Synthesis, Characterization, and Reactivity of Isocyanidephosphidoniobocene Derivatives: X-ray Diffraction Structures of New Isocyanideniobocene Complexes, $[Nb(\eta^5-C_5H_4SiMe_3)_2(CNR)(PMePh_2)]$ **I,** $R = Xylyl, Cy$

Antonio Antiñolo,* David Evrard, Santiago García-Yuste, Antonio Otero,* Juan C. Pérez-Flores, Rebeca Reguillo-Carmona, Ana M. Rodríguez, and Elena Villaseñor

Departamento de Quı´*mica Inorga*´*nica, Orga*´*nica y Bioquı*´*mica, Facultad de Quı*´*mica, Uni*V*ersidad de Castilla-La Mancha, 13071 Ciudad Real, Spain*

*Recei*V*ed March 30, 2006*

The reaction of the hydride niobocene complexes $[Nb(\eta^5-C_5H_4SiMe_3)_2H(L)]$ $[L = CNBu^n (1), CNCy$
and $CNXv|v(3)]$ with CIPPh₂ vielded the cationic niobocene complexes $INb(\eta^5-C_5H_4SiMe_2)_2$ (PHPh₂) (2), and CNXylyl (3)] with ClPPh₂ yielded the cationic niobocene complexes $[Nb(\eta^5-C_5H_4SiMe_3)_2(PHPh_2) (L)$ [Cl $[L] = CNBu^n(4)$, CNCy (5), and CNXylyl (6)]. Treatment of these complexes with NaOH yielded a new family of phosphidoniobocene derivatives $[Nb(\eta^5-C_5H_4SiMe_3)_2(PPh_2)(L)]$ [L = CNBuⁿ (7), CNCy
(8) and CNXylyl (9)] by elimination of the hydrogen atom directly bonded to the phosphorus. The (**8**), and CNXylyl (**9**)] by elimination of the hydrogen atom directly bonded to the phosphorus. The cationic d² species $[Nb(\eta^5-C_5H_4SiMe_3)_2(PRPh_2)(L)]X [R = Me, X = I, L = CNBu^n (10), CNCy (11), and CNXvlv (12): R = CH_2Ph, X = Br CNRu^n (13) CNCv (14) and CNXvlv (15): R = CH_2CH_2Ph$ and CNXylyl (12); $R = CH_2Ph$, $X = Br$, CNBuⁿ (13), CNCy (14), and CNXylyl (15); $R = CH_2CH_2Ph$, $X = Br$, CNBuⁿ (**16**), CNCy (**17**), and CNXylyl (**18**)] were prepared by the reaction of alkyl halides RX ($R = Me$, $X = I$; CH₂Ph, $X = Br$; CH₂CH₂Ph, $X = Br$) with 7, 8, or 9 by electrophilic attack on the phosphorus atom present in the phosphido terminal ligand. In the same way, the reaction of **9** with ICH₂CH₂I or iodine yielded the complex $[Nb(\eta^5-C_5H_4SiMe_3)_2(P(I)Ph_2)(CNXylyl)]I_3$ (19). The insertion reaction of carbon disulfide into the Nb-P bond of **⁷**, **⁸**, or **⁹** yielded a new family of diphenylphosphidodithioformato complexes with the niobocene system [Nb($η$ ⁵-C₅H₄SiMe₃)₂($κ$ ¹-S-SC(S)(PPh₂))(L)] $[L = CNBuⁿ (20), CNCy (21), and CNXylyl (22)].$ The molecular structures of 11 and 12 were determined by single-crystal X-ray diffraction studies.

Introduction

Hydride complexes of transition metals represent one of the most important classes of compounds due to their chemical reactivity and applications in catalysis.¹ In recent years our research group has published several papers concerning the synthesis, structural characterization, and reactivity of new niobocene hydrides. Our interest has been focused in important fields of inorganic and organometallic chemistry such as hydrogen exchange coupling in metallocene trihydride complexes,² σ -bond activation by niobocene hydrides,³ insertion processes with heterocumulene molecules,4 insertion processes with alkynes,⁵ the synthesis of dihydrogen complexes in protonation processes,⁶ and the synthesis of hydride-olefin niobocene complexes.7

Furthermore, phosphorus plays an important role in organometallic chemistry, a fact demonstrated by the huge number,

(4) Antiñolo, A.; Carrillo, F.; Fajardo, M.; García-Yuste, S.; Otero, A. *J. Organomet. Chem.* **1994**, *482*, 93.

(5) Antiñolo, A.; Carrillo-Hermosilla, F.; Fajardo, M.; García-Yuste, S.; Lafranchi, M.; Otero, A.; Pellinghelli, M. A.; Prashar, S.; Villaseñor, E. *Organometallics* **1996**, *15*, 5507.

(6) Antiñolo, A.; Carrillo-Hermosilla, F.; Fajardo, M.; García-Yuste, S.; Otero, A.; Camanyes, S.; Maseras, F.; Moreno, M.; Lledós, A.; Lluch, J. M. *J. Am. Chem. Soc*. **1997**, *119*, 6107.

and relevance, of the scientific publications related to compounds containing this element.8 Of all the phosphorus ligands known in organometallic chemistry, the newest type—called the phosphido ligand-has not been widely studied in transition metal chemistry, particularly with respect to group 5 transition metal complexes.9

The number of isocyanideniobocene complexes that have been characterized by X-ray diffraction methods is very small.¹⁰

(7) Antin˜olo, A.; Carrillo, F.; Garcı´a-Yuste, S.; Otero, A. *Organometallics* **1994**, *13*, 2761.

^{*} To whom correspondence should be addressed. E-mail: antonio.antinolo@uclm.es; antonio.otero@uclm.es. Fax: +34926295318. (1) Hlatky, G. G.; Crabtree, R. H. *Coord*. *Chem*. *Re*V. **¹⁹⁸⁵**, *⁶⁵*, 1.

⁽²⁾ Antiñolo, A.; Chaudret, B.; Commenges, G.; Fajardo M.; Jalón, F.; Morris, R. H.; Otero, A.; Schweitzer. C. T. *J. Chem. Soc., Chem. Commun.* **1988**, 1210.

⁽³⁾ Antiñolo, A.; Carrillo, F.; Fajardo, M.; Otero, A.; Lanfranchi, M.; Pellinghelli, M. A. *Organometallics* **1995**, *14*, 4, 1518.

⁽⁸⁾ Selected references: (a) Dick, D. G.; Stephan, D. W. *Can*. *J*. *Chem*. **1991**, 69. (b) Ho, J. W.; Drake, R. J.; Stephan, D. W. *J*. *Am*. *Chem*. *Soc*. **1993**, *115*, 3792. (c) Ho, J. W.; Rousseau, R.; Stephan, D. W. *Organometallics* **1995**, *14*, 4030. (d) Baker, R. T.; Calabrese, J. C.; Harlow, R. L.; Williams, I. D. *Organometallics* **1993**, *12*, 830. (e) Hey-Hawkins, E.; Lappert, M. F.; Atwood, J. L.; Bott, S. G. *J*. *Chem*. *Soc*.*, Dalton Trans*. **1991**, 939. (f) Hey-Hawkins, E.; Kurtz, S.; Sieger, J.; Baum, G. *J*. *Organomet*. *Chem*. **1995**, *486*, 229. (g) Leblanc, J. C.; Moise, C. *J*. *Organomet*. *Chem*. **1989**, *364*, C3. (h) Chang, M. Y.; Gambarotta, S.; Bolhuis, F. V. *Organometallics* **1988**, *7*, 1864. (i) Roddick, D.; Santarsiero, B. D.; Bercaw, J. E. *J*. *Am*. *Chem*. *Soc*. **1985**, *107*, 4670. (j) Rigni, S.; Leblanc, J. C.; Moise, C.; Nuber, B. *J*. *Chem*. *Soc*.*, Chem*. *Commun*. **1995**, 45. (k) Bonnet, G.; Lavastre, O.; Leblanc, J. C.; Moise, C. *New J*. *Chem*. **1988**, *12*, 551. (l) Bonnet, G.; Kubicki, M. M.; Moise, C.; Lazzaroni, R.; Salvador, P.; Vitulli, G. *Organometallics* **1992**, *1*, 964. (m) Nikonov, G. I.; Grishin, Y. K.; Lemenovskii, D. A.; Kazennova, N. B.; Kuzmina, L. G.; Howard, J. A. K. *J. Organomet. Chem.* **1997**, 547, 183. (n) Barré, C.; Kubicki, M. M.; Leblanc, J. C.; Moise, C. *Inorg*. *Chem*. **1990**, *29*, 5244. (o) Barre´, C.; Boudot, P.; Kubicki, M. M.; Moise, C. *Inorg*. *Chem*. **1995**, *34*, 284. (p) Lavastre, O.; Bonnet, G.; Boni, G.; Kubicki, M. M.; Moise, C. *J*. *Organomet*. *Chem*. **1997**, *547*, 141.

⁽⁹⁾ Selected references: (a) Bonnet, G.; Leblanc, J. C.; Moise, C. *New J. Chem.* **1988**, *12*, 551. (b) Nikonov, G. I.; Kuzmina, L. G.; Mountford, P.; Lemenovskii, D. A. *Organometallics* **1995**, *14*, 3588. (c) Nikonov, G. I.; Lemenovskii, D. A.; Lorberth, J. *Organometallics* **1994**, *13*, 3127.

The well-known equilibrium between the two extreme possibilities, isocyanide or carbene coordination mode for the metal-isocyanide bond, 11 has usually been studied by IR spectroscopy techniques, while X-ray diffraction methods provide unambiguous evidence concerning the coordination mode (Scheme 1).

