scale has been measured in CD₂Cl₂ relative to Ph₂PH⁺ aqueous scale has been measured in CD_2Cl_2 relative to Ph_3PH^+ from the equilibrium in Scheme 3 by integration of the 31P- ${\{inverse-gated\ }^1H\}$ NMR spectra.¹⁴ Assuming a p K_a value of 2.7 for Ph₃PH⁺, a p K_a^{aq} value of 4.6 \pm 0.5 is obtained for **4a**.¹⁷
Deprotonation of 4a with PPh₂ and protonation of 5a with Ph₂ Deprotonation of **4a** with PPh₃ and protonation of **5a** with Ph₃- $PH⁺$ gave the same equilibrium position.

5a,**b** were isolated as air-stable solids in 64% and 55% yields, respectively. The crystal structures of racemic **5a**,**b** show a distorted-octahedral coordination with the PNNP ligand in a cis- β configuration, which is Λ in the enantiomers containing (*S,S*)-PNNP (Figures 2 and 3). A phenyl group of PNNP shields the *Si* face of the enolato ligand, leaving the *Re* face accessible to electrophilic attack, with the implications for catalysis discussed below.

Complex $4a$, formed in situ by treating 1 with $(Et₃O)PF₆$ (2) equiv) and **2** (20 equiv), catalyzes the Michael addition of β -keto ester **2** to the methyl vinyl ketone **6** (Scheme 4). Product **7** was obtained in 94% yield and with 79% ee. The *R* absolute configuration14 of **7** is consistent with the *Re* face attack of the β -keto ester, which is the accessible enantioface in **4a** and **5a**. Addition of $PPh₃$ (1 equiv vs $4a$) shuts down the catalytic reaction, **7** being formed in less than 1% yield after 24 h.

⁽¹⁵⁾ Selected NMR data of **5a**: ${}^{31}P[{^1}H]$ NMR (CD₂Cl₂, 101 MHz) δ 63.4 (d, 1 P, J_{P,P'} = 31.2 Hz); ¹H NMR 63.4 (d, 1 P, $J_{P,P'} = 31.2$ Hz), 52.5 (d, 1 P, $J_{P,P'} = 31.2$ Hz); ¹H NMR
(CD₂Cl₂, 500 MHz) δ 8.89 (s, 1 H, $H^bC=N$), 8.69 (d, 1 H, $J_{P,H} = 9.5$ Hz,
 $H^bC=N$) 3.80–3.71 (m, 1 H, H^aC-N) 2.30–2.21 (m, 1 H, H^aC-N) *H*^bC=N), 3.80-3.71 (m, 1 H, *H*^aC-N), 2.30-2.21 (m, 1 H, *H*^a[']C-N); ¹³C{¹H} NMR (CD₂Cl₂, 126 MHz) *δ* 192.0 (C=C-O), 168.3 (*COO*), 166.7 (d, *J* = 3.1 Hz, *C*=N), 163.5 (d, *J* = 5.2 Hz, *C*=N), 93.1 (*C*=C-O).

⁽d, $\hat{J} = 3.1$ Hz, $\hat{C} = \hat{N}$), 163.5 (d, $\hat{J} = 5.2$ Hz, $\hat{C} = \hat{N}$), 93.1 ($\hat{C} = \hat{C} - \hat{O}$).
(16) Selected NMR data of **5b**: ³¹P{¹H} NMR (CD₂Cl₂, 121 MHz) δ 61.5 (d, 1 P, $J_{\rm P,P'}$ = 30.4 Hz), 51.9 (d, 1 P, $J_{\rm P,P'}$ = 30.4 Hz); ¹H NMR
(CD₂Cl₂, 300 MHz) δ 8.56 (s, 1 H, $H^bC=N$), 8.54 (d, 1 H, $J_{\rm P,H}$ = 11.7 Hz,
 $H^bC=N$), 3.20–3.05 (m, 1 H, H^aC-N), 2.00–1.88 (m, 1 *H*^bC=N), 3.20-3.05 (m, 1 H, *H*^aC-N), 2.00-1.88 (m, 1 H, *H*^aC-N); ¹³C{¹H} NMR (CD₂Cl₂, 176 MHz) δ 178.3 (C=C-O), 164.9 (C=N), 163.1 $(C(O)N)$, 161.6 (*d*, $J = 5.3$ Hz, $C=N$), 89.0 ($C=C-O$).

^{(17) (}a) Alternatively, a pK_a value of about 1.9 results if a recent revision of the commonly used pK_a^{aq} value of Ph₃PH⁺ from 2.7 to about 0 (in water) is accepted.17b (b) Pestovsky, O.; Shuff, A.; Bakac, A. *Organometallics* **2006**, *25*, 2894.

Figure 3. ORTEP drawing of the enolato complex **5b**.

Stoichiometric reactions gave additional mechanistic insight. Complex **4a** reacts with **6** (1.2 equiv) to give **7** in 93% yield and with 90% ee after 4 h. This enantioselectivity is comparable to that of the catalytic reaction, suggesting that **4a** might be an intermediate in catalysis. Interestingly, the enolato complex **5a** does not react with **6** (1 equiv) (0% yield after 48 h). No reaction occurs upon addition of $(HNEt_3)BPh_4$ (1 equiv) as a weak acid over 48 h.

These results are relevant to the palladium-catalyzed 1,4 addition of 1,3-dicarbonyl compounds to enones.^{3a} In this context, Sodeoka recently reported that the stoichiometric 1,4 addition of a palladium-coordinated enolate to **6** is induced by a strong acid ($CF₃SO₃H$), which was proposed to activate the enone by protonation. However, the effect of the acid on the

enolato complex was not discussed. Our results with ruthenium show that a strong acid protonates the enolato complex **5a** to **4a**, which, in turn, is not acidic enough to protonate methyl vinyl ketone (6) to a significant extent (the pK_a^{aq} value of protonated **6** can be estimated to be \sim -4). Therefore, it would be interesting to examine the effect of the strong acid in the case of the palladium enolato complex as well.

In summary, we have reported rare examples of latetransition-metal complexes containing non-enolized 1,3-dicarbonyl compounds as ligands. Upon coordination to ruthenium, the acidity of the β -keto ester 2 is enhanced by 6 orders of magnitude at least. Additionally, we have shown that **4a** smoothly reacts with **6** to give the 1,4-addition product both stoichiometrically and catalytically, whereas the enolato complex **5a** does not react with methyl vinyl ketone **6**, not even in the presence of Et_3NH^+ . In fact, Et_3NH^+ is too weak an acid (pK_a^{aq} \approx 11) to react with the enolato ligand of **5a** to give a significant amount of **4a** but would protonate the enolate intermediate formed by the first step of the 1,4-addition reaction between **6** and **5a**, the corresponding ketone having a $pK_a^{aq} \approx 20$. Conversely, a stronger acid would protonate **5a** rather than **6**. The nature (including acidity) and the role of complexes of type **4** containing non-enolized 1,3-dicarbonyl compounds in metalassisted 1,4-addition reactions will be the object of future studies. Finally, it should be noted that the present approach involves a Lewis acidic metal complex and, therefore, is opposite to the use of basic metal complexes that promote the formation of enolato derivatives, such as Ikariya's amido ruthenium(II) catalyst.2a

Acknowledgment. We thank Dr. Sebastian Gischig for measuring the X-ray crystal structures of complexes **5** and Prof. Antonio Togni for fruitful discussions.

Supporting Information Available: Text, tables, and figures giving experimental details of synthesis and catalysis and CIF files giving crystallographic data for **5a**,**b**. This material is available free of charge via the Internet at http://pubs.acs.org.

OM060389K