Synthesis, Structure, and Reactivity of Tantalum and Tungsten Homoenolate Complexes

Hayato Tsurugi, Takashi Ohno, Tsuneaki Yamagata, and Kazushi Mashima*

Department of Chemistry, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan

Received March 23, 2006

Preparation and characterization of homoenolate complexes of tantalum, $Cp*Cl_3Ta(CH_2CR^1_2C(=O)-OR^2)$ (1a: $R^1 = H$, $R^2 = Et$; 1b: $R^1 = R^2 = Me$; 1c: $R^1 = Me$, $R^2 = C_6H_4CH_3-4$), and tungsten, (Xyl-

 $N=Cl_3W(CH_2CH_2C(=O)OEt)$ (7), using zinc homoenolate reagents are described. Intramolecular coordination of the carbonyl moiety to the metal center in these complexes was confirmed by their NMR and IR spectroscopy together with X-ray analyses of **1a** and **1b**. The insertion reaction of isocyanide into

the metal carbon bond of 1a and 7, respectively, resulted in the formation of a diazametallacycle, $Cp*Cl_3Ta$ -

[N(Xyl)-C(=C=N-Xyl)-C(CH₂CH₂CO₂Et)=N-Xyl] (**3a**), which possesses a metallacyclic structure with an exocyclic ketene—imine moiety, and an η^2 -iminoacyl tungsten complex, (Xyl-N=)W{C(=N-Xyl)-CH₂CH₂CO₂Et}(CNXyl)Cl₃ (**8**). The β -proton of the homoenolate moiety of **1a** was selectively deprotonated by KN(SiMe₃)₂ to afford an η^4 -ethyl acrylate complex, Cp*Cl₂Ta(η^4 -ethyl acrylate) (**4a**). In the case of complex **1b**, in which the β -positions were protected by dimethyl substituents, reaction with the dilithium salt of diazadiene afforded a tantalalactone complex, Cp*(η^4 -p-MeOC₆H₄-DAD)Ta(CH₂-

 $CMe_2C(=O)O$ (5). The addition of $Al(C_6F_5)_3$ to 5 afforded a novel zwitterionic complex, $Cp^*(p-1)$

 $MeOC_6H_4$ -DAD)Ta(CH₂CMe₂C(=O)O-Al(C₆F₅)₃) (**6**), in which Al(C₆F₅)₃ coordinated to the exocyclic carbonyl oxygen of the tantalalactone.

Introduction

Organometallic compounds with a functionalized alkyl ligand, $[L_nM-(CH_2)_n-FG]$ (FG: functional group), have been the subject of intensive investigation because the introduction of a heteroatom into an alkyl moiety has a profound influence on its stability and reactivity. This class of complexes has important applications as synthetic building blocks in organic chemistry and as catalysts for homogeneous reactions.^{1,2} Among functionalized-alkyl organometallic complexes, β -functionalized alkyl complexes have attracted special interest, and titanium homoenolate complexes, which exhibit a unique chelating effect on stabilizing alkyl species, are versatile reagents for carboncarbon bond formation.³ Chelating alkyl species have also been used for catalytic reactions by late transition metals: the copolymerization of ethylene and methyl acrylate by palladium catalysts involving β - or γ -functionalized alkylpalladium complexes,⁴ and the copolymerization of α -olefins and carbon monoxide providing β -keto alkylpalladium complexes.^{5,6} In each polymerization, these species had important roles in incorporating further monomers and in determining the polymer microstructure. Fundamental studies of the β -functionalized alkyl

species are thus fascinating and in high demand. Our studies of the chemistry of early transition metal complexes with fivemembered aza-⁷ and oxametallacycles⁸ led to our interest in the β -functionalized alkyl complexes of early transition metals because of the strong interaction between the early transition metal and the functionalized group, forming an intramolecular five-membered chelation. Here we report the preparation of

^{*} To whom correspondence should be addressed. E-mail: mashima@ chem.es.osaka-u.ac.jp. Fax: 81-6-6850-6245.

⁽¹⁾ Steinborn, D. Angew. Chem., Int. Ed. Engl. 1992, 31, 401.

^{(2) (}a) Werstiuk, N. H. Tetrahedron 1983, 39, 205. (b) Hoppe, D. Angew.
Chem., Int. Ed. Engl. 1984, 23, 932. (c) Ryu, I.; Sonoda, N. J. Synth. Org.
Chem. Jpn. 1985, 43, 112; Chem. Abstr. 1985, 102, 166796p. (d) Hoppe,
D.; Hense, T. Angew. Chem., Int. Ed. Engl. 1997, 36, 2282. (e) Heck, R.
D. Palladium Reagents in Organic Syntheses; Academic Press: London,
1985. (f) Tsuji, J. Palladium Reagents and Catalysts; Wiley: England, 1995.

⁽³⁾ For titanium complexes: (a) Nakamura, E.; Kuwajima, I. J. Am. Chem. Soc. 1977, 99, 7360. (b) Nakamura, E.; Kuwajima, I. J. Am. Chem. Soc. 1983, 105, 651. (c) Goswami, R. J. Org. Chem. 1985, 50, 5907. (d) Nakamura, E.; Oshino, H.; Kuwajima, I. J. Am. Chem. Soc. **1986**, 108, 3745. (e) Cozzi, P. G.; Carofiglio, T.; Floriani, C. Organometallics **1993**, 12, 2845. For other metal complexes: (f) Ryu, I.; Matsumoto, K.; Ando, M.; Murai, S.; Sonoda, N. Tetrahedron Lett. 1980, 21, 4283. (g) Ryu, I.; Ando, M.; Ogawa, A.; Murai, S.; Sonoda, N. J. Am. Chem. Soc. 1983, 105, 7192. (h) Nakamura, E.; Shimada, J.; Kuwajima, I. Organometallics 1985, 4, 641. (i) Oshino, H.; Nakamura, E.; Kuwajima, I. J. Org. Chem. 1985, 50, 2802. (j) Ryu, I.; Murai, S.; Sonoda, N. J. Org. Chem. 1986, 51, 2391. (k) Nakamura, E.; Aoki, S.; Sekiya, K.; Oshino, H.; Kuwajima, I. J. Am. Chem. Soc. 1987, 109, 8056. (1) Aoki, S.; Nakamura, E.; Kuwajima, I. Tetrahedron Lett. 1988, 29, 1541. (m) Ryu, I.; Suzuki, H.; Ogawa, A.; Kambe, N.; Sonoda, N. Tetrahedron Lett. 1988, 29, 6137. (n) Aoki, S.; Fujimura, T.; Nakamura, E.; Kuwajima, I. Tetrahedron Lett. 1989, 30, 6541. (o) Nakahira, H.; Ryu, I.; Han, L.; Kambe, N.; Sonoda, N. Tetrahedron Lett. 1991, 32, 229. (p) Kuwajima, I.; Nakamura, E. In Comprehensive Organic Synthesis; Trost, B., Flemming, I., Eds.; Pergamon: Oxford, 1991; Vol. 2, pp 441-454.

 ^{(4) (}a) Johnson, L. K.; Mecking, S.; Brookhart, M. J. Am. Chem. Soc.
 1996, 118, 267. (b) Mecking, S.; Johnson, L. K.; Wang, L.; Brookhart, M. J. Am. Chem. Soc. 1998, 120, 888.

⁽⁵⁾ Recent reviews for α -olefin and CO copolymerization: (a) Sen, A. Acc. Chem. Res. **1993**, 26, 303. (b) Drent, E.; Budzelaar, P. H. M. Chem. Rev. **1996**, 96, 663. (c) Bianchini, C.; Meli, A. Coord. Chem. Rev. **2002**, 225, 35. (d) Nakano, K.; Kosaka, N.; Hiyama, T.; Nozaki, K. Dalton Trans. **2003**, 4039.

homoenolate complexes of tantalum and tungsten, their unique reactions with 2,6-dimethylphenylisocyanide (XylNC), and their transformation of the homoenolate moiety by metal-amido reagents.

Results and Discussion

Synthesis, Characterization, and Reactivity of Tantalum Homoenolate Complexes. The reaction of Cp*TaCl₄ with 0.5 equiv of Zn(CH₂CH₂CO₂Et)₂^{3h} in ether afforded the tantalum homoenolate complex **1a** in 64% yield. Recrystallization from a hot toluene solution gave analytically pure yellow crystals of **1a**. The ¹H NMR spectrum of **1a** showed two triplet resonances at δ 3.55 and 0.65 assignable to α - and β -methylene protons. In the ¹³C NMR spectrum, the carbonyl carbon signal was shifted downfield (δ_C 193.7) compared to that of the carbonyl carbon (δ_C ca. 170) of organic esters, indicating that the carbonyl group coordinated in an η^1 -fashion to the tantalum atom. The coordination of the carbonyl group was further confirmed by IR spectroscopy, in which ν (C=O) appeared at a lower frequency (1625 cm⁻¹) compared to organic esters.

Similarly, β , β' -dimethyl-substituted homoenolate complexes, Cp*Cl₃Ta(CH₂CMe₂C(=O)OMe) (**1b**) and Cp*Cl₃Ta(CH₂-CMe₂C(=O)OC₆H₄CH₃-4) (**1c**), were obtained by treating Cp*TaCl₄ with 1 equiv of IZn(CH₂CMe₂CO₂R) (R = Me, C₆H₄-CH₃-4). The transmetalation from zinc to tantalum proceeded

 Table 1. Selected Bond Distances (Å) and Angles (deg) of

 Complexes 1a and 1b

	1 a	1b
Ta-C11	2.2378(16)	2.186(13)
Ta-Cl1	2.4241(4)	2.391(3)
Ta-Cl2	2.4292(4)	2.434(3)
Ta-Cl3	2.3976(4)	2.414(3)
Ta-O1	2.2263(11)	2.234(8)
C11-C12	1.527(2)	1.540(16)
C12-C13	1.480(2)	1.489(17)
C13-O1	1.2372(18)	1.240(14)
C11-Ta-Cl1	83.86(4)	86.8(3)
C11-Ta-Cl2	149.57(4)	150.2(3)
C11-Ta-Cl3	86.62(4)	85.7(4)
C11-Ta-O1	74.30(5)	73.2(4)
Ta-C11-C12	113.28(10)	118.0(9)
Ta-O1-C13	119.09(10)	119.2(8)
C11-C12-C13	110.71(13)	106.8(10)
O1-C13-C12	121.52(13)	122.4(11)
O1-C13-O2	121.98(14)	119.7(12)

smoothly, and **1b** and **1c** were obtained as yellow crystalline solids. The stretching frequencies of the carbonyl group (1633 cm⁻¹) and the carbonyl carbon resonance (δ 197.2) of **1b** were almost the same as those of **1a**. Thus, the carbonyl group of the homoenolate chain of **1b** also coordinated to the tantalum atom in the same mode. In the case of **1c**, the chemical shift value of the carbonyl group of the tantalum atom. The carbonyl group of the tantalum atom. The carbonyl stretching frequency of **1c** (1649 cm⁻¹) was slightly increased compared to **1a** and **1b** due to the inductive effect of the aromatic ester.

The chelate structures of **1a** and **1b** were confirmed by X-ray analyses (Figures 1a and 1b). Selected bond distances and angles are summarized in Table 1. The tantalum atom of each complex has a four-legged piano stool geometry with an additional donation from the carbonyl oxygen atom at the opposite side toward the Cp* ligand. Thus, the homoenolate moiety coordinates to the tantalum atom via C(11) and O(1) atoms to form a five-membered chelating structure. The molecular orbital of the d⁰ piano stool CpTa fragment had two low-lying empty orbitals, $d_{x^2-y^2}$ and d_{z^2} ,⁹ the latter being situated at the opposite side of the CpTa moiety. The bond angles of Ta-O(1)-C(13) (119.09° and 119.2°) and $Cp_{centroid}$ -Ta-O(1) (177.8° and 175.8°) indicate that the lone pair of carbonyl oxygens overlapped with the empty d_{r^2} orbital. A similar interaction between the electron donor molecules, such as phosphine, isocyanide, carbonyl oxygen, and ylide, and the empty d_{z^2} orbital of the tantalum(V) complexes with the four-legged piano stool geometry has been reported.¹⁰

⁽⁶⁾ For isolated β -keto alkyl palladium complexes as an intermediate for α -olefin and CO copolymerization: (a) Drent, E.; Broekhoven, J. A. M.; Doyle, M. J. J. Organomet. Chem. 1991, 417, 235. (b) Ozawa, F.; Hayashi, T.; Koide, H.; Yamamoto, A. J. Chem. Soc., Chem. Commun. 1991, 1469. (c) Markies, B. A.; Rietveld, M. H. P.; Boersma, J.; Spek, A. L.; van Koten, G. J. Organomet. Chem. 1992, 424, C12. (d) Dekker: G. P. C. M.; Elsevier, C. J.; Vrieze, K.; van Leeuwen, P. W. N. M.; Roobeek, C. F. J. Organomet. Chem. 1992, 430, 357. (e) van Asselt, R.; Gielens, E. E. C. G.; Rulke, R. E.; Elsevier: C. J. J. Chem. Soc., Chem. Commun. 1993, 1203. (f) van Asselt, R.; Gielens, E. E. C. G.; Rülke, R. E.; Vrieze, K.; Elsevier, C. J. J. Am. Chem. Soc. 1994, 116, 977. (g) Markies, B. A.; Kruis, D.; Rietveld, M. H. P.; Verkerk, K. A. N.; Boersma, J.; Kooijman, H.; Lakin, M. T.; Spek, A. L.; van Koten, G. J. Am. Chem. Soc. 1995, 117, 5263. (h) Nozaki, K.; Sato, N.; Tonomura, Y.; Yasutomi, M.; Takaya, H.; Hiyama, T.; Matsubara, T.; Koga, N. J. Am. Chem. Soc. 1997, 119, 12779. (i) Green, M. J.; Britovsek, G. J. P.; Cavell, K. J.; Gerhards, F.; Yates, B. F.; Frankcombe, K.; Skelton, B. W.; White, A. H. J. Chem. Soc., Dalton Trans. 1998, 1137. (j) Groen, J. H.; De Zwart, A.; Vlaar, M. J. M.; Ernsting, J. M.; van Leeuwen, P. W. N. M.; Vrieze, K.; Kooijman, H.; Smeets, W. J. J.; Spek, A. L.; Anthony, L.; Budzelaar, P. H. M.; Xiang, Q.; Thummel, R. P. Eur. J. Inorg. Chem. 1998, 8, 1129. (k) Luinstra, G. A.; Brinkmann, P. H. P. Organometallics 1998, 17, 5160. (1) Reddy, K. R.; Chen, C.; Liu, Y.; Peng, S.; Chen, J.; Liu, S. Organometallics 1999, 18, 2574. (m) Braunstein, P.; Cossy, J.; Knorr, M.; Strohmann, C.; Vogel, P. New J. Chem. 1999, 23, 1215. (n) Braunstein, P.; Frison, C.; Morise, X. Angew. Chem., Int. Ed. 2000, 39, 2867. (o) Reddy, K. R.; Surekha, K.; Lee, G.; Peng, S.; Chen, J.; Liu, S. Organometallics 2001, 20, 1292. (p) Braunstein, P.; Durand, J.; Knorr, M.; Strohmann, C. Chem. Commun. 2001, 211. (q) Carfagna, C.; Gatti, G.; Martini, D.; Pettinari, C. Organometallics 2001, 20, 2175. (r) Stoccoro, S.; Minghetti, G.; Cinellu, M.; Zucca, A.; Manassero, M. Organometallics 2001, 20, 4111. (s) Binotti, B.; Carfagna, C.; Gatti, G.; Martini, D.; Mosca, L.; Pettinari, C. Organometallics 2003, 22, 1115. (t) Shen, H.; Jordan, R. F. Organometallics 2003, 22, 1878. (u) Bianchini, C.; Meli, A.; Oberhauser, W.; van Leeuwen, P. W. N. M.; Zuideveld, M. A.; Freixa, Z.; Kamer, P. C. J.; Spek, A. L.; Gusev, O. V.; Kal'sin, A. M. Organometallics 2003, 22, 2409. (v) Wu, H.; Liu, Y.; Peng, S.; Liu, S. Eur. J. Inorg. Chem. 2003, 17, 3152. (w) Setsune, J.; Yamaguchi, T.; Tanikawa, S.; Hirose, Y.; Watanabe, J. Organometallics 2004, 23, 6058.