With the aim of combining aspects of isocyanide and phosphidoniobocene chemistry, we decided to prepare new isocyanidephosphidoniobocene complexes starting from new hydridoisocyanideniobocene complexes in order to investigate both their reactivity and chemical similarity with the carbonylphosphidoniobocene derivatives in insertion and alkylation processes.12 We also aimed to prepare a significant number of different isocyanide complexes in order to increase the number of structures of this kind of complexes resolved by X-ray diffraction studies.

Starting from a well-known methodology^{13,14} to prepare phosphidoniobocene complexes [Nb($η$ ⁵-C₅H₄R)₂(PPh₂)(L)], herein we report new isocyanide-containing niobocene derivatives, namely, $[Nb(\eta^5-C_5H_4SiMe_3)_2(PPh_2)(CNR)]$, as well as their reactivity in alkylation and insertion $15-17$ processes with electrophilic reagents RX and CS_2 to give cationic d^2 18-electron species $[Nb(\eta^5-C_5H_4SiMe_3)_2(PRPh_2)(L)]X$ and phosphinodithioformato-containing complexes [Nb($η$ ⁵-C₅H₄SiMe₃)₂($κ$ ¹-S-SC- $(S)(PPh₂))(L)$, respectively.

Results and Discussion

We report the synthesis of new phosphorus-containing niobocene complexes using a new family of hydride isocyanide niobiocene complexes as starting materials, $[Nb(\eta^5-C_5H_4 \text{SiMe}_3$ ₂H(L)] [L = CNBuⁿ (1), CNCy (2), and CNXylyl (3)].

(12) Antiñolo, A.; García-Yuste, S.; Otero, A.; Perez-Flores, J. C.; Reguillo-Carmona, R.; Rodriguez, A. M.; Villaseñor, E. Organometallics **2006**, *25*, 1310.

(13) Antiñolo, A.; Carrillo-Hermosilla, F.; Fernandez-Baeza, J.; García-Yuste, S.; Otero, A.; Sánchez-Prada, J.; Villaseñor, E. *Eur. J. Inorg. Chem.* **2000**, 1437.

(14) Selected references: (a) Oudet, P.; Kubicki, M. M.; Moise, C. *Organometallics* **1994**, *13*, 4278. (b) Oudet, P.; Perrey, D.; Bonnet, G.; Moise, C.; Kubicki, M. M. *Inorg. Chim. Acta* **1995**, *273*, 79. (c) Challet, S.; Leblanc, J. C.; Moise, C. *New J. Chem*. **1993**, *17*, 251.

(15) (a) Antiñolo, A.; Fajardo, M.; López-Mardomingo, C.; Otero, A.; Mourad, Y.; Mugnier, Y.; Sanz-Aparicio, J.; Fonseca, I.; Florencio, F. *Organometallics* **1990**, *9*, 164. (b) Antin˜olo, A.; Otero, A.; Fajardo, M.; López-Mardomingo, C.; Lucas, D.; Mugnier, Y.; Lanfranchi, M.; Pellinghelli, M. A. *J*. *Organomet*. *Chem*. **1992**, *435*, 55. (c) Antin˜olo, A.; Fajardo, M.; Gil-Sanz, R.; López-Mardomingo, C.; Martin-Villa, P.; Otero, A.; Kubicki, M. M.; Mugnier, Y.; El Krami, S.; Mourad, Y. *Organometallics* 1993, 12, 381. (d) Antiñolo, A.; Carrillo-Hermosilla, F.; García-Yuste, S.; Freitas, M.; Otero, A.; Prashar, S.; Villaseñor, E.; Fajardo, M. Inorg. Chim. *Acta* **1997**, *259*, 101.

(16) Antiñolo, A.; del Hierro, I.; Fajardo, M.; García-Yuste, S.; Otero, A.; Blacque, O.; Kubicki, M. M.; Amaudrut, J. *Organometallics* **1996**, *15*, 1966.

(17) Antiñolo, A.; Fajardo, M.; García-Yuste, S.; del Hierro, I.; Otero, A.; El Krami, S.; Mourad, Y.; Mugnier, Y. *J*. *Chem*. *Soc*.*, Dalton Trans*. **1995**, 3409.

These compounds were synthesized by heating $[Nb(\eta^5-C_5H_4 \text{SiMe}_3$)₂(H)₃]² in the presence of the corresponding isocyanide⁷ (see Scheme 2).

 $ClPPh₂$ was very smoothly inserted into the Nb-H bond of complexes **¹**-**³** to give the ionic phosphine complexes [Nb- $(\eta^5$ -C₅H₄SiMe₃)₂(PHPh₂)(L)]Cl [L = CNBuⁿ (4), CNCy (5), and CNXylyl (**6**)]. Complexes **⁴**-**⁶** were isolated as air-sensitive red-orange crystalline solids in high yield (∼85%) and as red solids after precipitation from Et_2O . The ¹H NMR spectra of **⁴**-**⁶** reveal the equivalence of the two cyclopentadienyl rings, with an asymmetrical environment for the niobium center; four multiplets between $\delta = 5-7$ ppm are observed for the protons of the Cp rings. In addition, the 1H NMR spectra of **⁴**-**⁶** show a doublet for the P-H moiety ($^1J_{\text{PH}} \approx 370$ Hz). The IR spectra of **⁴**-**⁶** reveal the absence of a *^ν*(Nb-H) band and the existence of *^ν*(P-H) at ca. 2280 cm-1. The 13C{1H}, 31P{1H}, and 31P NMR spectra are consistent with the observations outlined above (see Experimental Section).

In the study described here it was envisaged that $[Nb(n^5 C_5H_4SiMe_3$ ₂(PPh₂)(L)] [L = CNBuⁿ (7), CNCy (8), and CNXylyl (9)] would be obtained by deprotonation¹³ of the P-H bond of **4**, **5**, and **6**. Indeed, the preparation of the phosphidoniobiocene complexes **7**, **8**, and **9** was achieved by deprotonation of the PHPh₂ ligand present in these complexes (eq 1).

Complexes **⁷**-**⁹** were isolated as air-sensitive yellow-brown oils, and they are soluble in most organic solvents such as thf, hexane, pentane, and toluene. Complexes **⁷**-**⁹** were characterized by IR and ${}^{1}H$, ${}^{13}C{}^{1}H$ }, and ${}^{31}P$ NMR spectroscopy. The IR spectra of **⁷**-**⁹** contain one band between 1990 and 2111 cm⁻¹, and this corresponds to ν (C \equiv N), in agreement with the linear disposition of the isocyanide ligands. A band corresponding to *^ν*(P-H) of the P-H bond was not observed in the IR spectra, which is consistent with the conversion of the coordinated diphenylphosphine ligand to a new phosphido ligand. Further evidence for this transformation was provided by the ¹H NMR spectra, which did not contain the doublet corresponding to the P-H bond at ca. 7 ppm that is present in the parent complexes $4-6$.¹³ Evidence for the presence of a new phosphido
ligand was provided by the ³¹P NMR spectra, which contain a ligand was provided by the 31P NMR spectra, which contain a singlet at ca. δ -10.8 ppm due to the PPh₂ ligand.¹² This latter signal is at higher field than that in the corresponding PHPh2 ligand in complexes **⁴**-**6**, which shows the higher electron density on the P atom in the neutral phosphido ligand. At low field the ${}^{13}C{^1H}$ NMR spectra exhibit one signal between δ 212 and 217 ppm for the carbon atoms of the *C*NR ligands. The spectroscopic data are in agreement with an 18-electron d^2 niobocene species in which the phosphido terminal ligand is coordinated as a monoanionic donor ligand. Thus, the phosphorus atom of the phosphido ligand retains one electron pair, and this makes it susceptible to further electrophilic attack. The niobium atom must adopt a pseudo-tetrahedral structure with both cyclopentadienyl rings bonded in a η^5 coordination mode to give the typical bent metallocene conformation.

Complexes **⁷**-**⁹** are excellent starting materials for the synthesis of a new family of 18 e^- cationic niobocene complexes. In the second part of this article we describe the reactivity of complexes **⁷**-**⁹** toward alkylation processes with several RX reagents as electrophilic species. The reaction of

^{(10) (}a) Alcalde, M. I.; Mata, J.; Go´mez, M.; Royo. P. *Organometallics* **1994**, *13*, 462. (b) Carrondo, M. A. A. F. de C. T.; Morais, J.; Romao, C. C.; Romao. M. J. *Polyhedron* 1993, 7, 765. (c) Rehder. D.; Böttcher, C.; Collazo, C.; Hedelt, R.; Schmidt, H. *J. Organomet. Chem.* **1999**, *585*, 294. (d) Aspinall, H. C.; Roberts, M. M.; Lippard. S. J. *Inorg. Chem.* **1984**, *23*, 1782. (e) Yu, J. S.; Felter, L.; Potyen, M. C.; Clark, J. R.; Visciglio, V. M.; Fanwick, P. E.; Rothwell, I. P. *Organometallics* **1996**, *15*, 4443.

⁽¹¹⁾ Cotton, F. A.; Wilkinson, G.; Murillo, C. A.; Bochmann, M. *Ad*V*anced Inorganic Chemistry*, 6th ed.; J. Wiley & Sons: New York, 1999; p 247.

