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Summary: The coordinately unsaturated iron(ll) amido com-
plex Cp*Fg N(SiMe),} (1) seres as an efficient precursor for
the cleavage of the N-N bond of diphenylhydrazine. ThesW
bond of azobenzene was also found to bevattd byl in the
presence of pinacolborane.

The unique structures and function of nitrogenase active sites
have inspired chemists to synthesize molecular models capable |

of cleaving N-N bonds! Iron is a common transition element
to the active sites of MoFe-, VFe-, and Fe-nitrogendsas

thus reactions of iron toward nitrogenase-related substrates such
as N, hydrazines, and azo compounds are of interest. Various

dinitrogen complexes of iron have been synthesizeaihd Fe-
(DMeOPrPE)(N,) (DMeOPrPE= 1,2-bis(bis(methoxypropyl)-
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phosphino)ethane), which was spectroscopically characterized

in solution, was recently demonstrated to promote the partial

conversion of the iron-bound Nto N;Hs™ and ammonium
cation?® Whereas the NN bond cleavage of hydrazines has

Bis(trimethylsilyl)amide on transition metals is known to
serve as a base. Indeed, treatment of CPpRESiMes)2} (1)
with 1 equiv of N-methylaniline gave rise to a dimeric

been known to occur with early-transition-metal complexes and methylphenylamido complex, CgEe(u-NMePh) (2), in 79%

some ruthenium complexé&sthere have only been a few
examples of such reactions induced by ifollVe became
interested in the activation of NN and N=N bonds by

yield via deprotonation of methylaniline (Scheme 1). Complex
2 is paramagnetic at ambient temperature, andthéN\MR
spectrum features by broad signalsda®1.7 (Cp*), ato 72.1

organometallic iron complexes, in connection with our studies (N—Me), and at 84.6,—28.8, and—33.7 (N\—Ph). The X-ray

on modeling the active sites of nitrogends&/e herein report

diffraction study confirmed the formulation & as shown in

that a coordinatively unsaturated monomeric iron(ll) amido Figure 1 (left)> Complex 2 has an inversion center at the

complex reported by Siemeling et al, Cp{F{SiMe3)2} (1),8
serves as an efficient precursor for the cleavage -ef\Nbond

of diphenylhydrazine. The &N bond of azobenzene was also
found to be activated by in the presence of 4,4,5,5-tetramethyl-
1,3,2-dioxaborolane (pinacolborane).

midpoint between the two iron atoms, and the amide nitrogens
and irons are crystallographically coplanar. The-Fe distance
is 2.7925(8) A, and the FeN distances (2.063(4) and 2.087(4)
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Figure 1. Molecular structures at—4, with thermal ellipsoids at the

Communications

50% probability level. Selected bond distances (A) and angles (deg):

2, Fe—F€ = 2.7925(8), FeN = 2.063(4), Fe-N' = 2.087(4), Fe-N—F€ = 84.58(19);3, Fe—F¢& = 2.4389(5), Fe-N = 1.804(1), Fe-N'
= 1.807(1), FeN—F¢€ = 84.99(5);4, Fe—F¢e = 2.5353(6), FeN = 1.979(2), Fe-N—F¢€ = 79.69(9).
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A) are similar to those in the related amido-bridged complexes
of iron(I1).10

Interestingly, wheri was reacted with 1,2-diphenylhydrazine,
not only deprotonation of hydrazine but also—N bond
cleavage took place. Addition of 1,2-diphenylhydrazine into a
toluene solution ofl led to a dark brown solution, from which
the dinuclear ferric imido complex CpEe)(u-NPh), (3) was
obtained in 59% yield as a brown solid (Scheme 2). The X-ray-
derived molecular structure is given at the center of Figure 1.
Complex3 is diamagnetic according to thel NMR spectrum,
and the two iron(lll) centers are magnetically coupled through
the short FeFe (2.4389(5) A) bond. The bridging imido
nitrogens donater-electrons into the vacant Ferdorbitals
perpendicular to the BN plane, and the consequence is the
very short Fe-N distance (1.804(1), 1.807(1) A). The reaction
to give 3 was presumably initiated by a deprotonation step of
diphenylhydrazine with 2 equiv ofl, and the N-N bond

hexane

cooperation of two iron centers must be important for both
substrate binding and successive Nl bond cleavage, because
two electrons are needed for the reductive cleavage of hydrazine.
The requirement of multiple iron centers is of possible relevance
to the proposal that multiple iron centers could be the site of
N, activation}? whereas the possibility of molybdenum-
coordinated N is also describeé?

The isolation of3 prompted us to examine activation of the
N=N bond of azobenzene by. It was anticipated that
azobenzene would not be activatedbglone, because unlike
the case for diphenylhydrazine there are no protons in azoben-
zene to react with the amide @f In fact, treatment ofl. with
azobenzene ended up with mere recovery of the reactants. We
sensed that azobenzene might be activated if external proton or
Lewis acid generates “Cp*Fe” or “CpFe,” from 1 as a reactive
moiety, in light of the possible intermediafefor the reaction
betweenl and diphenylhydrazine to givé Thus, we carried
out an NMR-tube experiment in benzedgfor the reaction of
1 with azobenzene in the presence of 1 equiv of pinacolborane
(HBpin), to find that3 was generated in 29% vyield. Unfortu-
nately, this reaction is not very clean, and @p&(u-H){ u-
N(SiMes)2} (4) and Cp*%Fe were also detected in 17% and 25%
yields, respectively. Since the solubility ®n common organic
solvents is similar to that of and Cp*%Fe, isolation of3 from
the reaction mixture has not been successful. Nonetheless, it is
interesting to find thal can act as a precursor of active species
for the N=N bond cleavage of azobenzene.

To verify the formation of the dinuclear hydride/amide
the amide compleg was treated with 1/2 equiv of HBpin. From
this reaction4 was isolated as dark brown crystals in 24% yield,
and its crystal structure was determined. As shown in Figure 1
(right), two iron atoms o# are bridged by one amide and one
hydride with an Fe-Fe distance of 2.5353(6) A, where the
Fe—N distance (1.979(2) A) is between those2odnd 3. The

cleavage could have proceeded via the resulting azobenzenefoymation of4 indicates that HBpin served as a hydride source

bridged dinuclear intermediate GfF#ex(«-N2Phy) (A in Scheme

to replace the amide df,'4 generating the aminoborane (Me

3). The related dinuclear iron fragments have been reported tos;j),N—Bpin and the putative hydride compound “Cp*FeH”,

bind hydrazines, azobenzene, and molecular nitrdgéithe
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> 00(F), 163 parameter®k = 0.030,R, = 0.036, GOF= 1.31. Crystal
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which then reacted with the remainidgto give the dinuclear in turn facilitate the reductive cleavage of the=N bond. The

complex4. The formation of (MgSi),N—Bpin was confirmed observation of a singlet signal &#.45 in the NMR experiment

by alH NMR spectrum in benzengs, where the methyl signals  indicates the formation of l whereas a quantitative analysis

of aminoborane appeared @atl.03 and 0.32. Comple% was was not available. As mentioned earlier in this paperis also

found not to react with azobenzene. a possible intermediate in the reactionlofwith diphenylhy-
Taking the above results into consideration, we propose adrazine.

possible mechanism for thes\N bond cleavage of azobenzene
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