^{(7) (}a) Mashima, K.; Matsuo, Y.; Tani, K. Chem. Lett. 1997, 767. (b) Mashima, K.; Matsuo, Y.; Tani, K. Organometallics 1999, 18, 1471. (c) Mashima, K.; Matsuo, Y.; Nakahara, S.; Tani, K. J. Organomet. Chem. 2000, 593/594, 69. (d) Nakamura, A.; Mashima, K. J. Organomet. Chem. 2001, 621, 224. (e) Matsuo, Y.; Mashima, K.; Tani, K. Bull. Chem. Soc. Jpn. 2002, 75, 1291. (f) Matsuo, Y.; Mashima, K.; Tani, K. Organometallics 2002, 21, 138.

⁽⁸⁾ Matsuo, Y.; Mashima, K.; Tani, K. Angew. Chem., Int. Ed. 2001, 40, 960.

⁽⁹⁾ Yasuda, H.; Tatsumi, K.; Okamoto, T.; Mashima, K.; Lee, K.; Nakamura, A.; Kai, Y.; Kanehisa, N.; Kasai, N. J. Am. Chem. Soc. **1985**, 107, 2410.

^{(10) (}a) Fandos, R.; Gómez, M.; Royo, P.; Garcia-Blanco, S.; Martinez-Carrera, S.; Sanz-Aparicio, J. Organometallics **1987**, 6, 1581. (b) Arnold, J.; Tilley, T. D.; Rheingold, A. L.; Geib, S. J.; Arif, A. M. J. Am. Chem. Soc. **1989**, 111, 149. (c) Gómez, M., Gómez-Sal, P.; Nicolás, M. P.; Royo, P. J. Organomet. Chem. **1995**, 491, 121. (d) Höcher, T.; Blaurock, S.; Hey-Hawkins, E. Eur. J. Inorg. Chem. **2002**, 1174. (e) Blaurock, S.; Hey-Hawkins, E. Z. Anorg. Allg. Chem. **2002**, 628, 2515.

The bond distance of Ta–O(1) [2.2263(11) Å for **1a** and 2.234-(8) Å for **1b**] is in the range typically observed for tantalum complexes with a coordinating carbonyl oxygen atom.¹¹ The Lewis acidic nature of the tantalum atom resulted in the intramolecular chelating structure, which was also observed for tin(IV)¹² and Ti(IV)^{3a–e} complexes, whereas homoenolate complexes of Pt(II)¹³ and Au(I)¹⁴ have a nonchelating structure due to the soft nature of their metal centers. The coordination mode of the homoenolate depends on the Lewis acidity of the metal. Notable differences between **1a** and **1b** are the distance of the Ta–C(11) bond (2.2378 Å for **1a** and 2.186 Å for **1b**) and the angles of Ta–C(11)–C(12) (113.28° for **1a** and 118.0° for **1b**) and C(11)–C(12)–C(13) (110.71° for **1a** and 106.8° for **1b**), which are presumably due to the steric effect of the dimethyl group at the β -carbon of **1b**.

The triflate ligand has a stronger electron-withdrawing property than halides,¹⁵ and hence the metal center with triflate ligands generally becomes more electron-deficient than that with chlorine ligands. We conducted a ligand exchange reaction of chlorine atoms with triflate ligands and compared the influence of triflate or chloride on the coordination of carbonyl to the tantalum atom. Metathesis reaction of **1a** with 3 equiv of AgOTf

in toluene afforded a tris(triflate) complex, Cp*Ta(CH2CH2C-

 $(=0)OEt)(OTf)_3$ (2a), in 75% yield (eq 1), in which the three triflates comprised the inner sphere ligands. The observed solubility of 2a in aromatic hydrocarbons is consistent with the general tendency that neutral early transition metal triflate complexes are dissolved in aromatic and aliphatic solvents¹⁶ and an ionized bis(triflate) tantalum complex is insoluble in aromatic and aliphatic hydrocarbons.¹⁷ In the ¹⁹F NMR spectrum, two singlet signals were observed as a 2:1 integral ratio, indicating that the triflate ligands were tightly bound in an η^{1} coordination mode to tantalum at two cis and one trans positions relative to the alkyl moiety, and the ligand exchange process between the inner and outer coordination spheres was accordingly ruled out on the basis of the ¹⁹F NMR time scale at 308 K. In the ¹³C NMR spectrum, a resonance due to the methylene carbon α to the tantalum atom was observed at δ 71.6, a value downfield of that for 1a. Replacement of chloride atoms by triflate ligands strengthened the bond between the carbonyl oxygen atom and the tantalum atom of 1a, as evidenced by the downfield shift of the carbonyl carbon ($\delta_{\rm C}$ 198.9) and the decreased C=O stretching frequency (1587 cm⁻¹).

The metal-carbon bond of homoenolate is expected to be reactive toward typical unsaturated organic molecules; however, **1a** in CDCl₃ did not react with carbon monoxide (1 atm), methyl

Figure 1. Molecular structure of the complexes 1a (top) and 1b (bottom). All hydrogen atoms are omitted for clarity.

acrylate, or diphenylacetylene, due to the strong binding between the carbonyl oxygen and the tantalum atom. In contrast, isocyanide reacted with **1a** to give an isocyanide multiple insertion product. The addition of 2,6-dimethylphenylisocyanide

to 1a in toluene afforded $Cp*Cl_3Ta[N(Xyl)-C(=C=N-Xyl)-$

C(CH₂CH₂CO₂Et)=N-Xyl] (3a), in which 3 equiv of isocyanide were consequently inserted into the tantalum carbon bond of 1a (eq 2). Although the single insertion of isocyanide into metal-alkyl or -iminoacyl bonds of high-valent early transition metal complexes has been extensively studied,¹⁸ there are only a few examples of an isocyanide multiple insertion reaction for tantalum complexes.^{18d,i,k} The ¹³C NMR spectrum of **3a** displayed the carbonyl carbon signal around δ 170, the chemical shift suggesting that the ester group of the homoenolate moiety was released from the tantalum atom. The IR spectrum of 3a exhibited three strong bands at 2037, 1731, and 1548 cm⁻¹, which are assignable to ketene-imine, carbonyl, and imine groups, respectively. The structural characteristics of 3a were revealed by the X-ray analysis (Figure 2). Selected bond distances and angles are listed in Table 2. Complex 3a has a diazametallacycle structure with an exocyclic ketene-imine group. Rothwell et al. reported a similar metallacyclic structure for tantalum complexes supported by bulky aryloxy ligands.^{18d,i} The bond distance of Ta-N(1) [2.370(3) Å] is much longer than that of Ta-N(3) [2.063(3) Å], indicating that the former bond is an imine-donating bond to the tantalum atom, ^{18d,i,h} while

^{(11) (}a) Sperry, C. K.; Cotter, W. D.; Lee, R. A.; Lachicotte, R. J.; Bazan, G. C. *J. Am. Chem. Soc.* **1998**, *120*, 7791. (b) Weinert, C. S.; Fanwick, P. E.; Rothwell, I. P. *Organometallics* **2005**, *24*, 5759.

⁽¹²⁾ Harrison, P. G.; King, T. J.; Healy, M. A. J. Organomet. Chem. 1979, 182, 17.

⁽¹³⁾ Ikura, K.; Ryu, I.; Ogawa, A.; Sonoda, N.; Harada, S.; Kasai, N. Organometallics **1991**, 10, 528.

⁽¹⁴⁾ Ito, Y.; Inoue, M.; Suginome, M.; Murakami, M. J. Organomet. Chem. 1988, 342, C41.

⁽¹⁵⁾ Lawrance, G. A. Adv. Inorg. Chem. 1989, 34, 145.

Figure 2. Molecular structure of 3a. All hydrogen atoms are omitted for clarity.

 Table 2. Selected Bond Distances (Å) and Angles (deg) of Complex 3a

	-		
Ta-N1	2.370(3)	Ta-N3	2.063(3)
Ta-Cl1	2.441(1)	Ta-Cl2	2.4544(9)
Ta-Cl3	2.473(1)	N1-C19	1.307(4)
C19-C25	1.442(5)	N3-C25	1.434(4)
C25-C26	1.354(5)	N2-C26	1.200(5)
O1-C22	1.218(5)		
N3-Ta-Cl1	97.05(10)	N3-Ta-Cl2	148.86(8)
N3-Ta-Cl3	85.5(1)	N1-Ta-N3	72.7(1)
N1-C19-C25	114.5(3)	N3-C25-C19	117.1(3)
N2-C26-C25	170.0(5)		

the latter bond has the typical distance of a Ta-N(arylamido) bond.^{7f,19} The ketene-imine moiety is revealed by the bond distances of C(25)-C(26) [1.354(5) Å] and N(2)-C(26) [1.200-(5) Å] and the bond angle of C(25)-C(26)-N(2) [170.0-(5)°].^{18i,20} The ester moiety of the homoenolate fragment of **3a** is located at the outer coordination sphere of the tantalum atom, suggesting that the resulting isocyanide insertion is initiated by the replacement of the coordinated carbonyl moiety by the first equivalent of isocyanide.

Scheme 1 shows two plausible mechanisms for the formation of **3a**. The first step of the reaction between **1a** and isocyanide, after the release of the carbonyl moiety from the tantalum atom, afforded an η^2 -iminoacyl species. Typical η^2 -iminoacyl ligands of high-valent early transition metal, lanthanide, and actinide complexes are described as the three resonance structures A (zwitterionic resonance form), B (amido-carbene resonance form), and C (η^2 -iminoacyl resonance form), schematically shown in Scheme 1.18a The formation of 3a was rationally illustrated by two pathways (path A and path B). In path A, the migratory insertion of isocyanide into the metal-iminoacyl bond, giving **3a'**, followed by nucleophilic attack of the third isocyanide at the iminoacyl carbon, results in the formation of **3a.** A similar mechanism for the formation of the imine $-\eta^2$ iminoacyl species, corresponding to 3a', was proposed by Royo et al. for the reaction of Cp*Ta(=NR) derivatives with excess XyINC.^{18k} The other pathway (path B) involves a nucleophilic attack of isocyanide at the iminoacyl carbon to form an amido-

ketene-imine complex 3a'', which is followed by the nucleophilic attack of CNXyl to the ketene-imine carbon. Tilley and co-workers reported that the reaction of the thorium-silicon bond with 2 equiv of carbon monoxide gave a metaloxy ketene complex, Cp*₂Th(Cl)[OC(=C=O)Si(SiMe₃)₃], an analogue to 3a'', and the following nucleophilic attack of isocyanide at the ketene carbon afforded a dioxametallacycle bearing a ketene-imine moiety, Cp*₂(Cl)Th[OC(=C=N-Xyl)-

C{Si(SiMe₃)₃}=O].²¹ It is likely that the reaction proceeded through path A because an isoelectronic tungsten-homoenolate complex reacted with 2 equiv of XylNC to give an η^2 -iminoacyl complex with an η^1 -XylNC ligand (vide infra).

Reaction of Tantalum Homoenolate Complexes with Metal-Amide Reagent. Deprotonation of the methylene proton β to the tantalum atom and α to the carbonyl group was accomplished by treatment of 1a with 1 equiv of KN(SiMe₃)₂, giving an η^4 -EA (EA = ethyl acrylate) complex, Cp*Cl₂Ta-(CH₂CH=C(O)OEt) (4a) (eq 3). Similar oxatantalacyclopentene complexes, Cp*Cl₂Ta(CMe₂CH=C(O)CH₃),²² Cp*Cl₂Ta(CH₂-CH=C(O)OMe),²³ and Cp*Cl₂Ta(CH₂C(Me)=C(O)OMe),⁸ have been reported. The ¹H NMR spectrum of 4a showed three doublets of doublets (δ 5.11, 1.32, and 0.53), assignable to an olefinic proton and methylene protons bound to the tantalum atom, and the spectral pattern was identical to that of Cp*Cl₂Ta(CH₂CH=C(O)OMe).²³ The ¹³C NMR spectrum of **4a** displayed a new signal at δ 161.8, assignable to an olefinic carbon bound to oxygen atoms, suggesting the formation of oxatantalacyclopentene. In contrast, the reaction of 1a with the dilithium salt of 1,4-bis(p-methoxyphenyl)-1,4-diaza-1,3-butadiene (abbreviated p-MeOC₆H₄-DAD) provided no isolable species from a complicated reaction mixture.

The reaction of **1b** with KN(SiMe₃)₂ did not proceed because the β -methylene protons were protected by two methyl groups. On the other hand, reaction of **1b** with 1 equiv of the dilithium salt of *p*-MeOC₆H₄-DAD afforded a tantalalactone complex,

 $Cp*(\eta^4-p-MeOC_6H_4-DAD)Ta(CH_2CMe_2C(=O)O)$ (5) (eq 4), whose formulation was revealed by spectroscopic methods. The

metal—homoenolate fragment was transformed to metallalactone by cleavage of the O–CH₃ bond from the ester group. The formation of **5** might involve an elimination of CH₃Cl via a four-membered transition state. The same reaction pathway was proposed by Qian et al. for their titanium complexes.²⁴ Metallalactone complexes of late transition metals are prepared by the oxidative addition of acrylic acid or lactone to electronrich low-valent metals²⁵ or a coupling reaction among metal, alkene, and carbon dioxide.²⁶ Early transition metals, titanalactone,²⁷ zirconalactone,²⁸ and tantalalactone²⁹ are prepared by the reaction of low-valent ethylene or benzyne complexes with CO₂. Complex **5** is a relatively rare example of metallalactone complexes of early transition metals.

5 : Ar = p-MeOC₆H₄

The ¹H and ¹³C NMR spectra of **5** displayed only two methoxy groups of the *p*-MeOC₆H₄-DAD, indicating the elimination of the methyl group of the ester. In the ¹³C NMR spectrum, the carbonyl carbon was observed at δ 190.6, a higher field shift than that of **1b**. The IR spectrum of **5** exhibited *v*-

^{(16) (}a) Freundlich, J. S.; Schrock, R. R.; Cummins, C.; Davis, W. M. J. Am. Chem. Soc. 1994, 116, 6476. (b) Mashima, K.; Fujikawa, S.; Tanaka, Y.; Urata, H.; Oshiki, T.; Tanaka, E.; Nakamura, A. Organometallics 1995, 14, 2633. (c) Freundlich, J. S.; Schrock, R. R.; Davis, W. M. J. Am. Chem. Soc. 1996, 118, 3643. (d) Gavenonis, J.; Tilley, T. D. Organometallics 2002, 21, 5549. (e) Gavenonis, J.; Tilley, T. D. Organometallics 2004, 23, 31. (17) Turner, H. W.; Schrock, R. R.; Fellmann, J. D.; Holmes, S. J. J.

⁽¹⁾ Turner, H. W.; Schrock, R. K.; Fellmann, J. D.; Holmes, S. J. , Am. Chem. Soc. 1983, 105, 4942.