 (3)

complexes **⁷**-**⁹** with excess alkyl halide, such as methyl iodide (MeI), benzyl bromide (BzBr), and phenethyl bromide (PhCH₂CH₂Br), gives d^2 18 e⁻ cationic phosphinoniobocene complexes $[Nb(\eta^5-C_5H_4SiMe_3)_2(PRPh_2)(L)]X [R = Me, X =$ I, L = CNBuⁿ (10), CNCy (11), and CNXylyl (12); R = CH_2Ph , $X = Br$, CNBuⁿ (13), CNCy (14), and CNXylyl (15); $R = CH_2CH_2Ph$, $X = Br$, CNBuⁿ (16), CNCy (17), and CNXylyl (**18**)] in high yield (see eq 2):

The formation of these complexes must be considered in terms of an alkylation process resulting from electrophilic attack of the alkyl halide on the nucleophilic P atom of the phosphido terminal ligand.^{9a,12}

Complexes **¹⁰**-**¹⁸** were isolated as deep red air-sensitive crystalline solids. The low solubility of the complexes in hydrocarbons, ethers, and aromatic solvents enabled us to isolate the products very easily in analytically pure form.

Fortunately, all of the complexes are sufficiently soluble in acetone to allow their NMR spectra to be recorded. The ionic nature of complexes **¹⁰**-**¹⁸** was confirmed by measuring the molar conductivity (see Experimental Section), and the values are consistent with 1:1 electrolytes.18

Compounds **¹⁰**-**¹⁸** were characterized spectroscopically (see Experimental Section). The most significant bands in the IR spectra appear at ca. 2000 cm^{-1} , and these correspond to $\nu(C=N)$ (see Experimental Section), in agreement with a linear disposition of the isocyanide ligands. The 31P NMR spectra each contain a broad resonance, and these appear at ca. δ 50 ppm (see Experimental Section). These chemical shift values show the effect that alkylation has on the phosphorus by comparison with the $3^{1}P$ NMR chemical shift of the phosphido terminal ligand in complexes **⁷**-**9**. This comparison shows the differences in electron density on the P atom. In agreement with the IR spectra, the ${}^{13}C{^1H}$ NMR spectra of $10-18$ show low-field resonances for the carbon atom of the isocyanide ligand (ca. *δ* 200 ppm) as broad signals, probably due to the quadrupolar moment of the niobium atom.

The use of 1,2-diiodoethane (ICH₂CH₂I) as the alkylating reagent with **9** gave the cationic iodophosphinoniobocene triiodide complex $[Nb(\eta^5-C_5H_4SiMe_3)_2(P(I)Ph_2)(CNXylyl)]I_3$

(**19**) rather than the expected dicationic derivative $[\{Nb(\eta^5 - \dots)\}]$ $C_5H_4SiMe_3$)₂(CNXylyl)}₂(Ph₂P(CH₂CH₂)PPh₂)]I₂ (see eq 3).

I₂ or 1,2-diiodoethane $[\mathsf{Nb}(\eta^5\text{-}\mathsf{C}_5\mathsf{H}_4\mathsf{SiMe}_3)_2(\mathsf{PPh}_2)(\mathsf{CNX}y\text{\small{[y]}}]$ (9) $[\mathsf{Nb}(\eta^5\text{-}\mathsf{C}_5\mathsf{H}_4\mathsf{SiM}\mathsf{e}_3)_2(\mathsf{P}(\mathsf{I})\mathsf{Ph}_2)(\;\mathsf{CNX} \mathsf{y} \mathsf{I} \mathsf{y} \mathsf{I}] \mathsf{J}_3$ (19)

The reaction of complex 9 with I₂/Et₂O was successful as an alternative method to obtain **19**. The new iododiphenylphosphine complex was isolated as a deep red air-sensitive solid. The ionic nature of complex **19** was confirmed by measurement of the molar conductivity ($\Lambda_M = 105.6 \Omega^{-1}$ cm² mol⁻¹), which is consistent with a 1:1 electrolyte.18 The structural characterization was carried out by both spectroscopic and X-ray diffraction studies (see Experimental Section).

The IR spectrum shows one band at 2078 cm^{-1} , and this corresponds to *ν*(C=N) of the C=NXylyl ligand. In the NMR spectra $(^{1}H$ and $^{13}C)$ the absence of a resonance in the typical region for the $Ph_2P(CH_2CH_2)PPh_2$ ligand, corresponding to the ethylene bridge of the $P(CH_2CH_2)P$ moiety, confirms that this ligand is not present. The 13C{1H} NMR spectrum shows the resonance of the carbon atom of the *C*NXylyl ligand at *δ* 190.3 ppm. The 31P NMR spectrum contains a signal at *δ* 85.2 ppm due to the iodophosphine ligand (see Experimental Section). These chemical shift values show the effect of the presence of the iodine atom by comparison with the data for complex **9**. This comparison is consistent with the decreasing electronic density in the phosphorus atom.12

X-ray Diffraction Study of [Nb($η$ **⁵-C₅H₄SiMe₃)₂(PMePh₂)-(CNCy)]I (11) and [Nb(***η***5-C5H4SiMe3)2(PMePh2)(CNXylyl)]I (12).** Crystallographic analyses were carried out on suitable single crystals of **11** and **12**. The aim of this crystallographic study was to establish the structures of **11** and **12** unambiguously and to ascertain the effect of steric hindrance of the isocyanide alkyl or aryl substitutes on the $NbC-N-C$ bond angle of the isocyanide ligand. To the best of our knowledge, these molecular structures represent two of the few examples described for niobocene complexes containing an isocyanide moiety.

Single crystals of **11** and **12** suitable for X-ray analysis were obtained by slow diffusion of diethyl ether into dichloromethane solutions of the complexes. ORTEP views of the molecular structures of complexes **11** and **12** are shown in Figures 1 and 2, respectively, and selected bond distances and angles are given in Table 1.

The molecular structures of **11** and **12** are typical of bent metallocenes. The niobium geometry is distorted tetrahedral in which the centroids of the cyclopentadienyl rings are considered as occupying one unique coordination site and the phosphine (18) Geary, W. J. *Coord. Chem. Re*V*.* **¹⁹⁷¹**, *⁷*, 81. and the isocyanide ligands occupy the other two sites. The

Figure 1. ORTEP view of the molecular structure of **11** with 30% probability ellipsoids. Hydrogen atoms have been omitted.

Figure 2. ORTEP view of the molecular structure of **12** with 30% probability ellipsoids. Hydrogen atoms have been omitted.

structural parameters for the $(Cp')₂Nb$ unit are very similar in both complexes (Table 2), and the mutual orientation of the two Cp′ rings is intermediate between eclipsed and staggered in both compounds. The $Si(1)$ -Cent(1)-Cent(2)-Si(2) angles are 131.2° for **11** and 126.5° for **12**. The distances between the metal atom and the centroids of the Cp rings fall between 2.057(1) and 2.090(1) Å, and the value of the angle Cent(1)– Nb(1)-Cent(2) is between 139.39(3)° and 132.71(4)° [Cent(1) is the centroid of $C(21) - C(25)$ for 11 and $C(23) - C(27)$ for **12**; Cent(2) is the centroid of $C(29) - C(33)$ for **11** and $C(31)$ – $C(35)$ for 12]. These values are typical of bent niobocene derivatives. The $Nb(1)-P(1)$ bond distances of 2.574(1) and 2.59(3) Å, respectively, are very close to the expected values for phosphinoniobocene derivatives.¹⁹ The $P(1)$ atom is pseudotetrahedral. The CH3-P bond lengths of 1.824(6) Å for **¹¹** and

Table 1. Bond Lengths [Å] and Angles [deg] for 11 and 12

Bond Lengths			
11			12
$Nb(1)-C(1)$	2.099(5)	$Nb(1)-C(1)$	2.09(1)
$Nb(1)-C(25)$	2.353(5)	$Nb(1)-C(31)$	2.35(1)
$Nb(1)-C(21)$	2.356(5)	$Nb(1)-C(25)$	2.335(9)
$Nb(1)-C(22)$	2.356(5)	$Nb(1)-C(26)$	2.35(1)
$Nb(1)-C(32)$	2.361(5)	$Nb(1)-C(32)$	2.36(1)
$Nb(1)-C(31)$	2.367(5)	$Nb(1)-C(27)$	2.39(1)
$Nb(1)-C(30)$	2.393(5)	$Nb(1)-C(35)$	2.413(9)
$Nb(1)-C(33)$	2.414(5)	$Nb(1)-C(33)$	2.41(1)
$Nb(1)-C(24)$	2.421(5)	$Nb(1)-C(34)$	2.44(1)
$Nb(1)-C(23)$	2.433(5)	$Nb(1)-C(24)$	2.44(1)
$Nb(1)-C(29)$	2.446(5)	$Nb(1)-C(23)$	2.511(8)
$Nb(1)-P(1)$	2.574(1)	$Nb(1)-P(1)$	2.59(3)
$P(1) - C(8)$	1.824(6)	$P(1) - C(11)$	1.81(1)
$P(1)-C(9)$	1.829(6)	$P(1) - C(17)$	1.84(1)
$P(1) - C(15)$	1.840(6)	$P(1) - C(10)$	1.84(1)
$N(1) - C(1)$	1.177(7)	$N(1)-C(1)$	1.16(1)
$N(1) - C(2)$	1.46(1)	$N(1) - C(2)$	1.39(1)
Bond Angles			
11		12	
$C(1) - Nb(1) - P(1)$	83.2(2)	$C(1) - Nb(1) - P(1)$	83.6(3)
$C(8)-P(1)-C(9)$	101.8(3)	$C(11)-P(1)-C(17)$	102.6(5)
$C(8)-P(1)-C(15)$	101.0(3)	$C(11)-P(1)-C(10)$	98.3(6)
$C(9)-P(1)-C(15)$	102.5(3)	$C(17)-P(1)-C(10)$	103.6(6)
$C(8)-P(1)-Nb(1)$	114.0(2)	$C(11)-P(1)-Nb(1)$	116.0(3)
$C(9) - P(1) - Nb(1)$	120.9(2)	$C(17)-P(1)-Nb(1)$	119.8(3)
$C(15)-P(1)-Nb(1)$	114.0(2)	$C(10)-P(1)-Nb(1)$	113.8(4)
$C(1)-N(1)-C(2)$	162.2(8)	$C(1)-N(1)-C(2)$	164(1)
$N(1)-C(1)-Nb(1)$	173.1(5)	$N(1) - C(1) - Nb(1)$	173.5(9)
Table 2. Crystal Data and Structure Refinement for 11 and 12			
		11	12
empirical formula		$C_{36}H_{50}INNbPSi2$	$C_{38}H_{48}INNbPSi2$
fw		803.73	825.73
temperature (K)		293(2)	293(2)
wavelength (λ)		0.71073	0.71073

1.84(1) Å for **¹²** fall into the expected range for other methylphosphorus bonds.²⁰ The C(1)-N(1) bond lengths of 1.177(7) and 1.16(1) \AA are consistent with the presence of a carbonnitrogen triple bond,²¹ and the $C(1)-N(1)-C(2)$ angles are $162.2(8)°$ and $164(1)°$; that is, they clearly deviate from linearity. This confirms the back-donation of the niobium(III) d^2 center to the isocyanide ligand, with a triple bond remaining between

^{(19) (}a) Challet, S.; Kubicki, M. M.; Leblanc, J.-C.; Moise, C.; Nuber, B. *J. Organomet. Chem.* **1994**, *483*, 47. (b) Thiygarajan, B.; Michalczyk, L.; Bollinger, J. C.; Bruno, J. W. *Organometallics* **1996**, *15*, 2588. (c) Bailey, N. J.; Green, M. L. H.; Leech, M. A.; Saunders, J. F.; Tidswell, H. M. *J. Organomet. Chem.* **1997**, *538*, 111. (d) Humphries, M. J.; Douthwaite, R. E.; Green, M. L. H. *J. Chem. Soc., Dalton Trans.* **2000**, 2952. (e) Nikonov, G. I.; Crishin, Y. K.; Lemenovskii, D. A.; Kazennova, N. B.; Kumina, L. G.; Howard, S. A. K. *J. Organomet. Chem.* **1997**, *547*, 183. (f) Nikonov, G. I.; Lemenovskii, Yudorogar, K.; Churakov, A. V. *Polyhedron* **1999**, *18*, 1159.

⁽²⁰⁾ Fettinger, J. C.; Keogh, D. W.; Poli, R. *Inorg. Chem.* **1995**, *34*, 2343.

⁽²¹⁾ Collazo, C.; Rodewald; D.; Schmidt H.; Rehder, D. *Organometallics* **1996**, *15*, 4884.

C

b

 $C(1)-N(1)$, but in these cases, the contribution of the carbene form in the interaction with the niobium center is small (see Scheme 1). The results of this analysis are in agreement with the IR data in solution (see Experimental Section).

a

The cyclohexylisocyanido and the xylylisocyanido ligands are bonded to niobium at a lateral position in the major coordination plane at the front sector of the bent-metallocene wedge $[C(1)-Nb-C(11) = 107.3(3)°]$. In both complexes the $-C=N$ substituent is oriented in an equatorial position in order to decrease steric repulsive interactions between the phenyl rings of the phosphine.

In the last part of this article we will describe the insertion reaction of CS_2 into the Nb-P bond of complexes $7-9$ to yield the products in which the diphenylphosphinodithioformato ligand, $Ph_2P(S)CS^-$, is coordinated to the niobium center.¹² Of all the possible coordination modes to a metal center, the one expected for the diphenylphosphinodithioformato ligand²² (see Scheme 3) is the S-monodentate coordination mode **c** that exists in the new diphenylphosphinodithioformatoniobocene [Nb(*η*5- $C_5H_4\text{SiMe}_3$)₂(κ^1 -SC(S)(PPh₂))(CNR)] [R = Buⁿ (20), Cy (21), and Xylyl (**22**)].

The complexes were prepared by stirring of a mixture of **7** and **8** with carbon disulfide for few days. In this way, we were able to isolate complexes **²⁰**-**²²** as air-sensitive red solids after the appropriate workup. When the reaction mixture in thf was stirred over a longer period of time, the solution became green and the solvent was removed to give complex $[Nb(\eta^5-C_5H_4 SiMe₃$ ₂(κ ²-*S*,*S*-*SC*(S)(PPh₂))], **23**.

$$
[Nb(\eta^5 - C_5H_4SiMe_3)_2(PPh_2)(L)]
$$
 + C

 $L = CNBuⁿ$, 7 CNCy, 8; CNXylyl, 9

 $[Nb(\eta^5-C_5H_4SiMe_3)_2(\kappa^1-S-(SC(S)PPh_2))(L)]$ (4)

$$
L = CNBun, 20 CNCy, 21; CNXylyl, 22
$$

The new diphenylphosphinodithioformatoniobocene derivatives **²⁰**-**²³** were isolated as air-sensitive solids and were characterized by IR and NMR spectroscopy (see Experimental Section).

The IR spectra of **²⁰**-**²²** display a characteristic band at ca. 1000 cm⁻¹, which corresponds to the ν (C=S),^{4,13} and another band at 2040 cm^{-1} corresponding to the CNR group. The presence of a $Ph₂P(S)CS$ ⁻ ligand is confirmed by a resonance in each of the ³¹P{¹H} NMR spectra at δ 40.3, 27.2, and 18.6 for complexes **20**, **21**, and **22**, respectively (see Experimental Section).

Compared with the 31P chemical shift for compounds **⁷**-**9**, the relatively low-field shift of each resonance for **²⁰**-**²²** is in agreement with the different chemical environments for the phosphorus atoms in the complexes.12

¹H NMR and¹³C NMR have demonstrated to be a useful tool to distinguish between the coordination modes of the dithioformate ligand in **20** and **21** versus **23**. The most significant difference between **20**/**21** and **23** in the spectra is the number of signals corresponding to the cyclopentadienyl ligands. In fact, the 1H NMR spectra show four multiplet resonances for **²⁰**- **22**, for the mentioned ligand, whereas only two are present for **23**; this observation is consistent with the absence or presence of a symmetry plane (σ_v) respectively through the niobium center. Similarly there are five and three signals for **²⁰**-**²²** and **23**, respectively, in the 13C NMR spectra of the cyclopentadienyl ligand of the niobocene system. Both the 1H NMR and 13C NMR spectra are consistent with the formulas [Nb]-(κ ¹-*S*-SC(S)(PPh₂)) for **20**-**22** and [Nb]-(κ^2 -*S*,*S*-SC(S)(PPh₂)) for **23**.¹²
Two possibilities can explain the formation of

d

Two possibilities can explain the formation of the diphenylphosphinodithioformato ligand. (i) The insertion reaction goes via a four-centered transition state to give the corresponding new ligand. (ii) The transition state is formed by nucleophilic attack by the lone electron pair of the phosphorus atom at the carbon atom of the carbon disulfide, followed by the interaction of one of the noncoordinated sulfur atoms with the niobium metal center with simultaneous cleavage of the Nb-P bond.

As far as the mechanism for the formation of complex **23** is concerned, this could occur by attack of the noncoordinated S atom of the *κ*1-*S*-diphenylphosphinodithioformato ligand in **20** and **21** to the Nb center and the simultaneous elimination of the CNR ligand to give the κ^2 -*S*,*S*-diphenylphosphinodithioformato coordination mode in milder conditions as reported for other related compounds.4,12,13

Conclusions

We have prepared new phosphidoniobocenes **7** and **8**, which contain isocyanide as an ancillary ligand, starting from hydride niobocenes (**1**, **2**, or **3**) and ClPPh2 through the formation of **4**, **5**, or **6** and subsequent reaction with sodium hydroxide. The electrophilic attack of alkyl halides on the phosphorus atom of the phosphido ligand in **7**, **8**, or **9** allowed the isolation of a new family of d^2 cationic niobocene species $10-19$. The X-ray molecular structures of **11** and **12** were determined, and they are members of a small family of metallocenes of early transition metals with isocyanide ligands. Finally, we studied the reactivity of phosphido-containing niobocene complexes **7**, **8**, and **9** toward CS_2 . It was found that an insertion process into the Nb-P bond occurs to give complexes **20**, **21**, and **22**, in which a phosphinodithioformato ligand is present.

Experimental Section

General Procedures. All reactions were carried out using Schlenk techniques. Oxygen and water were excluded through the use of vacuum lines supplied with purified N_2 . Toluene was distilled from sodium. Hexane was distilled from sodium/potassium alloy. Diethyl ether and THF were distilled from sodium benzophenone. All solvents were deoxygenated prior to use. $[Nb(\eta^5-C_5H_4SiMe_3)_2]$ - $(H)_{3}$ ² [Nb(η ⁵-C₅H₄SiMe₃)₂H(L)]⁶ (L = CNCy (2), CNXylyl (3)),

^{(22) (}a) Hey-Hawkins, E.; Lappert, M. F.; Atwood, J. L.; Boot, S. G. *J. Chem. Soc., Chem. Commun.* **1987**, 421. (b) Yih, K.-H.; Lin, Y.-C.; Cheng, M.-C.; Wang, Y. *J. Chem. Soc., Dalton Trans.* **1995**, 1305. (c) Yih, K.-H.; Lin, Y.-C.; Cheng, M.-C.; Wang, *J. Chem. Soc., Chem. Commun.* **1993**, 1380.