^{(18) (}a) Durfee, L. D.; Rothwell, I. P. Chem. Rev. 1988, 88, 1859, and references are therein. For tantalum complexes: (b) Chamberlain, L. R.; Steffey, B. D.; Rothwell, I. P.; Huffman, J. C. Polyhedron 1989, 8, 341. (c) Koschmieder, S. U.; Hussain-Bates, B.; Hursthouse, M. B.; Wilkinson, G. J. Chem. Soc., Dalton Trans. 1991, 2785. (d) Clark, J. R.; Fanwick, P. E.; Rothwell, I. P. J. Chem. Soc., Chem. Commun. 1993, 1233. (e) Galakhov, M. V.; Gómez, M.; Jimenez, G.; Royo, P.; Pellinghelli, M. A.; Tiripicchio, A. Organometallics 1994, 13, 1564. (f) Galakhov, M. V.; Gómez, M.; Jimenez, G.; Royo, P.; Pellinghelli, M. A.; Tiripicchio, A. Organometallics 1994, 13, 1564. (f) Galakhov, M. V.; Gómez, M.; Jimenez, G.; Royo, P.; Pellinghelli, M. A.; Tiripicchio, A. Organometallics 1995, 14, 1901. (g) Galakhov, M.; Gómez, M.; Jimenez, G.; Royo, P.; Pellinghelli, M. A.; Tiripicchio, A. Organometallics 1995, 14, 2843. (h) Bazan, G. C.; Rodriguez, G. Polyhedron 1995, 14, 93. (i) Clark, J. R.; Fanwick, P. E.; Rothwell, I. P. Organometallics 1996, 15, 3232. (j) Gómez, M.; Gómez-Sal, P.; Martín, A.; Royo, P. Organometallics 1996, 15, 3579. (k) Sánchez-Nieves, J.; Royo, P.; Pellinghelli, M. A.; Tiripicchio, A. Organometallics 2000, 19, 3161.

^{(19) (}a) Suh, S.; Hoffman, D. M. *Inorg. Chem.* **1996**, *35*, 5015. (b) Guérin, F.; McConville, D. H.; Vittal, J. J.; Yap, G. A. P. *Organometallics* **1998**, *17*, 1290. (c) Araujo, J. P.; Wicht, D. K.; Bonitatebus, P. J.; Schrock, R. R. *Organometallics* **2001**, *20*, 5682.

^{(20) (}a) Valero, C.; Grehl, M.; Wingbermühle, D.; Kloppenburg, L.; Carpenetti, D.; Erker, G.; Petersen, J. L. Organometallics 1994, 13, 415.
(b) Gerlach, C. P.; Arnold, J. J. Chem. Soc., Dalton Trans. 1997, 4795. (c) Bashall, A.; Collier, P. E.; Gade, L. H.; McPartlin, M.; Mountford, P.; Pugh, S. M.; Radojevic, S.; Schubart, M.; Scowen, I. J.; Trösch, D. J. M. Organometallics 2000, 19, 4784.

⁽²¹⁾ Radu, N. S.; Engeler, M. P.; Gerlach, C. P.; Tilley, T. D. J. Am. Chem. Soc. 1995, 117, 3621.

Figure 3. Molecular structure of 6. All hydrogen atoms are omitted for clarity.

(CO) at 1668 cm⁻¹, consistent with those of metallalactone complexes of early transition metals, $Cp*_2Ti(CH_2CH_2C(=O)-$) (1653 cm⁻¹),²⁷ Cp₂Zr(CH₂CH₂C(=O)O) (1687 cm⁻¹),²⁸ and Cp*(η^4 -C₄H₆)Ta(C₆H₄C(=O)O) (1670 cm⁻¹).²⁹

Because the reaction of carbonyl compounds with strong organo Lewis acids such as $B(C_6F_5)_3$ and $Al(C_6F_5)_3$ form stable adducts,^{30,31} the addition of 1 equiv of organo Lewis acid, Al- $(C_6F_5)_3$, to tantalalactone **5** yielded a zwitterionic metallalactone– $Al(C_6F_5)_3$ adduct **6** (eq 5). In the ¹H NMR spectrum, the resonances of methylene protons and Cp* protons were shifted upfield compared to those of **5**. A downfield shifted carbonyl carbon was observed by ¹³C NMR spectroscopy.

Recrystallization by slow evaporation of the solvent gave single crystals suitable for X-ray diffraction study, and the molecular structure of **6** was finally confirmed by X-ray analysis. Figure 3 shows the molecular structure. Selected bond distances and angles are summarized in Table 3. The single-crystal X-ray diffraction study clearly demonstrated that tris(pentafluorophenyl)alane is bound to the exocyclic oxygen atom of tantalalactone and the carboxylate moiety bridges the tantalum and aluminum atoms. A similar structure was reported by Chen et al. for the zwitterionic zirconocene complex [*rac*-(EBI)ZrMe]-[μ -OC(CHMe₂)OAl(C₆F₅)₃] (EBI = C₂H₄(Ind)₂).³² The bond distance of Ta-O(3) [2.182(2) Å] is significantly elongated from the tantalum–oxygen covalent bond distance (1.888–2.043 Å)

 Table 3. Selected Bond Distances (Å) and Angles (deg) of

 Complex 6

Ta-N1	2.038(2)	Ta-N2	2.026(2)
Ta-C11	2.489(2)	Ta-C12	2.478(2)
Ta-C27	2.256(2)	Ta-O3	2.182(2)
N1-C11	1.378(3)	N2-C12	1.391(3)
C11-C12	1.381(3)	C31-O3	1.268(2)
C31-O4	1.269(3)	C27-C28	1.544(3)
C28-C31	1.520(3)	Al-O4	1.810(2)
Al-C32	2.001(2)	Al-C38	2.003(2)
Al-C44	1.996(3)		
N1-Ta-C11	33.61(7)	N2-Ta-C12	34.13(8)
N1-Ta-N2	84.69(8)	O3-Ta-C27	85.09(8)
Ta-O3-C31	121.4(1)	O3-C31-O4	122.5(2)
O3-C31-C28	119.2(2)	O4-C31-C28	118.3(2)
Al-O4-C31	135.5(1)		

observed in oxatantallacycle complexes.^{8,18h,22,23} The same bond distances of C(31)-O(3) [1.268(2) Å] and C(31)-O(4) [1.269-(3) Å] and the sp²-hybridized C(31) [360.0° for the sum of the angles around C(31)] represent a resonance structure of the carboxyl group. The aluminum-oxygen bond distance [1.810-(2) Å] is comparable to that of $(C_6F_5)_3Al(MMA) [1.811(2) Å]^{33}$ but shorter than that of $(C_6F_5)_3Al(THF) [1.860(2) Å]^{34} (C_6F_5)_3$ -Al(OH₂) [1.857(3) Å],³⁵ and (C₆F₅)₃Al(OHCH₃) [1.858(2) Å].³⁵ The diazadiene ligand coordinated in an η^4 -supine fashion to the tantalum atom, and the bond distances of Ta-C(11) [2.489-(2) Å] and Ta-C(12) [2.478(2) Å] are short enough for the tantalum atom to interact with the inner olefin carbons of the diazadiene ligand.^{7b,36} Although a long-short-long sequence of the diazadiene moiety was not clearly observed, the bond distance of C(11)-C(12) [1.381(3) Å] was shorter than that of the free ligand, s-trans-cyclohexyl-DAD [1.457(2) Å],³⁷ and the bond distances of N(1)-C(11) [1.378(3) Å] and N(2)-C(12) [1.391(3) Å] were longer than those found for the *s*-transcyclohexyl-DAD [1.258(2) Å].

Preparation of Tungsten Homoenolate Complex and Reactivity to 2,6-Dimethylphenylisocyanide. The zinc homoenolates were versatile alkylation reagents and applicable to prepare other transition metals.^{3e,h} Treatment of $[Et_4N][(Xyl N=)WCl_5]$ with 0.5 equiv of Zn(CH₂CH₂CO₂Et)₂ in ether gave

a tungsten homoenolate complex, (Xyl-N=)Cl₃W(CH₂CH₂C-

(=O)OEt) (7), as dark red crystalline solids (eq 6). The chelating structure of the homoenolate moiety was confirmed by NMR and IR spectroscopy. The ¹H NMR spectrum of 7 displayed two triplet resonances (δ 4.08 and 2.27), assignable to the methylene protons at the α - and β -positions of the homoenolate moiety. The downfield shift of the carbonyl carbon resonance (δ 194.9) compared to that of the carbonyl carbon resonance of organic esters and the lower stretching frequency of the carbonyl group (1620 cm⁻¹) clearly indicated that the carbonyl group of the homoenolate moiety coordinated to the tungsten atom. The chemical shift value and the stretching frequency of the carbonyl group were identical to those of **1a**-c.

We conducted a reaction of tungsten homoenolate 7 with an excess of 2,6-dimethylphenylisocyanide to give 8, which

⁽²²⁾ Guggolz, E.; Ziegler, M. L.; Biersack, H.; Herrman, W. A. J. Organomet. Chem. **1980**, 194, 317.

⁽²³⁾ Kwon, D.; Curtis, M. D. Organometallics **1990**, *9*, 1.

^{(24) (}a) Qian, Y.; Huang, J.; Yang, J.; Chan, A. S. C.; Chen, W.; Chen, X.; Li, G.; Jin, X.; Yang, Q. J. Organomet. Chem. **1997**, 547, 263. (b) Huang, J.; Lian, B.; Qian, Y.; Zhou, W.; Chen, W.; Zheng, G. Macromolecules **2002**, *35*, 4871.

Figure 4. Molecular structure of 8. All hydrogen atoms and solvent molecule are omitted for clarity.

possesses an η^2 -iminoacyl group and an η^1 -isocyanide ligand (eq 7). Even in the presence of excess XyINC, further insertion of XyINC did not proceed. The ¹³C NMR spectrum of **8** exhibited three resonances due to the iminoacyl carbon (δ 198.2), the carbonyl carbon (δ 170.6), and the isocyanide carbon (δ 149.9). The chemical shift value of the iminoacyl carbon was in the range of typical η^2 -iminoacyl moieties bound to early transition metals.^{18a} The chemical shift value of the carbonyl carbon was consistently assigned to a noncoordinating carbonyl group, and the resonance due to isocyanide indicated that isocyanide coordinated in an η^1 -fashion to the tungsten atom.

Complex 8 was isolated as yellow crystals, and the molecular structure was determined by X-ray analysis (Figure 4). The selected bond distances and angles are shown in Table 4.

- (31) (a) Komon, Z. J. A.; Bu, X.; Bazan, G. C. *J. Am. Chem. Soc.* **2000**, *122*, 1830. (b) Lee, B. Y.; Bazan, G. C.; Vela, J.; Komon, Z. J. A.; Bu, X. J. Am. Chem. Soc. **2001**, *123*, 5352.
 - (32) Bolig, A. D.; Chen, E. Y.-X. J. Am. Chem. Soc. 2004, 126, 4897.

(33) (a) Bolig, A. D.; Chen, E. Y.-X. J. Am. Chem. Soc. 2001, 123, 7943.
(b) Rodriguez-Delgado, A.; Chen, E. Y.-X. J. Am. Chem. Soc. 2005, 127, 961.

(35) Chakraborty, D.; Chen, E. Y.-X. Organometallics 2003, 22, 207.
(36) Kawaguchi, H.; Yamamoto, Y.; Asaoka, K.; Tatsumi, K. Organometallics 1998, 17, 4380.

 Table 4. Selected Bond Distances (Å) and Angles (deg) of

 Complex 8

W-N1	1.748(6)	W-N2	2.119(7)
W-Cl1	2.444(2)	W-Cl2	2.400(2)
W-C13	2.480(2)	W-C9	2.131(8)
W-C23	2.171(8)	N2-C9	1.256(9)
N3-C23	1.149(6)		
N1-W-Cl3	170.8(2)	C23-W-Cl2	158.9(2)
N2-W-Cl1	166.5(2)	C9-W-C11	154.9(2)
W-N1-C1	174.8(3)	N3-C23-W	175.4(4)

Complex 8 adopts a pseudo-octahedral geometry around the tungsten atom, where the imido nitrogen atom (N1) and the η^2 -iminoacyl group occupy *cis* positions. Three chlorine atoms are attached in a facial fashion to the tungsten atom. Complex 8 has a short bond distance of W-N(1) [1.748(6) Å] and a linear angle of W-N(1)-C(1) [174.8(3)°], consistent with the tungsten-nitrogen triple bond character.³⁸ The bond distances of W-N(2) [2.119(7) Å], W-C(9) [2.131(8) Å], and N(2)-C(9) [1.256(9) Å] are consistent with a typical η^2 -iminoacyl bond to early transition metals.^{18a,39} XylNC occupies a position *cis* to the imido nitrogen atom N(1) and the η^2 -iminoacyl C=N moiety. The bond distance of W-C(23) [2.171(8) Å] is longer than that of the low-valent homoleptic tungsten complex, $W(CNXyl)_6$ (average: 2.05 Å).⁴⁰ The elongated bond length of W-C(23) is due to the lack of π -back-bonding from the metal to the π^* orbital of the isocyanide ligand, presumably because of the strong π -bonding interaction between the tungsten atom and the imido nitrogen atom. The oxygen atom (O1) of the ester carbonyl moiety is outside the coordination sphere of the tungsten atom, as predicted by the spectral data.

Conclusion

We demonstrated that zinc homoenolates are versatile reagents for preparing tantalum and tungsten homoenolate complexes. The isolated homoenolate complexes had a fivemembered chelating structure through the coordination of the carbonyl oxygen of the homoenolate group to the metal. X-ray analyses of tantalum complexes 1a and 1b revealed that the carbonyl group of the homoenolate moiety was positioned at the opposite side toward the Cp* ligand and the lone pair of the carbonyl oxygens overlapped with the empty d_{z^2} orbital of the tantalum atom. As a result, the carbonyl oxygen of the homoenolate moiety was tightly bound to the tantalum atom and the metal-carbon bond of the homoenolate complexes showed less reactivity toward insertion of unsaturated small molecules, except for 2,6-dimethylisocyanide: 3 equiv of isocyanide inserted consecutively into the Ta-C bond of 1a to give 3a because the coordinated carbonyl moiety was released by the first coordination of isocyanide. Similarly, tungsten homoenolate complex 6 reacted with XylNC to give 8, which had an η^2 -iminoacyl moiety and an η^1 -isocyanide ligand. The reaction of 1a with KN(SiMe₃)₂ afforded the ethyl acrylate complex 4a via the deprotonation reaction, while the reaction of **1b** with $Li_2(p-MeOC_6H_4-DAD)(thf)_n$ resulted in the formation of tantalalactone complex 5. The organo-Lewis acid $Al(C_6F_5)_3$ reacted with the exocyclic carbonyl oxygen atom of 5 to form the zwitterionic tantalum-aluminum adduct 6. The molecular structure of 6, determined by X-ray diffraction study, indicates

^{(25) (}a) Yamamoto, T.; Igarashi, K.; Komiya, S.; Yamamoto, A. J. Am. Chem. Soc. **1980**, 102, 7448. (b) Yamamoto, T.; Sano, K.; Yamamoto, A. J. Am. Chem. Soc. **1987**, 109, 1092. (c) Aye, K.-T.; Colpltts, D.; Ferguson, G.; Puddephatt, R. Organometallics **1988**, 7, 1454. (d) Zlota, A.; Frolow, F.; Milstein, D. Organometallics **1990**, 9, 1300.

^{(26) (}a) Hoberg, H.; Schaefer, D. J. Organomet. Chem. 1982, 236, C28.
(b) Hoberg, H.; Schaefer, D. J. Organomet. Chem. 1983, 251, C51. (c) Hoberg, H.; Schaefer, D.; Burkhart, G.; Krüger, C.; Romão, M. J. J. Organomet. Chem. 1984, 266, 203. (d) Hoberg, H.; Peres, Y.; Milchereit, A. J. Organomet. Chem. 1986, 307, C38. (e) Hoberg, H.; Peres, Y.; Milchereit, A. J. Organomet. Chem. 1986, 807, C38. (e) Hoberg, H.; Peres, Y.; Milchereit, A. J. Organomet. Chem. 1988, 88, 747.

⁽²⁷⁾ Cohen, S. A.; Bercaw, J. E. Organometallics 1985, 4, 1006.

⁽²⁸⁾ Alt, H. G.; Denner, C. E. J. Organomet. Chem. **1990**, 390, 53. (29) Mashima, K.; Tanaka, Y.; Nakamura, A. Organometallics **1995**,

⁽²⁵⁾ Mashina, K., Tanaka, T., Nakamura, A. Organometatics 1993, 14, 5642.