 $[Nb(\eta^5-C_5H_4SiMe_3)_2(PHPh_2)(L)]Cl^{13}$ (L = CNXylyl (6)), and $[Nb(\eta^5-C_5H_4SiMe_3)_2(PPh_2)(L)]^{23}$ (L = CNXylyl (9)) were prepared as described in the literature. Deuterated solvents were dried over 4 Å molecular sieves and degassed prior to use. ClPPh₂, CNBuⁿ, CS_2 , MeI, $(C_6H_5)CH_2Br$, $(C_6H_5)CH_2CH_2Br$, and I_2 were used as supplied by Aldrich. ¹H, ¹³C, and ³¹P NMR spectra were recorded on a Varian Innova 500 MHz spectrometer at ambient temperature unless stated otherwise. 1H, 13C, and 31P NMR chemical shifts (*δ* values) are given in ppm relative to the solvent signal $(^1H, ^{13}C)$ or standard resonances $(31P,$ external 85% H₃PO₄). IR spectra were recorded on a Perkin-Elmer 883 spectrophotometer as Nujol mulls on CsI windows.

Preparation of [Nb(*η***5-C5H4SiMe3)2(H)(CNBun)] (1).** CNBun (0.091 mL, 0.067 g, 0.800 mmol) was added by syringe to a solution of [Nb($η$ ⁵-C₅H₄SiMe₃)₂(H)₃] (0.80 mmol) in THF (40 mL). The mixture was stirred at 343 K for 2 h. The resulting red-brown solution was filtered and evaporated to dryness. Complex **1** was isolated as a red oily material after maintaining it under vacuum for a lengthy period (yield: 95%).

Complex 1. IR (Nujol): *^ν* (cm-1) 1715 (Nb-H), 2089, 1811 (C=N). ¹H NMR (500 MHz, C₆D₆): δ -5.85 (s, 1 H, Nb-H), 0.25 (s, 18 H, SiMe₃), 0.75 (t, ³ J_{HH} = 5 Hz, 3 H, CH₃), 1.25, 1.42 (m, 2 H, CH₂-CH₂), 3.20 (t, 2 H, CN-CH₂), 4.38, 4.56, 4.89, 5.13 (2H, each a complex signal, $C_5H_4\text{SiMe}_3$). ¹³C{¹H} NMR (125 MHz, C_6D_6 : δ 0.7 (SiMe₃), 13.6 (CH₃), 20.5, 30.5 (CH₂-CH₂), 51.0 (CN-*C*H2), 87.7, 91.7, 92.0, 94.0 (C2-5, exact assignment not possible, *C*₅H₄SiMe₃), 94.6 (C¹, *C*₅H₄SiMe₃), 264.0 (CNBuⁿ). Anal. Calcd for C₂₁H₃₆NNbSi₂: C, 55.85; H, 8.04; N, 3.10. Found: C, 55.76; H, 8.13; N, 3.20.

Preparation of $[Nb(\eta^5-C_5H_4SiMe_3)_2(PHPh_2)(L)]Cl$ $[L =$ **CNBuⁿ (4) and CNCy (5)].** To a solution of $[Nb(\eta^5-C_5H_4SiMe_3)_2$ - $H(L)$] $[L = CNBu^n (1)] (0.55 mmol)$ in Et₂O (40 mL) was added ClPPh₂ (125 μ L, 0.70 mmol) by syringe. A red-orange precipitate formed immediately. When sedimentation was complete, the solution was filtered and the residue was washed with Et₂O (2 \times 20 mL) and dried in vacuo. Complex **4** was obtained as an orange solid in 80% yield. Complex **5** was obtained in 80% yield by following the same process as for **4**.

Complex 4. Λ_M (Ω^{-1} cm² mol⁻¹): 92.1. IR (Nujol): ν (cm⁻¹) 2245 (P-H), 2111 (C=N). ¹H NMR (500 MHz, acetone- d_6): δ 0.02 (s, 18 H, SiMe₃), 0.95 (t, ³ J_{HH} = 5 Hz, 3 H, CH₃), 1.45, 1.76 (m, 2 H, CH₂-CH₂), 4.09 (t, 2 H, CN-CH₂), 5.11, 5.14, 5.41, 5.70 (2H, each a complex signal, $C_5H_4\sinh(2)$, 7.27 (d, ¹J_{HP} = 357 Hz, P*H*Ph2), 7.48 (m, 2 H, C6*H*5), 7.68 (m, 8 H, C6*H*5). 13C{1H} NMR (125 MHz, acetone-*d*6): *δ* 0.0 (Si*Me*3), 13.6 $(CH₃), 20.5, 30.5 (CH₂-CH₂), 47.2 (CN–CH₂), 92.5, 99.0, 100.6)$ $(C^{2-5}$, exact assignment not possible, $C_5H_4\text{SiMe}_3$), 99.3 (C¹, $C_5H_4\text{SiMe}_3$), 122.7, 125.3, 131.2, 139.4 (C_6H_5). ³¹P{¹H} NMR (202 MHz, acetone-*d*₆): δ 32.8 (s, PHPh₂). ³¹P NMR (202 MHz, acetone- d_6 : δ 32.8 (d, $1J_{\text{PH}} = 357$ Hz, *PHPh₂*). Anal. Calcd for C33H46ClNNbPSi2: C, 58.97; H, 6.85; N, 2.01. Found: C, 58.56; H, 6.23; N, 2.30.

Complex 5. Λ_M (Ω^{-1} cm² mol⁻¹): 108.1. IR (Nujol): ν (cm⁻¹) 2250 (P-H), 2108 (C=N). ¹H NMR (500 MHz, CDCl₃): δ 0.15 (s, 18 H, Si Me_3), 0.80-2.06 (m, 10 H, C₆ H_{11}), 4.10 (m, 1H, H1, C6*H*11), 4.88, 4.95, 5.11, 5.48 (2H, each a complex signal, C_5H_4 SiMe₃), 7.50 (d, ¹J_{HP} = 325 Hz, PHPh₂), 7.40-7.68 (m, C_6H_5). ¹³C{¹H} NMR (125 MHz, acetone-*d*₆): δ 0.1 (SiMe₃), 23.6, 24.6, 32.8 (*C*5H11), 56.9 (C1, *C*5H11), 90.8, 98.5, 98.6, 100.2 (C2-5, exact assignment not possible, $C_5H_4SiMe_3$), 99.1 (C^1 , $C_5H_4SiMe_3$), 128.9, 129.1, 130.4, 132.4 (*C*6H5). 31P{1H} NMR (202 MHz, CDCl3): *δ* 32.2 (s, PHPh₂). ³¹P NMR (202 MHz, acetone-*d*₆): δ 32.2 (d, ¹J_{PH} $=$ 325 Hz, *PHPh₂*). Anal. Calcd for C₃₅H₄₈ClNNbPSi₂: C, 60.20; H, 6.93; N, 2.01. Found: C, 59.96; H, 6.73; N, 2.10.

Preparation of $[Nb(\eta^5-C_5H_4SiMe_3)_2(PPh_2)(L)]$ $[L = CNBu^n]$ **(7) and CNCy (8)].** A solution of $[Nb(\eta^5-C_5H_4SiMe_3)_2(PHPh_2)(L)$ $|C|$ $[L = CNBu^n (4)$ and $CNCy (5)] (0.87$ mmol) in toluene (30) mL) was treated with 0.5 M aqueous NaOH (1.72 mL, 10% excess). The mixture was vigorously stirred. Within 4 h the precipitate had dissolved and the organic phase had turned dark brown. The toluene solution was filtered and evaporated to dryness. The product was obtained as a yellow-brown oil in 80% yield for both **7** and **8**.

Complex 7. IR (Nujol): *ν* (cm⁻¹) 2111, 1817 (C=N). ¹H NMR (500 MHz, C₆D₆): δ 0.09 (s, 18 H, SiMe₃), 0.65 (t, ³J_{HH} = 5 Hz, 3 H, CH₃), 1.02, 1.14 (m, 2 H, $-CH_2-CH_2$), 3.16 (t, ${}^3J_{HH} = 5$ Hz, 2 H, CN-C*H*2), 4.46, 4.70, 4.75, 5.31 (2H, each a complex signal, $C_5H_4\text{SiMe}_3$), 6.99, 7.14, 7.65 (each a complex signal, C_6H_5). 13C{1H} NMR (125 MHz, C6D6): *δ* 0.6 (Si*Me*3), 13.6 (*C*H3), 20.5, 32.5 (-*C*H2-*C*H2-), 51.1 (-CN-*C*H2-), 87.7, 91.7, 92.1, 94.0 $(C^{2-5}$, exact assignment not possible, $C_5H_4\text{SiMe}_3$), 89.3 (C¹, $C_5H_4\text{SiMe}_3$), 115.0, 123.0 (C_6H_5), 153.6 (d, $^1J_{CP} = 30.0$ Hz, C_{ipso} of C_6H_5), 214.1 ($C \equiv N$). ³¹P{¹H} NMR (202 MHz, C_6D_6): δ -4.2 (s, *PPh₂)*. Anal. Calcd for C₃₃H₄₅NNbPSi₂: C, 62.34; H, 7.13; N 2.20. Found: C, 62.35; H, 7.21; N, 2.21.

Complex 8. IR (Nujol): *ν* (cm⁻¹) 2098, 1830 (C=N). ¹H NMR (500 MHz, C6D6): *^δ* 0.11 (s, 18 H, Si*Me*3), 0.80-1.62 (m, 10 H, C₆H₁₁), 3.49 (m, 1H, H¹, C₆H₁₁), 4.54, 4.82, 4.84, 5.41 (2 H, each a complex signal, C₅H₄SiMe₃), 6.90, 7.15, 7.65 (m, each a complex signal, C6*H*5). 13C{1H} NMR (125 MHz, C6D6): *δ* 0.6 (Si*Me*3), 23.9, 25.1, 33.3 (C₅H₁₁), 57.2 (C¹, C₆H₁₁), 91.9, 99.0, 99.3, 102.7 $(C^{2-5}$, exact assignment not possible, $C_5H_4SiMe_3$), 95.2 $(C^1,$ $C_5H_4SiMe_3$, 124.1, 133.8, 134.1 (C_6H_5), 154.1 (d, ¹ J_{CP} = 33.0 Hz, $C_{ipso}, C₆H₅$), 212.2 (*C*=N). ³¹P{¹H} NMR (202 MHz, $C₆D₆$): δ -3.3 (*PPh₂*). Anal. Calcd for C₃₅H₄₇NNbPS₁₂: C, 63.52; H, 7.16; N, 2.12. Found: C, 63.45; H, 7.21; N, 2.28.