⁽³⁰⁾ Parks, D. J.; Piers, W. E.; Parvez, M.; Atencio, R.; Zaworotko, M. J. *Organometallics* **1998**, *17*, 1369.

⁽³⁷⁾ van Koten, G.; Vrieze, K. Adv. Organomet. Chem. 1982, 21, 151.
(38) Nugent, W. A.; Haymore, B. L. Coord. Chem. Rev. 1980, 31, 123.
(39) Huff, R. L.; Wang, S. S.; Abboud, K. A.; Boncella, J. M.

Organometallics 1997, 16, 1779.
 (40) Lockwood, M. A.; Fanwick, P. E.; Rothwell, I. P. Organometallics 1997, 16, 3574.

that the carboxylate moiety of 6 interacted with both the tantalum and aluminum atoms.

Experimental Section

General Procedures. All manipulations involving air- and moisture-sensitive organometallic compounds were operated using the standard glovebox and Schlenk techniques under argon. Complexes Cp*TaCl₄,⁴¹ [Et₄N][(Xyl-N=)WCl₅],⁴² Zn(CH₂CH₂CO₂-Et)₂,^{3h} IZn(CH₂CMe₂CO₂Me),^{3e} ICH₂CMe₂CO₂H,⁴³ Al(C₆F₅)₃. $(C_7H_8)_{0.5}$,⁴⁴ and 1,4-bis(*p*-methoxyphenyl)-1,4-diaza-1,3-butadiene⁴⁵ were prepared according to the literature. AgOTf, B(C₆F₅)₃, KN-(SiMe₃)₂, and 2,6-dimethylphenylisocyanide were purchased and used as received. Hexane, THF, toluene, and ether were dried and deoxygenated by distillation over sodium benzophenone ketyl under argon. Benzene-d₆ was distilled from P₂O₅ and thoroughly degassed by trap-to-trap distillation before use. Bromobenzene- d_5 and chloroform- d_1 were distilled over CaH₂ and then degassed. The ¹H (300 MHz) and ¹³C (75 Hz) NMR spectra were measured on a Varian-Mercury-300 spectrometer. The elemental analyses were recorded by using a Perkin-Elmer 2400 at the Faculty of Engineering Science, Osaka University. All melting points were measured in sealed tubes under argon atmosphere and were not corrected.

Preparation of Cp*Cl₃Ta(CH₂CH₂C(=O)OEt) (1a). To a suspension of Cp*TaCl₄ (441 mg, 0.96 mmol) in ether (20 mL) was added a solution of Zn(CH₂CH₂CO₂Et)₂ in ether (0.42 M, 1.4 mL, 0.59 mmol, 0.6 equiv) at -78 °C. The reaction mixture was allowed to warm to room temperature and further stirred overnight at room temperature. After all volatiles were removed under reduced pressure, the residue was extracted with toluene (30 mL and then 20 mL). The combined toluene extract was concentrated under reduced pressure to give 1a as yellow powders (320 mg, 64% yield), mp 193–200 °C (dec). ¹H NMR (300 MHz, CDCl₃, 308 K): δ 4.66 (q, ${}^{3}J_{H-H} = 7.1$ Hz, 2H, OCH₂), 3.55 (t, ${}^{3}J_{H-H} = 6.9$ Hz, 2H, TaCH₂CH₂), 2.43 (s, 15H, C₅Me₅), 1.47 (t, ${}^{3}J_{H-H} = 7.1$ Hz, 3H, OCH₂CH₃), 0.65 (t, ${}^{3}J_{H-H} = 6.9$ Hz, 2H, TaCH₂). ${}^{13}C$ NMR (75 MHz, CDCl₃, 308 K): δ 193.7 (s, C=O), 128.9 (s, C₅Me₅), 66.2 (t, ${}^{1}J_{C-H} = 150$ Hz, OCH₂CH₃), 62.7 (t, ${}^{1}J_{C-H} = 127$ Hz, TaCH₂), 37.6 (t, ${}^{1}J_{C-H} = 128$ Hz, TaCH₂CH₂), 14.3 (q, ${}^{1}J_{C-H} = 130$ Hz, ОСН₂*C*Н₃), 13.1 (q, ¹*J*_{С-H} = 128 Hz, *C*₅*Me*₅). IR (Nujol): 1625 cm⁻¹ (C=O). FAB-MS: m/z 487 (M⁺ - Cl). Anal. Calcd for C₁₅H₂₄O₂Cl₃Ta: C, 34.40; H, 4.62. Found: C, 34.72; H, 4.93.

Preparation of Cp*Cl₃Ta(CH₂CMe₂C(=O)OMe) (1b). A solution of IZn(CH₂CMe₂CO₂Me) (0.98 mmol, 1.2 equiv) in THF (4.3 mL) was added to a suspension of Cp*TaCl₄ (371 mg, 0.81 mmol) in ether (30 mL) cooled at -78 °C. The reaction mixture was allowed to warm to room temperature and stirred overnight. Solvent was evaporated under reduced pressure, and the resulting yellow oil was extracted with hexane (60 mL). The hexane extract was evaporated to give 1b as yellow microcrystals (159 mg, 36% yield), mp 172-179 °C (dec). ¹H NMR (300 MHz, CDCl₃, 308 K): δ 4.19 (s, 3H, OCH₃), 2.41 (s, 15H, C₅Me₅), 1.23 (s, 6H, CMe₂), 0.57 (s, 2H, TaCH₂). ¹³C NMR (75 MHz, CDCl₃, 308 K): δ 197.2 (s, C=O), 128.9 (s, C₅Me₅), 82.6 (t, ¹J_{C-H} = 125.0 Hz, TaCH₂), 56.5 (q, ${}^{1}J_{C-H} = 149.7$ Hz, OCH₃), 47.6 (s, TaCH₂CMe₂), 29.3 (q, ${}^{1}J_{C-H} = 129.0$ Hz, TaCH₂CMe₂), 13.1 (q, ${}^{1}J_{C-H} = 129.0$ Hz, C₅Me₅). IR (Nujol): 1633 cm⁻¹ (C=O). FAB-MS: m/z 500 $(M^+ - Cl).$

(45) (a) Kliegman, J. M.; Barnes, R. K. *Tetrahedron* 1970, *26*, 2555.
(b) Kliegman, J. M.; Barnes, R. K. *J. Org. Chem.* 1970, *35*, 3140.

Preparation of ICH₂CMe₂CO₂C₆H₄CH₃-4. To a mixture of ICH₂CMe₂CO₂H (29.22 g, 128.1 mmol) and (CF₃CO)₂O (20 mL, 0.14 mol) was added *p*-cresol (15 mL, 0.15 mol). The reaction mixture was stirred overnight at room temperature. ICH₂CMe₂-CO₂C₆H₄CH₃-4 was vacuum distilled out of the reaction mixture as a colorless oil (18.5 g, 45% yield), bp 99 °C (0.1 mmHg). ¹H NMR (300 MHz, CDCl₃, 308 K): δ 7.19 (d, 2H, ³J_{H-H} = 8.9 Hz, aromatic protons), 7.02 (d, 2H, ³J_{H-H} = 8.9 Hz, aromatic protons), 7.02 (d, 2H, ³J_{H-H} = 8.9 Hz, aromatic protons), 1.51 (s, 6H, C(CH₃)₂); ¹³C NMR (75 MHz, CDCl₃, 308 K): δ 173.0 (*C*=O), 148.4 (aromatic carbon), 135.3 (aromatic carbon), 129.7 (aromatic carbons), 121.0 (aromatic carbons), 43.7 (*C*(CH₃)₂), 25.4 (C(CH₃)₂), 20.9 (Ar–*C*H₃), 15.8 (ICH₂). IR (Nujol): 1758 cm⁻¹ (C=O). EI-MS: *m*/z 318 ([M⁺]). HRMS: *m*/z calcd for C₁₂H₁₅O₂I 318.0117, found 318.0096.

Preparation of IZn(CH₂CMe₂CO₂C₆H₄CH₃-4). ICH₂CMe₂- $CO_2C_6H_4CH_3-4$ (2.5 mL, 12.4 mmol) was added to a THF (8 mL) suspension of activated zinc (0.976 g, 14.9 mmol, 1.2 equiv). After the reaction mixture was stirred overnight at room temperature, THF (20 mL) was added to the reaction mixture. After insoluble materials were removed by centrifugation, the brown supernatant was concentrated to give brown oil, which was extracted with ether (80 mL). Ether was evaporated, and the resulting pale yellow oil was washed with toluene (10 mL) and hexane (20 mL) to give $IZn(CH_2CMe_2CO_2C_6H_4CH_3-4)$ as white powder (1.98 g, 42% yield). ¹H NMR (300 MHz, CDCl₃, 308 K): δ 7.17 (d, 2H, ³J_{H-H} = 8.4 Hz, aromatic protons), 6.94 (d, 2H, ${}^{3}J_{H-H} = 8.4$ Hz, aromatic protons), 2.35 (s, 3H, Ar-CH₃), 1.44 (s, 6H, C(CH₃)₂), 0.72 (s, 2H, ZnCH₂). ¹³C NMR (75 MHz, CDCl₃, 308 K): δ 189.0 (C= O), 148.7 (aromatic carbon), 136.0 (aromatic carbon), 130.0 (aromatic carbons), 120.6 (aromatic carbons), 45.1 (C(CH₃)₂), 30.3 (C(CH₃)₂), 26.9 (ZnCH₂), 21.0 (Ar-CH₃). IR (Nujol): 1681 cm⁻¹ (C=O).

Preparation of $Cp*Cl_3Ta(CH_2CMe_2C(=0)OC_6H_4CH_3-4)$ (1c). To a suspension of Cp*TaCl₄ (829 mg, 1.82 mmol) in ether (20 mL) was added a solution of IZn(CH₂CMe₂CO₂C₆H₄CH₃-4) (697 mg, 1.82 mmol) in ether (15 mL) at -78 °C. The reaction mixture was allowed to warm to room temperature and further stirred overnight at room temperature. After all volatiles were removed under reduced pressure, the residue was extracted with toluene (160 mL). Toluene was evaporated to give a yellow oil, which was extracted with hexane (160 mL). The hexane extract was concentrated under reduced pressure, and the resulting yellow oil was washed with hexane to give 1c as yellow powders (231 mg, 21% yield), mp 144-147 °C (dec). 1H NMR (300 MHz, CDCl₃, 308 K): δ 7.33 (d, 2H, ${}^{3}J_{H-H} = 8.5$ Hz, aromatic protons), 7.20 (d, 2H, ${}^{3}J_{H-H} = 8.5$ Hz, aromatic protons), 2.42 (s, 15H, C₅Me₅), 2.34 (s, 3H, Ar-CH₃), 1.41 (s, 6H, CMe₂), 0.66 (s, 2H, TaCH₂). ¹³C NMR (75 MHz, CDCl₃, 308 K): δ 195.3 (s, C=O), 148.8 (s, ipso-Ar), 136.3 (*para*-Ar), 130.0 (d, ${}^{1}J_{C-H} = 161$ Hz, *meta*-Ar), 128.9 (s, C₅Me₅), 120.1 (d, ${}^{1}J_{C-H} = 164$ Hz, ortho-Ar), 82.0 (t, ${}^{1}J_{C-H} =$ 120 Hz, TaCH₂), 48.2 (s, TaCH₂CMe₂), 29.4 (q, ${}^{1}J_{C-H} = 129$ Hz, TaCH₂CMe₂), 21.0 (q, ${}^{1}J_{C-H} = 127$ Hz, ArCH₃), 13.2 (q, ${}^{1}J_{C-H} =$ 129 Hz, C₅Me₅). IR (Nujol): 1649 cm⁻¹ (C=O). FAB-MS: m/z 577 (M⁺ – Cl). Anal. Calcd for $C_{22}H_{30}O_2Cl_3Ta$: C, 43.05; H, 4.93. Found: C, 43.38; H, 4.94.

Preparation of Cp*Ta(CH₂CH₂C(=O)OEt)(OTf)₃ (2a). To a solution of 1a (76 mg, 0.15 mmol) in toluene (10 mL) at -78 °C was added a solution of AgOTf (0.52 mmol, 3.6 equiv) in toluene (4 mL). The reaction mixture was allowed to warm to room temperature, and the reaction mixture was stirred overnight. After the insoluble materials were removed by centrifugation, all volatiles were evaporated to leave a yellow waxy solid. The solid was washed with hexane (3 mL), and then solvent was evaporated to give 2a as light yellow powders (94 mg, 75% yield), mp 115–123 °C (dec). ¹H NMR (300 MHz, CDCl₃, 308 K): δ 4.74 (q, ³J_{H-H} = 7.1 Hz,

⁽⁴¹⁾ Cardoso, A. M.; Clark, R. J. H.; Moorhouse, S. J. Chem. Soc., Dalton Trans. 1980, 1156.

⁽⁴²⁾ Pederson, S. F.; Schrock, R. R. J. Am. Chem. Soc. 1982, 104, 7483.
(43) Kohn, M.; Schmidt, A. Monatsh. Chem. 1907, 28, 1055.

⁽⁴⁴⁾ Feng, S.; Roof, G. R.; Chen, E. Y.-X. Organometallics 2002, 21, 832.

2H, OCH₂), 3.81 (pseudo t, ${}^{3}J_{H-H} = 7.0$ Hz, 2H, TaCH₂CH₂), 2.54 (s, 15H, C₅*Me*₅), 1.53 (pseudo t, ${}^{3}J_{H-H} = 7.0$ Hz, 2H, TaCH₂), 1.42 (t, ${}^{3}J_{H-H} = 7.1$ Hz, 3H, OCH₂CH₃). 13 C NMR (75 MHz, CDCl₃, 308 K): δ 198.9 (s, C=O), 133.6 (s, C₅Me₅), 119.2 (q, ${}^{1}J_{C-F} = 317$ Hz, CF₃), 118.8 (q, ${}^{1}J_{C-F} = 317$ Hz, 2C, CF₃), 71.6 (t, ${}^{1}J_{C-H} = 126$ Hz, TaCH₂), 70.4 (t, ${}^{1}J_{C-H} = 153$ Hz, OCH₂CH₃), 37.0 (t, ${}^{1}J_{C-H} = 131$ Hz, TaCH₂CH₂), 13.7 (q, ${}^{1}J_{C-H} = 128$ Hz, OCH₂CH₃), 11.7 (q, ${}^{1}J_{C-H} = 130$ Hz, C₅*Me*₅). 19 F NMR (282 MHz, CDCl₃, 308 K): δ -76.4 (s, 6F, OSO₂CF₃ *cis* to TaCH₂), -77.8 (s, 3F, OSO₂CF₃ *trans* to TaCH₂). IR (Nujol): 1587 cm⁻¹ (C=O). FAB-MS: *m*/*z* 715 (M⁺ - OTf). Anal. Calcd for C₁₈H₂₄S₃O₁₁F₉-Ta: C, 25.01; H, 2.80. Found: C, 25.03; H, 2.79.