Preparation of $[Nb(\eta^5-C_5H_4SiMe_3)_2(PRPh_2)(L)]X [R = Me,$ $X = I$, $L = CNBu^n$ (10), CNCy (11), and CNXylyl (12); $R =$ CH_2Ph , $X = Br$, CNBuⁿ (13), CNCy (14), and CNXylyl (15); R $= CH_2CH_2Ph$, $X = Br$, CNBuⁿ (16), CNCy (17), and CNXylyl **(18)].** To a solution of $[Nb(\eta^5-C_5H_4SiMe_3)_2(PPh_2)(L)]$ $[L = CNBu^n]$ (**7**), CNCy (**8**), and CNXylyl (**9**)] (0.83 mmol) in dry toluene (30 mL) was added an excess of the appropriate alkyl halide [**5**, methyl iodide (1:10) (1.17 g, 0.51 mL, $\rho = 2.28$ g/mL, 8.30 mmol); **6**, benzyl bromide, (1:10) (1.42 g, 0.98 mL, $\rho = 1.44$ g/mL, 8.30 mmol); and **7**, 1-(2-bromoethyl)benzene (1:10) (1.53 g, 1.14 mL, $\rho = 1.34$ g/mL, 8.30 mmol)]. In each case the reaction mixture was stirred at room temperature for 2 h. During this time the solution changed to a deep red color. The solvent was evaporated under vacuum to dryness. The resulting solid was recrystallized by dissolving it in dichloromethane and placing a layer of diethyl ether above it in a Schlenk tube. Deep red crystals began to grow within a few days. The resulting solid was filtered off to give a deep red solid in 80-85% yield for **¹⁰**, **¹¹**, **¹²**, **¹³**, **¹⁴**, **¹⁵**, **¹⁶**, **¹⁷**, and **18**.

Complex 10. Λ_M (Ω^{-1} cm² mol⁻¹): 95.2. IR (Nujol): ν (cm⁻¹) 2053 (C=N). ¹H NMR (500 MHz, acetone-*d*₆): δ 0.25 (s, 18 H, SiMe₃), 1.01 (t, ³J_{HH} = 5.5 Hz, 3 H, $-CH_3$), 1.53, 1.92 (m, 2 H, $-CH_2-CH_2$), 4.27 (t, ³J_{HH} = 5.5 Hz, 2 H, CN–CH₂), 2.25 (d, $^{2}J_{\text{HP}}$ = 7.8 Hz, 3 H, *Me*), 4.37, 4.73, 5.02, 5.35 (2H, each a complex signal, C₅H₄SiMe₃), 7.53 (m, 10 H, C₆H₅). ¹³C{¹H} NMR $(125 \text{ MHz}, \text{ acetone-}d_6)$: δ 0.2 (SiMe₃), 15.2 (-CH₃), 22.6 (-CH2-*C*H2-CH3), 24.5 (-CH2-*C*H2-CH2), 48.1 (CN-*C*H2-), 18.2 (d, ¹*J*_{CP} = 27 Hz, *Me*), 89.6 (C¹, *C*₅H₄SiMe₃), 90.8, 95.2, 96.3, 99.3 (C²⁻⁵, exact assignment not possible, C₅H₄SiMe₃), 116-129 (*C*6H5), 133.8 (d, ¹*J*CP) 33 Hz, Cipso *^C*6H5), 203.2 (*C*tN). 31P{1H} NMR (202 MHz, acetone-*d*6): *^δ* 41.4 (*P*MePh2). Anal. Calcd for C34H48INNbPSi2: C, 52.51; H, 6.22; N, 1.80. Found: C, 52.79; H, 6.32; N, 1.70.

Complex 11. Λ_M (Ω^{-1} cm² mol⁻¹): 90.3. IR (Nujol): ν (cm⁻¹) 2074 (C=N). ¹H NMR (500 MHz, acetone-*d*₆): δ 0.25 (s, 18 H, SiMe₃), 1.30-1.95 (m, 10 H, C₆H₁₁), 2.65 (d, ²J_{HP} = 7.3 Hz, 3 H,

⁽²³⁾ Antiñolo, A.; García-Yuste, S.; Lopez-Solera, M. I.; Otero, A.; Pérez-Flores, J. C.; Reguillo-Carmona, R.; Villaseñor, E. *J. Chem. Soc., Dalton Trans.* **2006**, 1495.

Me), 4.5 (m, 1 H, H¹ C₆H₁₁), 4.75, 5.09, 5.35, 5.67 (2H, each a complex signal, C₅H₄SiMe₃), 7.03, 7.34, 7.76 (m, C₆H₅). ¹³C{¹H} NMR (125 MHz, acetone- d_6): δ 0.0 (SiMe₃), 15.8 (d, ¹J_{CP} = 30 Hz, *Me*), 13.8, 20.4, 47.1 (exact assignment not possible, C_6H_{11}), 68.8 (C¹, C₆H₁₁), 98.8, 99.2, 100.5 (C²⁻⁵, exact assignment not possible, $C_5H_4\text{SiMe}_3$, 92.5 (C¹, $C_5H_4\text{SiMe}_3$), 129.4 (d, ${}^3J_{CP} = 9$ Hz, C_{meta} of C_6H_5), 131.2 (C_6H_5), 133.3 (d, ² J_{CP} = 16 Hz, C_{ortho} of C_6H_5), 134.5 (d, ¹ J_{CP} = 34 Hz, C_{ipso} of C_6H_5), 205.2 (*C*=N). ³¹P{¹H} NMR (202 MHz, acetone-*d*₆): *δ* 40.5 (*P*MePh₂). Anal. Calcd for C₃₆H₅₀INNbPSi₂: C, 53.80; H, 6.27; N, 1.74. Found: C, 53.70; H, 6.30; N, 1.72.

Complex 12. Λ_M (Ω^{-1} cm² mol⁻¹): 99.0. IR (Nujol): ν (cm⁻¹) 2031 (C≡N). ¹H NMR (500 MHz, CDCl₃): δ 0.18 (s, 18 H, Si*Me*₃), 2.16 (d, $^2J_{HP} = 8.0$ Hz, 3 H, *Me*), 2.39 (s, 6 H, C*H*₃ of Xylyl), 4.58, 5.05, 5.15, 5.56 (2H, each a complex signal, C5*H*4SiMe3), 7.18, 7.24, 7.39, 7.41 (m, each a complex signal C_6H_5). ¹³C{¹H} NMR (125 MHz, CDCl3): *δ* 0.2 (Si*Me*3), 19.3 (*C*H3 Xylyl), 19.3 $(d, {}^{1}J_{CP} = 29$ Hz, *Me*), 91.8, 98.9, 100.2, 100.6 (C²⁻⁵, exact assignment not possible, $C_5H_4SiMe_3$), 101.9 (C¹, $C_5H_4SiMe_3$), 127.5, 128.7, 128.8, 128.9, 130.9, 131.1, 131.3 (exact assignment not possible, C_6H_5), 135.5 (d, ¹J_{CP} = 37.5 Hz, C_{ipso} C_6H_5), 198.1 (*C*=N). ³¹P{¹H} NMR (202 MHz, CDCl₃): δ 38.3 (s, *PMePh₂*). Anal. Calcd for $C_{38}H_{48}INNbPSi_2$: C, 55.27; H, 5.86; N, 1.70. Found: C, 55.08; H, 5.72; N, 1.82.

Complex 13. Λ_M ($Ω^{-1}$ cm² mol⁻¹): 92.0. IR (Nujol): *ν* (cm⁻¹) 2043 (C=N). ¹H NMR (500 MHz, CDCl₃): δ 0.22 (s, 18 H, SiMe₃), 1.23 (t, ${}^{3}J_{\text{HH}} = 5.3$ Hz, 3 H, $-CH_3$), 1.32, 1.52 (m, 2 H, $-CH_2-CH_2$, 3.98 (t, ³*J*_{HH} = 5.0 Hz, 2 H, CN-C*H*₂), 3.80 (d, 2 *J*_{HP} = 7.4 Hz, 2 H, -C*H*₂-Ph), 4.75, 5.19, 5.33, 5.74 (2H, each a complex signal, C5*H*4SiMe3), 6.55, 7.35, 6.96, 7.05, 7.20 (m, exact assignment not possible C_6H_5). ¹³C{¹H} NMR (125 MHz, CDCl3): *^δ* 0.2 (Si*Me*3), 15.5 (-*C*H3), 23.4, 25.5 (-*C*H2-*C*H2- CH₃), 45.3 ($-CN-CH_2$), 43.1 (d, ¹J_{CP} = 28 Hz, $-CH_2-Ph$), 89.3 (C¹, *C₃H₄SiMe₃), 95.2, 96.6, 98.6, 102.5* (C²⁻⁵, exact assignment not possible, *C₅H₄SiMe₃), 129.0*–133.0 (*C₆H₅), 135.6* (d, $^1J_{\text{CP}} = 35.0 \text{ Hz}, \text{ C}_{\text{ipso}} \text{ } C_6\text{H}_5$), 202.5 (*C*=N). ³¹P{¹H} NMR (202 MHz, CDCl₃): δ 56.4 (s, *P*(CH₂Ph)Ph₂). Anal. Calcd for $C_{40}H_{52}BrNNbPSi_2$: C, 59.55; H, 6.45; N, 1.74. Found: C, 59.80; H, 6.61; N, 1.72.