Preparation of Cp*Cl₃Ta[N(Xyl)-C(=C=N-Xyl)-C(CH₂-

CH₂CO₂Et)=N-Xyl] (3a). 2,6-Dimethyphenylisocyanide (111 mg, 0.85 mmol) was added to a solution of 1a (143 mg, 0.27 mmol) in toluene (10 mL) at 0 °C. The reaction mixture was stirred overnight at room temperature. The solvent was evaporated under reduced pressure, and the resulting red waxy solid was washed with hexane (5 mL) to give red precipitates, which were dried under reduced pressure to give 3a as red powders (202 mg, 80% yield), mp 177-185 °C (dec). ¹H NMR (300 MHz, CDCl₃, 308 K): δ 7.1–6.8 (m, 9H, aromatic protons), 3.84 (q, ${}^{3}J_{H-H} = 7.1$ Hz, 2H, OCH₂), 2.52 (s, 6H, CH₃), 2.50 (m, 4H, CH₂CH₂), 2.39 (s, 6H, CH₃), 2.12 (s, 6H, CH₃), 2.06 (s, 15H, C₅Me₅), 1.01 (t, ${}^{3}J_{H-H} = 7.1$ Hz, 3H, OCH₂CH₃). ¹³C NMR (75 MHz, CDCl₃, 308 K): δ 172.9 (s), 171.1 (s), and 168.9 (s) (corresponding to C=N, C=O, and C=C=N), 152.4 (s, ipso), 147.6 (s, ipso), 137.4 (s, o-Xyl), 135.9 (s, o-Xyl), 134.7 (s, *o*-Xyl), 130.8 (s, *ipso*), 129.6 (d, ${}^{1}J_{C-H} = 161$ Hz, *p*-Xyl), 128.5 (d, ${}^{1}J_{C-H} = 164$ Hz, *m*-Xyl), 128.5 (d, ${}^{1}J_{C-H} = 161$ Hz, p-Xyl), 127.8 (d, ${}^{1}J_{C-H} = 158$ Hz, m-Xyl), 127.4 (s, $C_{5}Me_{5}$), 126.8 (d, ${}^{1}J_{C-H} = 160$ Hz, *p*-Xyl), 125.8 (d, ${}^{1}J_{C-H} = 158$ Hz, *p*-Xyl), 107.5 (s, C=C=N), 60.7 (t, ${}^{1}J_{C-H} = 147$ Hz, OCH₂), 31.4 (t, ${}^{1}J_{C-H}$ = 135 Hz, CH₂), 27.8 (t, ${}^{1}J_{C-H}$ = 127 Hz, CH₂), 22.5 (q, ${}^{1}J_{C-H}$ = 127 Hz, CH₃), 20.1 (q, ${}^{1}J_{C-H} = 127$ Hz, CH₃), 18.8 (q, ${}^{1}J_{C-H} =$ 127 Hz, CH₃), 14.1 (q, ${}^{1}J_{C-H} = 127$ Hz, OCH₂CH₃), 12.0 (q, ${}^{1}J_{C-H}$ = 128 Hz, C_5Me_5). IR (Nujol): 2047 cm⁻¹ (C=C=N), 1731 cm⁻¹ (C=O), 1548 cm⁻¹ (C=N). FAB-MS: m/z 880 (M⁺ – Cl). Anal. Calcd for C₄₂H₅₁N₃O₂Cl₃Ta: C, 55.00; H, 5.60; N, 4.58. Found: C, 55.07; H, 5.92; N, 4.48.

Preparation of Cp*Cl₂Ta(CH₂CH=C(O)OEt) (4a). To a suspension of 1a (401 mg, 0.77 mmol) in toluene (15 mL) at -78 °C was added a solution of KN(SiMe₃)₂ (0.90 mmol, 1.2 equiv) in toluene (1.8 mL). The reaction mixture was allowed to warm to room temperature and stirred further for 2 h. Removal of solvent under reduced pressure afforded a red-brown residue, which was extracted with hexane (30 mL). After insoluble materials were removed by centrifugation, a clear solution was concentrated to give 4a as purple microcrystals (224 mg, 60% yield), mp 96-103 °C. ¹H NMR (300 MHz, CDCl₃, 308 K): δ 4.92 (dd, ³*J*_{H-H} = 4.7 and 7.7 Hz, 1H, TaCH₂CH), 4.12 (m, 1H, OCH₂CH₃), 2.26 (s, 15H, C_5Me_5), 1.34 (t, ${}^{3}J_{H-H} = 7.1$ Hz, 3H, OCH₂CH₃), 1.32 (dd, ${}^{1}J_{H-H}$ = 8.6 Hz, ${}^{3}J_{H-H}$ = 7.7 Hz, 1H, TaCHH), 0.53 (dd, ${}^{1}J_{H-H}$ = 8.6 Hz, ${}^{3}J_{H-H} = 4.7$ Hz, 1H, TaCHH). ${}^{13}C$ NMR (75 MHz, CDCl₃, 308 K): δ 161.8 (s, HC=*C*), 125.0 (s, *C*₅Me₅), 71.3 (d, ¹*J*_{C-H} = 174 Hz, TaCH₂CH), 67.0 (t, ${}^{1}J_{C-H} = 147$ Hz, TaCH₂), 64.1 (t, ${}^{1}J_{C-H} = 147 \text{ Hz}, \text{ OCH}_{2}\text{CH}_{3}), 14.8 \text{ (q, } {}^{1}J_{C-H} = 127 \text{ Hz}, \text{ OCH}_{2}\text{CH}_{3}),$ 11.5 (q, ${}^{1}J_{C-H} = 128 \text{ Hz}, C_5Me_5$). IR (Nujol): 1531 cm⁻¹ (C=C). FAB-MS: m/z 451 (M⁺ – Cl). Anal. Calcd for C₁₅H₂₃Cl₂O₂Ta: C, 36.98; H, 4.76. Found: C, 37.12; H, 4.98.

Preparation of Cp*(*p*-MeOC₆H₄-DAD)Ta(CH₂CMe₂C(=O)O) (5). A solution of Li₂(*p*-MeOC₆H₄-DAD) in THF (5.0 mL) was added to a solution of 1b (185 mg, 0.34 mmol) in THF (10 mL) cooled at -78 °C. After the reaction mixture was stirred overnight at room temperature, all volatiles were removed under reduced pressure. The residue was extracted with toluene (20 mL), and then toluene was removed. The resulting oil was treated with hexane (2 mL) to give 5 as yellow-brown powders (203 mg, 83% yield), mp 148-160 °C (dec). ¹H NMR (300 MHz, CDCl₃, 308 K): δ 7.29 (d, ${}^{3}J_{H-H} = 9.1$ Hz, 2H, aromatic protons), 6.90 (m, 6H, aromatic protons), 6.21 (d, ${}^{2}J_{H-H} = 3.3$ Hz, 1H, N–CH), 5.76 (d, ${}^{2}J_{H-H} =$ 3.3 Hz, 1H, N-CH), 3.82 (s, 3H, OMe), 3.80 (s, 3H, OMe), 1.99 (s, 15H, C₅Me₅), 1.14 (s, 3H, CMe), 0.77 (s, 3H, CMe), 1.12 and 0.68 (ABq, ${}^{2}J_{H-H} = 13.5$ Hz, 2H, TaCHH). ${}^{13}C$ NMR (75 MHz, CDCl₃, 308 K): δ 190.6 (s, C=O), 156.9 (s, p-C₆H₄OCH₃), 156.7 (s, $p-C_6H_4OCH_3$), 143.4 (s, 2C, *ipso-C*₆H₄OCH₃), 125.4 (d, ¹J_{C-H} = 159.5 Hz, aromatic carbons), 124.7 (d, ${}^{1}J_{C-H}$ = 160.1 Hz, aromatic carbons), 118.5 (s, C_5 Me₅), 113.8 (d, ${}^{1}J_{C-H} = 159.5$ Hz, aromatic carbon), 113.7 (d, ${}^{1}J_{C-H} = 159.5$ Hz, aromatic carbon), 109.4 (d, ${}^{1}J_{C-H} = 176.2$ Hz, N–CH)), 104.3 (d, ${}^{1}J_{C-H} = 176.8$ Hz, N–CH), 59.9 (br, TaCH₂), 55.6 (q, ${}^{1}J_{C-H} = 143.4$ Hz, OCH₃), 55.5 (q, ${}^{1}J_{C-H} = 143.4 \text{ Hz}$, OCH₃), 46.4 (s, CMe₂), 32.9 (q, ${}^{1}J_{C-H}$ = 128.4 Hz, CMe), 30.7 (q, ${}^{1}J_{C-H}$ = 130.7 Hz, CMe), 11.6 (q, ${}^{1}J_{C-H} = 127.8$ Hz, C₅Me₅). IR (Nujol): 1668 cm⁻¹ (C=O), 1506 cm⁻¹ (C=C). FAB-MS: m/z 684 (M⁺), 669 (M⁺ - CH₃). Anal. Calcd for $C_{31}H_{39}N_2O_4Ta$: C, 54.39; H, 5.74; N, 4.09. Found: C, 54.97; H, 6.02; N, 3.98.

Preparation of Cp*(p-MeOC₆H₄-DAD)Ta(CH₂CMe₂C(=O)- $O-Al(C_6F_5)_3)$ (6). In a glovebox, toluene (5 mL) was added to a mixture of 5 (115 mg, 0.17 mmol) and Al(C₆F₅)₃(toluene)_{0.5} (99 mg, 0.17 mmol). The reaction mixture was stirred overnight, and then toluene was evaporated. The resulting brown oil was washed with hexane (5 mL) to give 6 as yellow-brown powders (135 mg, 66% yield), mp 226-234 °C (dec). Single crystals were obtained by the slow evaporation of C₆D₆ from a NMR tube sample in a glovebox. ¹H NMR (300 MHz, C₆D₆, 308 K): δ 6.87 (d, ³J_{H-H} = 9.1 Hz, 2H, Ar), 6.80 (d, ${}^{3}J_{H-H} = 8.5$ Hz, 4H, Ar), 6.68 (d, ${}^{3}J_{H-H}$ = 8.8 Hz, 2H, Ar), 6.26 (d, ${}^{1}J_{H-H}$ = 3.0 Hz, 1H, N–CH), 5.40 (d, ${}^{1}J_{H-H} = 3.0$ Hz, 1H, N–CH), 3.46 (s, 3H, OMe), 3.41 (s, 3H, OMe), 1.50 (s, 15H, C₅Me₅), 1.38 (s, 3H, CMe), 1.11 (s, 3H, CMe), 0.93 and 0.03 (ABq, ${}^{2}J_{H-H} = 14.7$ Hz, 2H, TaCH₂). ${}^{13}C$ NMR (75 MHz, C₆D₆, 298 K): δ 200.4 (s, C=O), 159.2 (s, *p*-C₆H₄OCH₃), 158.8 (s, $p-C_6H_4OCH_3$), 150.9 (d, ${}^{1}J_{C-F} = 231$ Hz, $o-C_6F_5$), 143.1 (s, *ipso*- $C_6H_4OCH_3$), 142.3 (s, *ipso*- $C_6H_4OCH_3$), 142.0 (d, ${}^1J_{C-F} =$ 250 Hz, *p*-C₆F₅), 137.7 (d, ${}^{1}J_{C-F} = 268$ Hz, *m*-C₆F₅), 127.0 (d, ${}^{1}J_{C-H} = 158 \text{ Hz}, o-C_{6}H_{4}OCH_{3}), 126.2 \text{ (d, } {}^{1}J_{C-H} = 161 \text{ Hz}, o-C_{6}H_{4}-$ OCH₃), 120.5 (s, C_5 Me₅), 114.6 (d, ${}^{1}J_{C-H} = 160$ Hz, $m - C_6$ H₄OCH₃), 114.1 (d, ${}^{1}J_{C-H} = 161$ Hz, $m-C_{6}H_{4}OCH_{3}$), 108.1 (d, ${}^{1}J_{C-H} = 181$ Hz, N–CH), 107.8 (d, ${}^{1}J_{C-H} = 182$ Hz, N–CH), 55.8 (q, ${}^{1}J_{C-H} =$ 143 Hz, OCH₃), 55.5 (q, ${}^{1}J_{C-H} = 144$ Hz, OCH₃), 55.5 (t, ${}^{1}J_{C-H} =$ 119 Hz, TaCH₂), 47.8 (s, CMe₂), 33.8 (q, ${}^{1}J_{C-H} = 130$ Hz, CMe), 32.3 (q, ${}^{1}J_{C-H} = 115$ Hz, CMe), 11.8 (q, ${}^{1}J_{C-H} = 128$ Hz, C₅Me₅). ¹⁹F NMR (282 MHz, C₆D₆, 308 K): δ -123.7 (m, 6F, ortho), -155.7 (t, ${}^{3}J_{F-F} = 15.9$ Hz, 3F, para), -163.1 (m, 6F, meta). IR (Nujol): 1508 cm⁻¹ (C=C). Anal. Calcd for C₄₉H₃₉N₂O₄F₁₅AlTa: C, 48.53; H, 3.24; N, 2.31. Found: C, 48.93; H, 3.45; N, 2.70.

Preparation of (Xyl-N=)Cl₃W(CH₂CH₂C(=O)OEt) (7). To a suspension of [Et₄N][(Xyl-N=)WCl₅] (3.109 g, 5.10 mmol) in ether (30 mL) at -78 °C was added a solution of Zn(CH₂CH₂-CO₂Et)₂ in ether (0.58 M, 5.0 mL, 2.88 mmol). The reaction mixture was allowed to warm to room temperature and then stirred for 2 h. All volatiles were removed, and the resulting residue was extracted by hexane (60 mL \times 4). The combined extract was concentrated to give 7 as dark red crystalline solids (1.25 g, 48% yield), mp 85–89 °C (dec). ¹H NMR (300 MHz, CDCl₃, 308 K): δ 7.26 (d, ${}^{3}J_{H-H} = 7.7$ Hz, 2H, *m*-Ph), 6.68 (t, ${}^{3}J_{H-H} = 7.7$ Hz, 1H, *p*-Ph), 4.73 (q, ${}^{3}J_{H-H} = 7.1$ Hz, 2H, OCH₂CH₃), 4.08 (t, ${}^{3}J_{H-H} = 6.6$ Hz, 2H, WCH₂CH₂), 3.08 (s, 6H, ArCH₃), 2.27 (t, ${}^{3}J_{H-H} = 6.6$ Hz, 2H, WCH₂), 1.51 (t, ${}^{3}J_{H-H} = 7.1$ Hz, 3H, OCH₂CH₃). ${}^{13}C$ NMR (75 MHz, CDCl₃, 308 K): δ 194.9 (s, CO₂Et), 142.6 (o-Xyl), 131.6 (d, ${}^{1}J_{C-H} = 160$ Hz, *p*-Xyl), 126.3 (d, ${}^{1}J_{C-H} = 161$ Hz, *m*-Xyl), 66.7 (t, ${}^{1}J_{C-H} = 148$ Hz, OCH₂CH₃), 65.4 (t, ${}^{1}J_{W-C} = 33.4$ Hz,

Table 5. Crystal Data and Data Collection Parameters of 1a, 1b, 3a, 6, and 8^{a,b}