Complex 14. Λ_M (Ω^{-1} cm² mol⁻¹): 103.0. IR (Nujol): ν (cm⁻¹) 2058 (C=N). ¹H NMR (500 MHz, acetone-*d*₆): δ 0.23 (s, 18 H, $\sin M e_3$), 1.30-2.22 (m, 10 H, C₆*H*₁₁), 3.89 (m, 1 H, H¹ C₆*H*₁₁), 3.96 (d, ²J_{HP} = 6.5 Hz, 2 H, $\text{--CH}_2\text{--Ph}$), 4.82, 5.09, 5.44, 5.70 (2 H, each a complex signal, C₅*H*₄SiMe₃), 6.71–7.90 (m, 15 H, C₆*H*₅). ¹³C{¹H} NMR (125 MHz, acetone-*d*₆): *δ* 0.3 (Si*Me*₃), 15.8, 22.5, 42.3 (C_6H_{11}), 71.2 (C^1 , C_6H_{11}), 41.4 (d, $^1J_{CP} = 25$ Hz, $-CH_2-Ph$), 89.2, 93.8, 99.9, 103.5 (C^{2-5} , exact assignment not possible, $C_5H_4SiMe_3$), 94.7 (C^1 , $C_5H_4SiMe_3$), 129.0–133.0 (C_6H_5), 135.6 (d, $^{1}J_{\text{CP}}$ = 35 Hz, C_{ipso} of C₆H₅). ³¹P{¹H} NMR (202 MHz, C₆D₆): *δ* 55.5 (s, *P*(CH₂Ph)Ph₂). Anal. Calcd for C₄₂H₅₄BrNNbPSi₂: C, 60.57; H, 6.54; N, 1.68. Found: C, 60.62; H, 6.68; N, 1.71.

Complex 15. Λ_M (Ω^{-1} cm² mol⁻¹): 95.5. IR (Nujol): ν (cm⁻¹) 2038 (C=N). ¹H NMR (500 MHz, CDCl₃): δ 0.17 (s, 18 H, SiMe₃), 2.42 (s, 6 H, CH₃ Xylyl), 3.74 (d, ²J_{HP} = 6.4 Hz, 2 H, $-CH_2-Ph$), 4.67, 5.13, 5.26, 5.72 (2H, each a complex signal, C5*H*4SiMe3), 6.52, 6.91, 7.03, 7.39, 7.19, 7.17, 7.45, 7.32 (m, each a complex signal C6*H*5). 13C{1H} NMR (125 MHz, CDCl3): *δ* 0.7 (Si*Me*3), 19.8 (*C*H₃ lyl), 39.9 (d, $^1J_{CP} = 29.0$ Hz, $-CH_2-Ph$), 93.36, 98.95, 100.96, 101.59 (C²⁻⁵, exact assignment not possible, C₅H₄SiMe₃), 102.14 (C¹, C₅H₄SiMe₃), 127.81 (C_{ipso} of Xylyl), 128.27, 128.65, 128.78 (C_{arom} of Xylyl), 130.63, 131.69, 133.70 (C_{ortho}, C_{meta}, and C_{para} of *C*₆H₅), 132.7 (d, ¹*J*_{CP} = 37.5 Hz, C_{ipso} of *C*₆H₅), 201.1 $(C≡N)$. ³¹P{¹H} NMR (202 MHz, CDCl₃): δ 53.3 (s, *P*(CH₂Ph)-Ph₂). Anal. Calcd for $C_{44}H_{52}BrNNbPSi_2$: C, 61.82; H, 6.13; N, 1.64. Found: C, 61.85; H, 5.99; N, 1.63.

Complex 16. Λ_M (Ω^{-1} cm² mol⁻¹): 96.7. IR (Nujol): ν (cm⁻¹) 2106 (C=N). ¹H NMR (500 MHz, CDCl₃): δ 0.13 (s, 18 H, SiMe₃),

0.93 (t, ${}^{3}J_{\text{HH}} = 5.3$ Hz, 3 H, $-CH_3$), 1.22, 1.42 (m, 2 H, $-CH_2-CH_2$), 4.20 (t, ${}^{3}J_{\text{HH}} = 5.0$ Hz, 2 H, CN $-CH_2$), 3.6 (d, $^{2}J_{\text{HP}} = 7.4$ Hz, 4 H, $-CH_{2}-CH_{2}-Ph$), 4.83 (4H, a complex signal, $C_5H_4\sinh(9)$, 5.01, 5.58 (2H, each a complex signal, C₅H₄SiMe₃), 6.55-7.70 (m, C₆H₅). ¹³C{¹H} NMR (125 MHz, CDCl₃): *δ* 0.2 (SiMe₃), 13.6 (-*C*H₃), 20.4, 25.5 (-*C*H₂-*C*H₂-), 47.6 ($-CN-CH_2$), 34.0 (d, $^{1}J_{CP} = 28$ Hz, $-CH_2-CH_2-Ph$), 93.5 (C¹, $C_5H_4SiMe_3$), 90.5, 99.1, 99.7, 99.9 (C²⁻⁵, exact assignment not possible, $C_5H_4SiMe_3$), 126.0–134.0 (C_6H_5), 140.0 (d, ${}^{1}J_{\text{CP}} = 35.0 \text{ Hz}$, C_{ipso} *C*₆H₅), 181.7 (*C*=N). ³¹P{¹H} NMR (202 MHz, CDCl₃): δ 50.6 (s, *P*(CH₂Ph)Ph₂). Anal. Calcd for C43H56BrNNbPSi2: C, 60.98; H, 6.67; N, 1.65. Found: C, 60.81; H, 6.71; N, 1.72.

Complex 17. Λ_M (Ω^{-1} cm² mol⁻¹): 103.2. IR (Nujol): ν (cm⁻¹) 2047 (C=N). ¹H NMR (500 MHz, acetone- d_6): δ 0.14 (s, 18 H, $\sin(10^3)$, 1.41-2.70 (m, 10 H, C₆*H*₁₁), 2.50 (s, 4 H, $-\text{CH}_2-\text{CH}_2$ -Ph), 3.79 (m, 1 H, H¹ C₆H₁₁), 4.01 (d, ²J_{HP} = 6.5 Hz, 2 H, -CH₂-CH2-Ph), 4.72, 5.10, 5.53, 5.85 (2H, each a complex signal, C₅H₄SiMe₃), 6.90-7.90 (m, 15 H, C₆H₅). ¹³C{¹H} NMR (125 MHz, C_6D_6 : *δ* 0.2 (SiMe₃), 16.8, 22.4, 41.0 (C_6H_{11}), 66.1 (C¹, C_6H_{11}), 33.5 ($-CH_2-CH_2-Ph$), 44.3 (d, $^1J_{CP} = 25$ Hz, $-CH_2-CH_2-Ph$), 92.4, 93.6, 102.4, 104.5 (C^{2-5} , exact assignment not possible, $C_5H_4\text{SiMe}_3$), 97.8 (C¹, $C_5H_4\text{SiMe}_3$), 128.0-131.1 (C_6H_5), 134.2 $(d, {}^{1}J_{CP} = 35 \text{ Hz}, \text{C}_{ipso} \text{ } C_6\text{H}_5)$, 201.4 (*C*=N). ³¹P{¹H} NMR (202 MHz, C_6D_6 : δ 53.2 (s, $P(CH_2CH_2Ph)Ph_2$). Anal. Calcd for $C_{43}H_{56}BrNbPSi_2$: C, 60.98; H, 6.67; N, 1.65. Found: C, 61.15; H, 6.54 3.21; N, 1.44.

Complex 18. Λ_M (Ω^{-1} cm² mol⁻¹): 95.0. IR (Nujol): ν (cm⁻¹) 2034 (C=N). ¹H NMR (500 MHz, CDCl₃): δ 0.15 (s, 18 H, SiMe₃), 2.25 (s, 6 H, CH₃ of Xylyl), 2.56 (s, 2 H, $-CH_2-CH_2-Ph$), 3.38 $(dt, {}^{2}J_{HP} = 7.2 \text{ Hz}, {}^{3}J_{HH} = 5.8 \text{ Hz}, -CH_{2}-CH_{2}-Ph), 4.68, 5.07,$ 5.23, 5.76 (2H, each a complex signal, $C_5H_4\sin{9}$, 6.96 (t, ${}^3J_{HH}$) $= 7.3$ Hz, 2 H, H_{para} of C₆H₅), 7.20 (d, ³J_{HH} $= 7.2$ Hz, 4 H, H_{ortho} of C₆H₅), 7.18 (s, 3 H, H_{arom} of Xylyl), 7.40 (t, ³J_{HH} = 7.3 Hz, 4 H, H_{meta} of C₆H₅), 7.42-7.70 (m, 5 H, Ph). ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 0.1 (SiMe₃), 19.0 (CH₃ of Xylyl), 30.9 (d, ²J_{CP} $=$ 5.8 Hz, $-CH_2-CH_2-Ph$), 34.6 (d, ${}^{1}J_{CP}$ = 19.0 Hz, $-CH_2-Ph$ CH₂-Ph), 92.1, 98.7, 100.4, 100.9 (C²⁻⁵, exact assignment not possible, *C*5H4SiMe3), 101.6 (C1, *C*5H4SiMe3), 126.7, 127.9, 128.9, 133.0, 132, 129.2, 129.6, 130.0, 130.4 (C_{arom} of Xylyl), 132.3 (d, $^{2}J_{\text{CP}} = 15$ Hz, C_{ortho} of *C*₆H₅), 134.8 (C_{ipso} of Xylyl), 140.3 (d, ¹J_{CP} $=$ 30 Hz, C_{ipso} C₆H₅), 199.3 (C=N). ³¹P{¹H} NMR (202) MHz, CDCl₃): δ 50.5 (s, $P(CH_2CH_2Ph)Ph_2$). Anal. Calcd for C45H54BrNNbPSi2: C, 62.20; H, 6.26; N, 1.61. Found: C, 62.32; H, 5.98; N, 1.54.