		1a	1b
formula	C ₁₅ H	24Cl ₃ O ₂ Ta	C ₁₆ H ₂₆ Cl ₃ O ₂ Ta
fw	523.6	4	537.67
cryst syst	mono	oclinic	orthorhombic
space group	$P2_{1}/c$	(No. 14)	<i>Pccn</i> (No. 56)
a, Å	8.681	8(3)	25.7248(20)
b, Å	13.62	67(3)	21.1152(17)
c, A	14.97	59(4)	8.6368(8)
α , deg	02.20	04/14)	
β , deg	92.38	94(14)	
γ , deg	1770	17(9)	4601 4(7)
V, A ⁵	1770.	17(8)	4091.4(7)
L $D \rightarrow a/am^{-3}$	4 1.965		0 1 522
D_{calcd} , g/cm	1.965 74492		38549
F(000)	1016		2096
μ [Mo K α] cm ⁻¹	66.63		50.30
T K	120		120
cryst size, mm	0.22	$\times 0.10 \times 0.06$	$0.21 \times 0.15 \times 0.05$
$2\theta_{\rm max}$, deg	60.08		55.0
no. of reflns measd	49 75	5	65 872
no. of unique data (R_{int})	5165	(0.0261)	5379 (0.2416)
no. of observns $(I > 2.0\sigma(I))$	4890		3034
no. of variables	286		199
R1 ($I > 2.0\sigma(I)$)	0.013	2	0.0679
wR2 $(I > 2.0\sigma(I))$	0.027	6	0.1602
R1 (all data)	0.015	2	0.1383
wR2 (all data)	0.028	0	0.1843
GOF on F^2	1.11		1.03
Δho , e A^{-3}	0.475	, -0.406	1.936, -1.510
	3a	6	8
formula	3a C ₄₂ H ₅₁ Cl ₃ N ₃ O ₂ Ta	6 C49H39O4N2F15AlTa	8 C ₃₁ H ₃₆ Cl ₃ N ₃ O ₂ W(C ₇ H ₈)
formula fw	3a C ₄₂ H ₅₁ Cl ₃ N ₃ O ₂ Ta 917.19	6 C ₄₉ H ₃₉ O ₄ N ₂ F ₁₅ AlTa 1212.76	8 C ₃₁ H ₃₆ Cl ₃ N ₃ O ₂ W(C ₇ H ₈) 864.99
formula fw cryst syst	3a C ₄₂ H ₅₁ Cl ₃ N ₃ O ₂ Ta 917.19 triclinic	6 C ₄₉ H ₃₉ O ₄ N ₂ F ₁₅ AlTa 1212.76 monoclinic	8 C ₃₁ H ₃₆ Cl ₃ N ₃ O ₂ W(C ₇ H ₈) 864.99 monoclinic
formula fw cryst syst space group	3a C ₄₂ H ₅₁ Cl ₃ N ₃ O ₂ Ta 917.19 triclinic <i>P</i> 1 (No. 2)	6 C ₄₉ H ₃₉ O ₄ N ₂ F ₁₅ AlTa 1212.76 monoclinic P2 ₁ /c (No. 14)	8 C ₃₁ H ₃₆ Cl ₃ N ₃ O ₂ W(C ₇ H ₈) 864.99 monoclinic <i>P</i> 2 ₁ / <i>a</i> (No. 14)
formula fw cryst syst space group a, Å	3a C ₄₂ H ₅₁ Cl ₃ N ₃ O ₂ Ta 917.19 triclinic <i>P</i> I (No. 2) 9.436(4)	6 C ₄₉ H ₃₉ O ₄ N ₂ F ₁₅ AlTa 1212.76 monoclinic P2 ₁ /c (No. 14) 11.646(1)	8 C ₃₁ H ₃₆ Cl ₃ N ₃ O ₂ W(C ₇ H ₈) 864.99 monoclinic P2 ₁ /a (No. 14) 15.302(2)
formula fw cryst syst space group $a, \text{\AA}$ $b, \text{\AA}$	3a C ₄₂ H ₅₁ Cl ₃ N ₃ O ₂ Ta 917.19 triclinic <i>P</i> I (No. 2) 9.436(4) 11.148(4)	6 C ₄₉ H ₃₉ O ₄ N ₂ F ₁₅ AlTa 1212.76 monoclinic P2 ₁ /c (No. 14) 11.646(1) 30.716(3)	8 C ₃₁ H ₃₆ Cl ₃ N ₃ O ₂ W(C ₇ H ₈) 864.99 monoclinic <i>P</i> 2 ₁ / <i>a</i> (No. 14) 15.302(2) 12.380(2)
formula fw cryst syst space group <i>a</i> , Å <i>b</i> , Å <i>c</i> , Å	$\begin{array}{c} \textbf{3a} \\ \hline C_{42}H_{51}Cl_3N_3O_2Ta \\ 917.19 \\ triclinic \\ P\bar{1} \ (No. \ 2) \\ 9.436(4) \\ 11.148(4) \\ 20.172(8) \end{array}$	6 C ₄₉ H ₃₉ O ₄ N ₂ F ₁₅ AlTa 1212.76 monoclinic P2 ₁ /c (No. 14) 11.646(1) 30.716(3) 14.1092(8)	$\begin{array}{c} \textbf{8} \\ \hline C_{31}H_{36}Cl_3N_3O_2W(C_7H_8) \\ 864.99 \\ monoclinic \\ P_{21/a} \ (No. \ 14) \\ 15.302(2) \\ 12.380(2) \\ 19.488(3) \end{array}$
formula fw cryst syst space group a, Å b, Å c, Å c, Å a, deg	$\begin{array}{c} \textbf{3a} \\ \hline C_{42}H_{51}Cl_3N_3O_2Ta \\ 917.19 \\ triclinic \\ P\bar{1} \ (No.\ 2) \\ 9.436(4) \\ 11.148(4) \\ 20.172(8) \\ 76.47(3) \\ \hline \end{array}$	$\begin{array}{c} 6\\ C_{49}H_{39}O_4N_2F_{15}AlTa\\ 1212.76\\ monoclinic\\ P2_1/c~(No.~14)\\ 11.646(1)\\ 30.716(3)\\ 14.1092(8)\\ \end{array}$	$\begin{array}{c} \textbf{8} \\ \hline C_{31}H_{36}Cl_3N_3O_2W(C_7H_8) \\ 864.99 \\ monoclinic \\ P2_1/a (No. 14) \\ 15.302(2) \\ 12.380(2) \\ 19.488(3) \\ \hline \end{array}$
formula fw cryst syst space group a, Å b, Å c, Å c, Å α, \deg β, \deg	$\begin{array}{c} \textbf{3a} \\ \hline \\ C_{42}H_{51}Cl_3N_3O_2Ta \\ 917.19 \\ triclinic \\ P\bar{1} \ (No.\ 2) \\ 9.436(4) \\ 11.148(4) \\ 20.172(8) \\ 76.47(3) \\ 76.69(3) \\ 90.072 \end{array}$	$\begin{array}{c} 6\\ C_{49}H_{39}O_4N_2F_{15}AlTa\\ 1212.76\\ monoclinic\\ P2_1/c~(No.~14)\\ 11.646(1)\\ 30.716(3)\\ 14.1092(8)\\ 109.847(3) \end{array}$	$\begin{array}{c} \textbf{8} \\ \hline C_{31}H_{36}Cl_3N_3O_2W(C_7H_8) \\ 864.99 \\ monoclinic \\ P_{21}/a \ (No. \ 14) \\ 15.302(2) \\ 12.380(2) \\ 19.488(3) \\ 93.025(6) \end{array}$
formula fw cryst syst space group a, Å b, Å c, Å c, Å α, \deg β, \deg γ, \deg γ, \deg	$\begin{array}{c} \textbf{3a} \\ \hline \\ C_{42}H_{51}Cl_3N_3O_2Ta \\ 917.19 \\ triclinic \\ P\bar{1} (No. 2) \\ 9.436(4) \\ 11.148(4) \\ 20.172(8) \\ 76.47(3) \\ 76.69(3) \\ 80.30(3) \\ 1092(1) \end{array}$	$\begin{array}{c} 6\\ C_{49}H_{39}O_4N_2F_{15}AlTa\\ 1212.76\\ monoclinic\\ P2_1/c~(No.~14)\\ 11.646(1)\\ 30.716(3)\\ 14.1092(8)\\ 109.847(3)\\ 4747.4(6)\\ \end{array}$	$\begin{array}{c} 8\\ C_{31}H_{36}Cl_3N_3O_2W(C_7H_8)\\ 864.99\\ monoclinic\\ P2_1/a~(No.~14)\\ 15.302(2)\\ 12.380(2)\\ 19.488(3)\\ 93.025(6)\\ 2696~5(9)\\ \end{array}$
formula fw cryst syst space group a, Å b, Å c, Å α, \deg β, \deg γ, \deg γ, \deg $V, Å^3$	$\begin{array}{c} \textbf{3a} \\ \hline \\ C_{42}H_{51}Cl_3N_3O_2Ta \\ 917.19 \\ triclinic \\ P\overline{1} \ (No.\ 2) \\ 9.436(4) \\ 11.148(4) \\ 20.172(8) \\ 76.47(3) \\ 76.69(3) \\ 80.30(3) \\ 1992(1) \\ 2 \end{array}$	$\begin{array}{c} 6\\ C_{49}H_{39}O_4N_2F_{15}AlTa\\ 1212.76\\ monoclinic\\ P2_1/c~(No.~14)\\ 11.646(1)\\ 30.716(3)\\ 14.1092(8)\\ 109.847(3)\\ 4747.4(6)\\ 4\end{array}$	$\begin{array}{c} 8\\ \hline C_{31}H_{36}Cl_3N_3O_2W(C_7H_8)\\ 864.99\\ monoclinic\\ P2_1/a~(No.~14)\\ 15.302(2)\\ 12.380(2)\\ 19.488(3)\\ 93.025(6)\\ 3686.5(8)\\ 4 \end{array}$
formula fw cryst syst space group a, Å b, Å c, Å a, deg β, deg γ, deg γ, deg $V, Å^3$ Z $D \rightarrow \pi g/cm^{-3}$	$\begin{array}{c} \textbf{3a} \\ \hline \\ C_{42}H_{51}Cl_3N_3O_2Ta \\ 917.19 \\ triclinic \\ P\overline{1} \ (No.\ 2) \\ 9.436(4) \\ 11.148(4) \\ 20.172(8) \\ 76.47(3) \\ 76.69(3) \\ 80.30(3) \\ 1992(1) \\ 2 \\ 1 \ 528 \end{array}$	$\begin{array}{c} 6\\ \hline C_{49}H_{39}O_4N_2F_{15}AlTa\\ 1212.76\\ monoclinic\\ P2_{1/c}\ (No.\ 14)\\ 11.646(1)\\ 30.716(3)\\ 14.1092(8)\\ 109.847(3)\\ 4747.4(6)\\ 4\\ 1.697\end{array}$	$\begin{array}{c} 8\\ \hline C_{31}H_{36}Cl_3N_3O_2W(C_7H_8)\\ 864.99\\ monoclinic\\ P2_1/a~(No.~14)\\ 15.302(2)\\ 12.380(2)\\ 19.488(3)\\ 93.025(6)\\ 3686.5(8)\\ 4\\ 1.558\end{array}$
formula fw cryst syst space group a, \mathring{A} b, \mathring{A} c, \mathring{A} α, \deg β, \deg γ, \deg γ, \deg γ, \deg γ, \deg V, \mathring{A}^3 Z $D_{calcd}, g/cm^{-3}$ no of refins for cell det	$\begin{array}{c} \textbf{3a} \\ \hline \\ C_{42}H_{51}Cl_3N_3O_2Ta \\ 917.19 \\ triclinic \\ P\bar{1} (No. 2) \\ 9.436(4) \\ 11.148(4) \\ 20.172(8) \\ 76.47(3) \\ 76.69(3) \\ 80.30(3) \\ 1992(1) \\ 2 \\ 1.528 \\ 39.014 \end{array}$	$\begin{array}{c} 6\\ \hline C_{49}H_{39}O_4N_2F_{15}AlTa\\ 1212.76\\ monoclinic\\ P2_{1/c}\ (No.\ 14)\\ 11.646(1)\\ 30.716(3)\\ 14.1092(8)\\ 109.847(3)\\ 4747.4(6)\\ 4\\ 1.697\\ 111\ 001\\ \end{array}$	$\begin{array}{c} 8\\ \hline C_{31}H_{36}Cl_3N_3O_2W(C_7H_8)\\ 864.99\\ monoclinic\\ P2_1/a~(No.~14)\\ 15.302(2)\\ 12.380(2)\\ 19.488(3)\\ 93.025(6)\\ 3686.5(8)\\ 4\\ 1.558\\ 81.658\\ \end{array}$
formula fw cryst syst space group a, Å b, Å c, Å c, Å a, deg β , deg γ , deg γ , deg V, Å ³ Z D _{calcd} , g/cm ⁻³ no. of reflns for cell det F(000)	$\begin{array}{c} \textbf{3a} \\ \hline \\ C_{42}H_{51}Cl_3N_3O_2Ta \\ 917.19 \\ triclinic \\ P\bar{1} (No. 2) \\ 9.436(4) \\ 11.148(4) \\ 20.172(8) \\ 76.47(3) \\ 76.69(3) \\ 80.30(3) \\ 1992(1) \\ 2 \\ 1.528 \\ 39 014 \\ 928 \end{array}$	$\begin{array}{c} 6\\ C_{49}H_{39}O_4N_2F_{15}AlTa\\ 1212.76\\ monoclinic\\ P2_{1/c}\ (No.\ 14)\\ 11.646(1)\\ 30.716(3)\\ 14.1092(8)\\ 109.847(3)\\ 4747.4(6)\\ 4\\ 1.697\\ 111\ 001\\ 2400\\ \end{array}$	$\begin{array}{c} 8\\ \hline C_{31}H_{36}Cl_{3}N_{3}O_{2}W(C_{7}H_{8})\\ 864.99\\ monoclinic\\ P2_{1}/a~(No.~14)\\ 15.302(2)\\ 12.380(2)\\ 19.488(3)\\ 93.025(6)\\ 3686.5(8)\\ 4\\ 1.558\\ 81~658\\ 1736\\ \end{array}$
formula fw cryst syst space group $a, \text{\AA}$ $b, \text{\AA}$ $c, \text{\AA}$ a, deg β, deg γ, deg γ, deg $V, \text{\AA}^3$ Z $D_{\text{calcd}}, \text{g/cm}^{-3}$ no. of reflns for cell det F(000) μ [Mo Kq] cm ⁻¹	$\begin{array}{c} \textbf{3a} \\ \hline \\ C_{42}H_{51}Cl_3N_3O_2Ta \\ 917.19 \\ triclinic \\ P\overline{1} \ (No.\ 2) \\ 9.436(4) \\ 11.148(4) \\ 20.172(8) \\ 76.47(3) \\ 76.69(3) \\ 80.30(3) \\ 1992(1) \\ 2 \\ 1.528 \\ 39\ 014 \\ 928 \\ 29\ 94 \end{array}$	$\begin{array}{c} 6\\ \hline C_{49}H_{39}O_4N_2F_{15}AlTa\\ 1212.76\\ monoclinic\\ P2_1/c\ (No.\ 14)\\ 11.646(1)\\ 30.716(3)\\ 14.1092(8)\\ 109.847(3)\\ 4747.4(6)\\ 4\\ 1.697\\ 111\ 001\\ 2400\\ 24\ 36\end{array}$	$\begin{array}{c} 8\\ \hline C_{31}H_{36}Cl_3N_3O_2W(C_7H_8)\\ 864.99\\ monoclinic\\ P2_1/a~(No.~14)\\ 15.302(2)\\ 12.380(2)\\ 19.488(3)\\ 93.025(6)\\ 3686.5(8)\\ 4\\ 1.558\\ 81~658\\ 1736\\ 33.91\\ \end{array}$
formula fw cryst syst space group a, Å b, Å c, Å $\alpha, \text{ deg}$ $\beta, \text{ deg}$ $\gamma, \text{ deg}$ $\gamma, \text{ deg}$ $V, \text{ Å}^3$ Z $D_{\text{calcd}}, \text{g/cm}^{-3}$ no. of reflns for cell det F(000) μ [Mo K α], cm ⁻¹ T K	$\begin{array}{c} \textbf{3a} \\ \hline \\ C_{42}H_{51}Cl_3N_3O_2Ta \\ 917.19 \\ triclinic \\ P\bar{1} (No. 2) \\ 9.436(4) \\ 11.148(4) \\ 20.172(8) \\ 76.47(3) \\ 76.69(3) \\ 80.30(3) \\ 1992(1) \\ 2 \\ 1.528 \\ 39 014 \\ 928 \\ 29.94 \\ 120 \\ \end{array}$	$\begin{array}{c} 6\\ \hline C_{49}H_{39}O_4N_2F_{15}AlTa\\ 1212.76\\ monoclinic\\ P2_1/c\ (No.\ 14)\\ 11.646(1)\\ 30.716(3)\\ 14.1092(8)\\ 109.847(3)\\ 4747.4(6)\\ 4\\ 1.697\\ 111\ 001\\ 2400\\ 24.36\\ 120\\ \end{array}$	$\begin{array}{c} 8\\ \hline C_{31}H_{36}Cl_3N_3O_2W(C_7H_8)\\ 864.99\\ monoclinic\\ P2_1/a~(No.~14)\\ 15.302(2)\\ 12.380(2)\\ 19.488(3)\\ 93.025(6)\\ 3686.5(8)\\ 4\\ 1.558\\ 81~658\\ 1736\\ 33.91\\ 120\\ \end{array}$
formula fw cryst syst space group a, Å b, Å c, Å a, deg β , deg γ , deg γ , deg γ , deg V, Å ³ Z D _{calcd} , g/cm ⁻³ no. of reflns for cell det F(000) μ [Mo K α], cm ⁻¹ T, K cryst size, mm	$\begin{array}{c} \textbf{3a} \\ \hline \\ C_{42}H_{51}Cl_{3}N_{3}O_{2}Ta \\ 917.19 \\ triclinic \\ P\bar{1} (No. 2) \\ 9.436(4) \\ 11.148(4) \\ 20.172(8) \\ 76.47(3) \\ 76.69(3) \\ 80.30(3) \\ 1992(1) \\ 2 \\ 1.528 \\ 39 014 \\ 928 \\ 29.94 \\ 120 \\ 0.20 \times 0.15 \times 0.05 \end{array}$	$\begin{array}{c} 6\\ \hline C_{49}H_{39}O_4N_2F_{15}AlTa\\ 1212.76\\ monoclinic\\ P2_1/c~(No.~14)\\ 11.646(1)\\ 30.716(3)\\ 14.1092(8)\\ 109.847(3)\\ 4747.4(6)\\ 4\\ 1.697\\ 111~001\\ 2400\\ 24.36\\ 120\\ 0.40\times 0.65\times 0.10\\ \end{array}$	$\begin{array}{c} \textbf{8} \\ \hline C_{31}H_{36}Cl_3N_3O_2W(C_7H_8) \\ 864.99 \\ monoclinic \\ P2_1/a \ (No. \ 14) \\ 15.302(2) \\ 12.380(2) \\ 19.488(3) \\ \hline 93.025(6) \\ 3686.5(8) \\ 4 \\ 1.558 \\ 81 \ 658 \\ 1736 \\ 33.91 \\ 120 \\ 0.20 \times 0.25 \times 0.05 \\ \end{array}$
formula fw cryst syst space group a, Å b, Å c, Å c, Å a, deg β , deg γ , deg γ , deg V, Å ³ Z D_{calcd} , g/cm ⁻³ no. of reflns for cell det F(000) μ [Mo K α], cm ⁻¹ T, K cryst size, mm $2\theta_{\text{max}}$, deg	$\begin{array}{c} \textbf{3a} \\ \hline \\ C_{42}H_{51}Cl_3N_3O_2Ta \\ 917.19 \\ triclinic \\ P\overline{1} \ (No.\ 2) \\ 9.436(4) \\ 11.148(4) \\ 20.172(8) \\ 76.47(3) \\ 76.69(3) \\ 80.30(3) \\ 1992(1) \\ 2 \\ 1.528 \\ 39\ 014 \\ 928 \\ 29.94 \\ 120 \\ 0.20 \times 0.15 \times 0.05 \\ 55.0 \end{array}$	$\begin{array}{c} 6\\ \hline C_{49}H_{39}O_4N_2F_{15}AlTa\\ 1212.76\\ monoclinic\\ P2_1/c~(No.~14)\\ 11.646(1)\\ 30.716(3)\\ 14.1092(8)\\ 109.847(3)\\ 4747.4(6)\\ 4\\ 1.697\\ 111~001\\ 2400\\ 24.36\\ 120\\ 0.40\times 0.65\times 0.10\\ 55.0\\ \end{array}$	$\begin{array}{c} 8\\ \hline C_{31}H_{36}Cl_3N_3O_2W(C_7H_8)\\ 864.99\\ monoclinic\\ P2_1/a~(No.~14)\\ 15.302(2)\\ 12.380(2)\\ 19.488(3)\\ 93.025(6)\\ 3686.5(8)\\ 4\\ 1.558\\ 81~658\\ 1736\\ 33.91\\ 120\\ 0.20\times0.25\times0.05\\ 54.8\\ \end{array}$
formula fw cryst syst space group a, Å b, Å c, Å a, deg β , deg γ , deg γ , deg V, Å ³ Z D_{calcd} , g/cm ⁻³ no. of reflns for cell det F(000) μ [Mo K α], cm ⁻¹ T, K cryst size, mm $2\theta_{max}$, deg no. of reflns measd	$\begin{array}{c} \textbf{3a} \\ \hline \\ C_{42}H_{51}Cl_{3}N_{3}O_{2}Ta \\ 917.19 \\ triclinic \\ P\bar{1} (No. 2) \\ 9.436(4) \\ 11.148(4) \\ 20.172(8) \\ 76.47(3) \\ 76.69(3) \\ 80.30(3) \\ 1992(1) \\ 2 \\ 1.528 \\ 39 014 \\ 928 \\ 29.94 \\ 120 \\ 0.20 \times 0.15 \times 0.05 \\ 55.0 \\ 34 100 \\ \end{array}$	$\begin{array}{c} 6\\ \hline C_{49}H_{39}O_4N_2F_{15}AlTa\\ 1212.76\\ monoclinic\\ P2_1/c~(No.~14)\\ 11.646(1)\\ 30.716(3)\\ 14.1092(8)\\ 109.847(3)\\ 4747.4(6)\\ 4\\ 1.697\\ 111~001\\ 2400\\ 24.36\\ 120\\ 0.40\times 0.65\times 0.10\\ 55.0\\ 84~125\\ \end{array}$	$\begin{array}{c} \textbf{8} \\ \hline C_{31}H_{36}Cl_3N_3O_2W(C_7H_8) \\ 864.99 \\ monoclinic \\ P2_1/a \ (No.\ 14) \\ 15.302(2) \\ 12.380(2) \\ 19.488(3) \\ \hline 93.025(6) \\ 3686.5(8) \\ 4 \\ 1.558 \\ 81\ 658 \\ 1736 \\ 33.91 \\ 120 \\ 0.20 \times 0.25 \times 0.05 \\ 54.8 \\ 61\ 273 \\ \end{array}$
formula fw cryst syst space group a, Å b, Å c, Å a, deg β , deg γ , deg γ , deg V, Å ³ Z D_{calcd} , g/cm ⁻³ no. of reflns for cell det F(000) μ [Mo K α], cm ⁻¹ T, K cryst size, mm $2\theta_{\text{max}}$, deg no. of reflns measd no. of unique data (R_{int})	$\begin{array}{c} \textbf{3a} \\ \hline \\ C_{42}H_{51}Cl_3N_3O_2Ta \\ 917.19 \\ triclinic \\ P\bar{1} (No. 2) \\ 9.436(4) \\ 11.148(4) \\ 20.172(8) \\ 76.47(3) \\ 76.69(3) \\ 80.30(3) \\ 1992(1) \\ 2 \\ 1.528 \\ 39 014 \\ 928 \\ 29.94 \\ 120 \\ 0.20 \times 0.15 \times 0.05 \\ 55.0 \\ 34 100 \\ 8987 (0.076) \\ \end{array}$	$\begin{array}{c} 6\\ \hline C_{49}H_{39}O_4N_2F_{15}AlTa\\ 1212.76\\ monoclinic\\ P2_1/c~(No.~14)\\ 11.646(1)\\ 30.716(3)\\ 14.1092(8)\\ 109.847(3)\\ 4747.4(6)\\ 4\\ 1.697\\ 111~001\\ 2400\\ 24.36\\ 120\\ 0.40~\times~0.65~\times~0.10\\ 55.0\\ 84~125\\ 10865~(0.040)\\ \end{array}$	$\begin{array}{c} 8\\ \hline C_{31}H_{36}Cl_3N_3O_2W(C_7H_8)\\ 864.99\\ monoclinic\\ P2_1/a~(No.~14)\\ 15.302(2)\\ 12.380(2)\\ 19.488(3)\\ 93.025(6)\\ 3686.5(8)\\ 4\\ 1.558\\ 81~658\\ 1736\\ 33.91\\ 120\\ 0.20\times0.25\times0.05\\ 54.8\\ 61~273\\ 8276~(0.058)\\ \end{array}$
formula fw cryst syst space group a, Å b, Å c, Å α , deg β , deg γ , deg V, Å ³ Z D_{calcd} , g/cm ⁻³ no. of reflns for cell det F(000) μ [Mo K α], cm ⁻¹ T, K cryst size, mm $2\theta_{max}$, deg no. of reflns measd no. of unique data (R_{int}) no. of observns ($I > 2.0\sigma(I)$)	$\begin{array}{c} \textbf{3a} \\ \hline \\ C_{42}H_{51}Cl_3N_3O_2Ta \\ 917.19 \\ triclinic \\ P\bar{1} (No. 2) \\ 9.436(4) \\ 11.148(4) \\ 20.172(8) \\ 76.47(3) \\ 76.69(3) \\ 80.30(3) \\ 1992(1) \\ 2 \\ 1.528 \\ 39 014 \\ 928 \\ 29.94 \\ 120 \\ 0.20 \times 0.15 \times 0.05 \\ 55.0 \\ 34 100 \\ 8987 (0.076) \\ 7327 \end{array}$	$\begin{array}{c} 6\\ \hline C_{49}H_{39}O_4N_2F_{15}AlTa\\ 1212.76\\ monoclinic\\ P2_1/c~(No.~14)\\ 11.646(1)\\ 30.716(3)\\ 14.1092(8)\\ 109.847(3)\\ 4747.4(6)\\ 4\\ 1.697\\ 111~001\\ 2400\\ 24.36\\ 120\\ 0.40~\times 0.65~\times 0.10\\ 55.0\\ 84~125\\ 10865~(0.040)\\ 9819\\ \end{array}$	$\begin{array}{c} 8\\ \hline C_{31}H_{36}Cl_3N_3O_2W(C_7H_8)\\ 864.99\\ monoclinic\\ P_{21/a}\ (No.\ 14)\\ 15.302(2)\\ 12.380(2)\\ 19.488(3)\\ 93.025(6)\\ 3686.5(8)\\ 4\\ 1.558\\ 81\ 658\\ 1736\\ 33.91\\ 120\\ 0.20\times 0.25\times 0.05\\ 54.8\\ 61\ 273\\ 8276\ (0.058)\\ 6746\\ \end{array}$
formula fw cryst syst space group a, Å b, Å c, Å α , deg β , deg γ , deg γ , deg V, Å ³ Z D_{calcd} , g/cm ⁻³ no. of reflns for cell det F(000) μ [Mo K α], cm ⁻¹ T, K cryst size, mm $2\theta_{max}$, deg no. of reflns measd no. of observns ($I \ge 2.0\sigma(I)$) no. of variables	$\begin{array}{c} \textbf{3a} \\ \hline \\ C_{42}H_{51}Cl_3N_3O_2Ta \\ 917.19 \\ triclinic \\ P\bar{1} (No. 2) \\ 9.436(4) \\ 11.148(4) \\ 20.172(8) \\ 76.47(3) \\ 76.69(3) \\ 80.30(3) \\ 1992(1) \\ 2 \\ 1.528 \\ 39 014 \\ 928 \\ 29.94 \\ 120 \\ 0.20 \times 0.15 \times 0.05 \\ 55.0 \\ 34 100 \\ 8987 (0.076) \\ 7327 \\ 664 \end{array}$	$\begin{array}{c} 6\\ \hline C_{49}H_{39}O_4N_2F_{15}AlTa\\ 1212.76\\ monoclinic\\ P2_1/c~(No.~14)\\ 11.646(1)\\ 30.716(3)\\ 14.1092(8)\\ 109.847(3)\\ 4747.4(6)\\ 4\\ 1.697\\ 111~001\\ 2400\\ 24.36\\ 120\\ 0.40\times0.65\times0.10\\ 55.0\\ 84~125\\ 10865~(0.040)\\ 9819\\ 649\\ \end{array}$	$\begin{array}{c} 8\\ \hline C_{31}H_{36}Cl_3N_3O_2W(C_7H_8)\\ 864.99\\ monoclinic\\ P2_1/a~(No.~14)\\ 15.302(2)\\ 12.380(2)\\ 19.488(3)\\ 93.025(6)\\ 3686.5(8)\\ 4\\ 1.558\\ 81~658\\ 1736\\ 33.91\\ 120\\ 0.20~\times 0.25~\times 0.05\\ 54.8\\ 61~273\\ 8276~(0.058)\\ 6746\\ 413\\ \end{array}$
formula fw cryst syst space group a, Å b, Å c, Å a, deg β , deg γ , deg r, r , $rcryst size, mm2\theta_{max}, degno. of reflns measdno. of unique data (R_{int})no. of variablesR1 (I \ge 2.0\sigma(I))$	$\begin{array}{c} \textbf{3a} \\ \hline \\ C_{42}H_{51}Cl_3N_3O_2Ta \\ 917.19 \\ triclinic \\ P\bar{1} (No. 2) \\ 9.436(4) \\ 11.148(4) \\ 20.172(8) \\ 76.47(3) \\ 76.69(3) \\ 80.30(3) \\ 1992(1) \\ 2 \\ 1.528 \\ 39 014 \\ 928 \\ 29.94 \\ 120 \\ 0.20 \times 0.15 \times 0.05 \\ 55.0 \\ 34 100 \\ 8987 (0.076) \\ 7327 \\ 664 \\ 0.0360 \\ \end{array}$	$\begin{array}{c} 6\\ \hline C_{49}H_{39}O_4N_2F_{15}AlTa\\ 1212.76\\ monoclinic\\ P_{21/c} (No. 14)\\ 11.646(1)\\ 30.716(3)\\ 14.1092(8)\\ 109.847(3)\\ 4747.4(6)\\ 4\\ 1.697\\ 111 001\\ 2400\\ 24.36\\ 120\\ 0.40 \times 0.65 \times 0.10\\ 55.0\\ 84 125\\ 10865 (0.040)\\ 9819\\ 649\\ 0.0229\\ \end{array}$	$\begin{array}{c} 8\\ \hline C_{31}H_{36}Cl_3N_3O_2W(C_7H_8)\\ 864.99\\ monoclinic\\ P2_1/a~(No.~14)\\ 15.302(2)\\ 12.380(2)\\ 19.488(3)\\ 93.025(6)\\ 3686.5(8)\\ 4\\ 1.558\\ 81~658\\ 1736\\ 33.91\\ 120\\ 0.20~ 0.25~ \times 0.05\\ 54.8\\ 61~273\\ 8276~(0.058)\\ 6746\\ 413\\ 0.0353\\ \end{array}$
formula fw cryst syst space group a, Å b, Å c, Å a, deg β , deg γ , deg γ , deg V, Å ³ Z D_{calcd} , g/cm ⁻³ no. of reflns for cell det F(000) μ [Mo K α], cm ⁻¹ T, K cryst size, mm $2\theta_{max}$, deg no. of reflns measd no. of reflns measd no. of runique data (R_{int}) no. of variables R1 ($I > 2.0\sigma(I)$) wR2 ($I > 2.0\sigma(I)$)	$\begin{array}{c} \textbf{3a} \\ \hline \\ C_{42}H_{51}Cl_3N_3O_2Ta \\ 917.19 \\ triclinic \\ P\bar{1} (No. 2) \\ 9.436(4) \\ 11.148(4) \\ 20.172(8) \\ 76.47(3) \\ 76.69(3) \\ 80.30(3) \\ 1992(1) \\ 2 \\ 1.528 \\ 39 014 \\ 928 \\ 29.94 \\ 120 \\ 0.20 \times 0.15 \times 0.05 \\ 55.0 \\ 34 100 \\ 8987 (0.076) \\ 7327 \\ 664 \\ 0.0360 \\ 0.0607 \\ \end{array}$	$\begin{array}{c} 6\\ \hline C_{49}H_{39}O_4N_2F_{15}AlTa\\ 1212.76\\ monoclinic\\ P2_1/c\ (No.\ 14)\\ 11.646(1)\\ 30.716(3)\\ 14.1092(8)\\ 109.847(3)\\ 4747.4(6)\\ 4\\ 1.697\\ 111\ 001\\ 2400\\ 24.36\\ 120\\ 0.40\ \times\ 0.65\ \times\ 0.10\\ 55.0\\ 84\ 125\\ 10865\ (0.040)\\ 9819\\ 649\\ 0.0229\\ 0.0792\\ \end{array}$	$\begin{array}{c} 8\\ \hline C_{31}H_{36}Cl_3N_3O_2W(C_7H_8)\\ 864.99\\ monoclinic\\ P2_1/a~(No.~14)\\ 15.302(2)\\ 12.380(2)\\ 19.488(3)\\ 93.025(6)\\ 3686.5(8)\\ 4\\ 1.558\\ 81~658\\ 1736\\ 33.91\\ 120\\ 0.20\times0.25\times0.05\\ 54.8\\ 61~273\\ 8276~(0.058)\\ 6746\\ 413\\ 0.0353\\ 0.1058\\ \end{array}$
formula fw cryst syst space group a, Å b, Å c, Å a, deg β , deg γ , deg μ [Mo K α], cm ⁻¹ T, K cryst size, mm $2\theta_{max}$, deg no. of reflns measd no. of unique data (R_{int}) no. of observns ($I > 2.0\sigma(I)$) no. of variables R1 ($I > 2.0\sigma(I)$) wR2 ($I > 2.0\sigma(I)$) R1 (all data)	$\begin{array}{c} \textbf{3a} \\ \hline \\ C_{42}H_{51}Cl_{3}N_{3}O_{2}Ta \\ 917.19 \\ triclinic \\ P\bar{1} (No. 2) \\ 9.436(4) \\ 11.148(4) \\ 20.172(8) \\ 76.47(3) \\ 76.69(3) \\ 80.30(3) \\ 1992(1) \\ 2 \\ 1.528 \\ 39 014 \\ 928 \\ 29.94 \\ 120 \\ 0.20 \times 0.15 \times 0.05 \\ 55.0 \\ 34 100 \\ 8987 (0.076) \\ 7327 \\ 664 \\ 0.0360 \\ 0.0607 \\ 0.0523 \\ \end{array}$	$\begin{array}{c} 6\\ \hline C_{49}H_{39}O_4N_2F_{15}AlTa\\ 1212.76\\ monoclinic\\ P2_1/c~(No.~14)\\ 11.646(1)\\ 30.716(3)\\ 14.1092(8)\\ 109.847(3)\\ 4747.4(6)\\ 4\\ 1.697\\ 111~001\\ 2400\\ 24.36\\ 120\\ 0.40~\times~0.65~\times~0.10\\ 55.0\\ 84~125\\ 10865~(0.040)\\ 9819\\ 649\\ 0.0229\\ 0.0792\\ 0.0268\\ \end{array}$	$\begin{array}{c} 8\\ \hline C_{31}H_{36}Cl_3N_3O_2W(C_7H_8)\\ 864.99\\ monoclinic\\ P2_1/a~(No.~14)\\ 15.302(2)\\ 12.380(2)\\ 19.488(3)\\ 93.025(6)\\ 3686.5(8)\\ 4\\ 1.558\\ 81~658\\ 1736\\ 33.91\\ 120\\ 0.20\times0.25\times0.05\\ 54.8\\ 61~273\\ 8276~(0.058)\\ 6746\\ 413\\ 0.0353\\ 0.1058\\ 0.0472\\ \end{array}$
formula fw cryst syst space group a, Å b, Å c, Å a, deg β , deg γ , deg r, Å ³ Z D_{calcd} , g/cm ⁻³ no. of refIns for cell det F(000) μ [Mo K α], cm ⁻¹ T, K cryst size, mm $2\theta_{max}$, deg no. of refIns measd no. of unique data (R_{int}) no. of observns ($I \ge 2.0\sigma(I)$) no. of variables R1 ($I \ge 2.0\sigma(I)$) wR2 ($I \ge 2.0\sigma(I)$) R1 (all data) wR2 (all data)	$\begin{array}{c} \textbf{3a} \\ \hline \\ C_{42}H_{51}Cl_{3}N_{3}O_{2}Ta \\ 917.19 \\ triclinic \\ P\bar{1} (No. 2) \\ 9.436(4) \\ 11.148(4) \\ 20.172(8) \\ 76.47(3) \\ 76.69(3) \\ 80.30(3) \\ 1992(1) \\ 2 \\ 1.528 \\ 39 \ 014 \\ 928 \\ 29.94 \\ 120 \\ 0.20 \times 0.15 \times 0.05 \\ 55.0 \\ 34 \ 100 \\ 8987 \ (0.076) \\ 7327 \\ 664 \\ 0.0360 \\ 0.0607 \\ 0.0523 \\ 0.0634 \\ \end{array}$	$\begin{array}{c} 6\\ \hline C_{49}H_{39}O_4N_2F_{15}AlTa\\ 1212.76\\ monoclinic\\ P2_1/c~(No.~14)\\ 11.646(1)\\ 30.716(3)\\ 14.1092(8)\\ 109.847(3)\\ 4747.4(6)\\ 4\\ 1.697\\ 111~001\\ 2400\\ 24.36\\ 120\\ 0.40~\times~0.65~\times~0.10\\ 55.0\\ 84~125\\ 10865~(0.040)\\ 9819\\ 649\\ 0.0229\\ 0.0792\\ 0.0268\\ 0.0833\\ \end{array}$	$\begin{array}{c} 8\\ \hline C_{31}H_{36}Cl_3N_3O_2W(C_7H_8)\\ 864.99\\ monoclinic\\ P2_1/a~(No.~14)\\ 15.302(2)\\ 12.380(2)\\ 19.488(3)\\ 93.025(6)\\ 3686.5(8)\\ 4\\ 1.558\\ 81~658\\ 1736\\ 33.91\\ 120\\ 0.20\times0.25\times0.05\\ 54.8\\ 61~273\\ 8276~(0.058)\\ 6746\\ 413\\ 0.0353\\ 0.1058\\ 0.0472\\ 0.1125\\ \end{array}$
formula fw cryst syst space group a, Å b, Å c, Å a, deg β , deg γ , deg r, Å ³ Z D_{calcd} , g/cm ⁻³ no. of refIns for cell det F(000) μ [Mo K α], cm ⁻¹ T, K cryst size, mm $2\theta_{max}$, deg no. of refIns measd no. of unique data (R_{int}) no. of observns ($I \ge 2.0\sigma(I)$) no. of variables R1 ($I \ge 2.0\sigma(I)$) wR2 ($I \ge 2.0\sigma(I)$) R1 (all data) wR2 (all data) GOF on F^2	$\begin{array}{c} \textbf{3a} \\ \hline \\ C_{42}H_{51}Cl_{3}N_{3}O_{2}Ta \\ 917.19 \\ triclinic \\ P\bar{1} (No. 2) \\ 9.436(4) \\ 11.148(4) \\ 20.172(8) \\ 76.47(3) \\ 76.69(3) \\ 80.30(3) \\ 1992(1) \\ 2 \\ 1.528 \\ 39 \ 014 \\ 928 \\ 29.94 \\ 120 \\ 0.20 \times 0.15 \times 0.05 \\ 55.0 \\ 34 \ 100 \\ 8987 \ (0.076) \\ 7327 \\ 664 \\ 0.0360 \\ 0.0607 \\ 0.0523 \\ 0.0634 \\ 0.956 \\ 157 \\ 1$	$\begin{array}{c} 6\\ \hline C_{49}H_{39}O_4N_2F_{15}AlTa\\ 1212.76\\ monoclinic\\ P2_1/c~(No.~14)\\ 11.646(1)\\ 30.716(3)\\ 14.1092(8)\\ 109.847(3)\\ 4747.4(6)\\ 4\\ 1.697\\ 111~001\\ 2400\\ 24.36\\ 120\\ 0.40~\times~0.65~\times~0.10\\ 55.0\\ 84~125\\ 10865~(0.040)\\ 9819\\ 649\\ 0.0229\\ 0.0792\\ 0.0268\\ 0.0833\\ 0.725\\ 0.57\\ 0.5$	$\begin{array}{c} 8\\ \hline C_{31}H_{36}Cl_3N_3O_2W(C_7H_8)\\ 864.99\\ monoclinic\\ P2_1/a~(No.~14)\\ 15.302(2)\\ 12.380(2)\\ 19.488(3)\\ 93.025(6)\\ 3686.5(8)\\ 4\\ 1.558\\ 81~658\\ 1736\\ 33.91\\ 120\\ 0.20\times0.25\times0.05\\ 54.8\\ 61~273\\ 8276~(0.058)\\ 6746\\ 413\\ 0.0353\\ 0.1058\\ 0.0472\\ 0.1125\\ 0.848\\ 1.55\\ 0.125\\ 0.848\\ 0.125\\ 0.125\\ 0.848\\ 0.125\\ 0.125\\ 0.848\\ 0.125\\ 0.125\\ 0.848\\ 0.125\\ 0.125\\ 0.848\\ 0.125\\ 0.125\\ 0.848\\ 0.125\\ 0.125\\ 0.848\\ 0.125\\ 0.125\\ 0.848\\ 0.125\\ 0.125\\ 0.848\\ 0.125\\ 0.$

^{*a*} R1 = $(\Sigma ||F_o| - |F_c||)/(\Sigma |F_o|)$. ^{*b*} wR2 = $[\{\Sigma w(F_o^2 - F_c^2)^2\}/\{\Sigma w(F_o^4)\}]^{1/2}$.

 ${}^{1}J_{C-H} = 132$ Hz, WCH₂), 37.9 (t, ${}^{1}J_{C-H} = 130$ Hz, WCH₂CH₂), 18.3 (q, ${}^{1}J_{C-H} = 128$ Hz, Ar-CH₃), 14.1 (q, ${}^{1}J_{C-H} = 128$ Hz, OCH₂CH₃). IR (Nujol): 1620 cm⁻¹ (C=O). Anal. Calcd for C₁₃H₁₈O₂N₁Cl₃W: C, 30.59; H, 3.55; N, 2.74. Found: C, 30.53; H, 3.63; N, 2.64.

Preparation of $(Xyl-N=)W{C(=N-Xyl)CH_2CH_2CO_2Et}-(CNXyl)Cl_3 (8)$. To a solution of 7 (63 mg, 0.122 mmol) in toluene (1 mL) was layered a solution of 2,6-dimethylphenylisocyanide (40.5 mg, 0.309 mmol) in toluene (3 mL). Yellow crystals of 8 were formed after 3 days. The crystals were separated, washed with hexane, and then dried under reduced pressure to give 8 as yellow

crystals (54 mg, 57% yield), mp 207–210 °C (dec). ¹H NMR (300 MHz, CDCl₃, 298 K): δ 7.33 (t, ³J_{H-H} = 7.7 Hz, 1H, *p*-Xyl), 7.25–7.15 (m, 4H, *m*- and *p*-Xyl), 7.01 (d, ³J_{H-H} = 7.4 Hz, 3H, *m*-Xyl), 6.84 (t, ³J_{H-H} = 7.7 Hz, 1H, *p*-Xyl), 4.11 (ddd, ²J_{H-H} = 18.8 Hz, ³J_{H-H} = 6.8 and 9.1 Hz, 1H, CHHCO₂Et), 4.0–3.7 (m, 3H, CHHCO₂Et and CO₂CH₂CH₃), 2.90 (ddd, ²J_{H-H} = 17.8 Hz, ³J_{H-H} = 5.1 and 6.8 Hz, 1H, N=CCHH), 2.80–2.65 (1H, N=CCHH overlapped with ArCH₃ resonance), 2.75 (br s, 6H, ArCH₃), 2.59 (s, 6H, ArCH₃), 2.42 (s, 3H, ArCH₃), 1.88 (s, 3H, ArCH₃), 1.07 (t, ³J_{H-H} = 7.1 Hz, 3H, OCH₂CH₃). ¹³C NMR (75 MHz, CDCl₃, 298 K): δ 198.2 (W–*C*=N), 170.6 (C=O), 149.9 (W–*C*NXyl), 136.5,

Tantalum and Tungsten Homoenolate Complexes

134.2, 134.1, 132.4, 131.0, 129.3, 128.8₉, 128.8₅, 128.7, 128.5, 128.4, 128.1, 127.4 (br), 127.3 (br), 125.2, 61.4 (OCH₂), 31.3, 29.5, 20.0 (ArCH₃), 19.2 (ArCH₃), 19.1 (ArCH₃), 18.7 (ArCH₃), 14.1 (OCH₂CH₃). IR (Nujol): 2210 cm⁻¹ (C=N), 1773 cm⁻¹ (C=N), 1726 cm⁻¹ (C=O). FAB-MS: m/z 736 (M⁺ – Cl). Anal. Calcd for C₃₁H₃₆O₂N₃Cl₃W+0.33(C₇H₈) (confirmed by integrated ¹H NMR spectrum): C, 49.82; H, 4.85; N, 5.23. Found: C, 49.94; H, 4.85; N, 5.14.

X-ray Crystallography. All crystals were handled similarly. The crystals were fixed on the end of glass fibers with heavy mineral oil or inside a CryoLoop (Hampton Research Corp.) with heavy mineral oil and placed in a nitrogen stream at 120(1) K. All measurements were made on a Rigaku RAXIS-RAPID imaging plate diffractometer with graphite-monochromated Mo K α radiation ($\lambda = 0.71075$). Indexing was performed from 3 or 4 oscillations, which were exposed for the appropriate time for each crystal. The camera radius was 127.40 mm. Readout was performed in the 0.100 mm pixel mode. For the data collection, reflections were measured at a temperature of 120(1) K. Crystal data and structure refinement parameters are summarized in Table 5.

The structure of **1a** and **1b** were solved by direct methods (SIR97).⁴⁶ The structures of **3a** and **6** were solved by direct methods (SIR92).⁴⁷ The structure of **8** was solved by direct methods (SHELXS-97).⁴⁸ All of the structures were refined on F^2 by a full-

matrix least-squares method, using SHELXL-97.⁴⁹ Non-hydrogen atoms were anisotropically refined, and all H atoms were isotropically refined for **1a** and **3a**. Non-hydrogen atoms were anisotropically refined, and all H atoms were included in the refinement on calculated positions riding on their carrier atoms for **1b** and **6**. For **8**, most of the non-hydrogen atoms, except for the solvated toluene molecule, were anisotropically refined and the rest were refined isotropically. All H atoms were included in the refinement on calculated positions riding on their carrier atoms. The ORTEP-3 program⁵⁰ was used to draw the molecule.

Acknowledgment. One of the authors (H.T.) thanks the Japan Society for the Promotion of Science (JSPS) research fellowships for Young Scientists.

Supporting Information Available: CIF files giving crystallographic data for **1a**, **1b**, **3a**, **6**, and **8**. This material is available free of charge via the Internet at http://pubs.acs.org.

OM060264F

⁽⁴⁶⁾ Altomare, A.; Burla, M. C.; Camalli, M.; Cascarano, G. L.; Giacovazzo, C.; Guagliardi, A.; Moliterni, A. G. G.; Polidori, G.; Spagna, R. J. Appl. Crystallogr. **1999**, *32*, 115.

⁽⁴⁷⁾ Altomare, A.; Burla, M. C.; Camalli, M.; Cascarano, G. L.; Giacovazzo, C.; Guagliardi, A.; Polidori, G. J. Appl. Crystallogr. 1994, 27, 435.

⁽⁴⁸⁾ Sheldrick, G. M. SHELXS-97, Programs for the Solution of Crystal Structures; University of Göttingen: Germany, 1997.

⁽⁴⁹⁾ Sheldrick, G. M. SHELXL-97, Programs for the Refinement of Crystal Structures; University of Göttingen: Germany, 1997.

⁽⁵⁰⁾ ORTEP-3: Farrugia, L. J. J. Appl. Crystallogr. 1999, 32, 837.