Preparation of $[Nb(\eta^5-C_5H_4\sin\theta_3)_2(P(I)Ph_2)(CNXylyl)]I_3$ **(19). Method 1.** To a solution of $[Nb(\eta^5-C_5H_4SiMe_3)_2(PPh_2)-$ (CNXylyl)](**9**) (0.45 g, 0.74 mmol) in dry toluene (30 mL) was added an excess of 1,2-diiodoethane [ICH₂CH₂I; (1:10) (2.23 g; 1.05 mL; $\rho = 2.13$ g/mL; 7.40 mmol)]. The reaction mixture was stirred at room temperature for 2 h. During this time the solution changed to a deep red color. The solvent was evaporated under vacuum to dryness. The remaining solid was crystallized by dissolving it in dichloromethane and placing a layer of diethyl ether above it in a Schlenk tube. Deep red crystals began to grow within a few days. The resulting product was filtered off to give a deep red solid in 85% yield.

Method 2. To a solution of $[Nb(\eta^5-C_5H_4SiMe_3)_2(PPh_2)-$ (CNXylyl)] (**9**) (0.50 g, 0.83 mmol) in dry toluene (30 mL) was added an excess of I_2 in diethyl ether (1:2) (0.42 g, 1.66 mmol). The reaction mixture was stirred at room temperature for 2 h. During this time the solution changed to a deep red color. The solvent was evaporated under vacuum to dryness. The resulting solid was crystallized by dissolving it in dichloromethane and placing a layer of diethyl ether above it in a Schlenk tube. Deep red crystals began to grow within a few days. The resulting solid was filtered off to give a deep red solid in 80% yield.

Complex 19. Λ_M ($Ω⁻¹$ cm² mol⁻¹): 105.6. IR (Nujol): *ν* (cm⁻¹) 2078 (C=N). ¹H NMR (500 MHz, CDCl₃): δ 0.33 (s, 18 H, SiMe₃), 2.56 (s, 6 H, CH₃ of Xylyl), 4.62, 5.91 (2H, each a complex signal, C₅H₄SiMe₃), 5.34 (4H, a complex signal, C₅H₄SiMe₃), 7.53 (m, 13 H, H_{arom} of C_6H_5 and Xylyl). ¹³C{¹H} NMR (125 MHz, C_6D_6): *δ* 1.0 (Si*Me*₃), 20.3 (*C*H₃ of Xylyl), 94.5, 101.8, 103.7 (C²⁻⁵, exact assignment not possible, $C_5H_4SiMe_3$), 104.6 (C¹, $C_5H_4SiMe_3$), 128.6, 129.1, 133.6 (C_{arom} of Xylyl), 133.4 (C₁ of Xylyl), 129.3 (C_{nara and} C_{meta} of *C*₆H₅), 136.0 (d, ²*J*_{CP} = 12 Hz, C_{ortho} of *C*₆H₅), 138.0 (d, ¹J_{CP} = 24 Hz, C_{ipso} of C₆H₅), 190.3 (*C*=N). ³¹P{¹H} NMR (202 MHz, C₆D₆): δ 85.2 (s, P(I)Ph₂). Anal. Calcd for C37H45I4NNbPSi2: C, 37.30; H, 3.81; N, 1.18. Found: C, 37.26; H, 3.64; N, 1.09.

Preparation of $[Nb(\eta^5-C_5H_4SiMe_3)_2(k^1-S-SC(S)(PPh_2))(L)]$ **[L** $=$ **CNBuⁿ (20), CNCy (21), and CNXylyl (22)].** A mixture of $[Nb(\eta^5-C_5H_4SiMe_3)_2(PPh_2)(L)]$ $[L = CNBu^n (7), CNCy (8), and$ CNXylyl (**9**)] (0.93 mmol) was treated with a stoichiometric amount of CS₂ (0.07 g, 0.06 mL, $\rho = 1.26$ g/mL; 0.93 mmol), and the mixture was stirred in dry THF (30 mL) at room temperature for 4 h. During this time the solution changed color from yellow-brown to dark red. The solvent was evaporated under vacuum to dryness. The dark red oily residue was extracted with hexane (5 mL). The resulting solution was filtered and evaporated to dryness. The deep red oil was dissolved in hexane (5 mL) and kept at 5 °C for 10 h. A microcrystalline dark purple-red solid was obtained. The solid was filtered off to give 82%, 85%, and 80% yield for **20**, **21**, and **22**, respectively.

Complex 20. IR (Nujol): ν (cm⁻¹) 2098 (C=N), 1100 (C=S), 630 (C-S). ¹H NMR (500 MHz, C₆D₆): δ 0.10 (s, 18 H, SiMe₃), 0.93 (t, ${}^{3}J_{\text{HH}} = 5.3$ Hz, 3 H, $-CH_3$), 1.12, 1.42 (m, 2 H, $-CH_2$ – ^C*H*²-), 4.40 (m, 2 H, CN-C*H*2), 4.63, 4.82, 5.20, 5.48 (2H, each a complex signal, $C_5H_4\sinh(6.90-7.70)$ (m, C_6H_5). ¹³C{¹H} NMR (125 MHz, C₆D₆): δ 0.2 (SiMe₃), 13.6 (-CH₃), 20.4, 25.5- $(-CH_2-CH_2), 47.6 (-CN-CH_2-), 34.0 (d, ¹J_{CP} = 28 Hz,$ -*C*H2-*C*H2-Ph), 92.6 (C1, *^C*5H4SiMe3), 92.3, 94.0, 96.0, 99.9 $(C²⁻⁵$, exact assignment not possible, $C_5H_4SiMe_3$), 126.0-134.0 (*C*₆H₅), 140.0 (d, ¹J_{CP} = 35.0 Hz, C_{ipso} *C*₆H₅), 185.5 (*C*=N), 260.3 (d, ¹*J*CP) 45.5 Hz, *^C*S2). 31P{1H} NMR (202 MHz, C6D6): *^δ* 40.3 (s, *P*(CH₂Ph)Ph₂). Anal. Calcd for C₃₄H₄₅NNbPS₂Si₂: C, 60.06; H, 5.97; N, 1.84. Found: C, 60.11, 33.35; H, 6.11, 3.21; N, 1.72.

Complex 21. IR (Nujol): ν (cm⁻¹) 2050 (C=N), 1089 (C=S), 625 (C-S). 1H NMR (500 MHz, C6D6): *^δ* 0.06 (s, 18 H, Si*Me*3), 0.90–1.60 (m, 10 H, C_6H_{11}), 3.39 (q, ${}^3J_{HH} = 5.0$ Hz, 1 H, H₁ of C6*H*11), 4.79, 4.91, 5.27, 5.29 (2H, each a complex signal, $C_5H_4\text{SiMe}_3$), 7.00 (d, ${}^3J_{\text{HH}} = 7.0$ Hz, 4 H, H_{ortho} of C_6H_5), 7.77 (t, ${}^3J_{\text{HH}} = 7.4$ Hz, 4 H, H_{meta} of C_6H_5), 7.93 (t, ${}^3J_{\text{HH}} = 7.5$ Hz, 2 H, H_{para} of C₆H₅). ¹³C{¹H} NMR (125 MHz, C₆D₆): *δ* 0.4 (SiMe₃), 23.7, 23.9, 32.8 (C_6H_{11}), 58.5 (C_1 of C_6H_{11}), 92.6 (C_1^1 , $C_5H_4SiMe_3$), 95.9, 100.9, 101.9, 103.7 (C^{2-5} , exact assignment not possible, $C_5H_4\text{SiMe}_3$), 125.6, 128.3, 129.2 (C_6H_5), 135.0 (d, ¹ J_{CP} = 33.0 Hz, C_{ipso} of C_6H_5), 198.2 ($C \equiv N$), 261.5 (d, ¹ J_{CP} = 45.5 Hz, CS_2). ³¹P{¹H} NMR (202 MHz, C₆D₆): *δ* 27.2 (s, *PPh*₂). Anal. Calcd for $C_{36}H_{47}NNbPS_2Si_2$: C, 58.59; H, 6.42; N, 1.90. Found: C, 58.60; H, 6.45; N, 1.92.

Complex 22. IR (Nujol): *ν* (cm⁻¹) 2042 (C=N), 1100 (C=S), 630 (C-S). ¹H NMR (500 MHz, C₆D₆): δ -0.03 (s, 18 H, SiMe₃), 2.19 (s, 6 H, C*H*³ of Xylyl), 4.82, 5.09, 5.19, 5.38 (2H, each a complex signal, C₅H₄SiMe₃), 6.70 (s, 3 H, H_{arom} of Xylyl), 6.99 (t, ${}^{3}J_{\text{HH}} = 7.2$ Hz, 2 H, H_{para} of C₆H₅), 7.05 (d, ³J_{HH} = 7.0 Hz, 4 H, H_{ortho} of C₆*H*₅), 7.75 (t, ³*J*_{HH} = 7.2 Hz, 4 H, H_{meta} of C₆*H*₅). ¹³C{¹H} NMR (125 MHz, C₆D₆): *δ* 0.8 (Si*Me*₃), 19.9 (*C*H₃ of Xylyl), 97.1, 101.4, 102.9, 105.2 (C^{2-5} , exact assignment not possible, *C*5H4SiMe3), 95.8 (C1, *C*5H4SiMe3), 127.7, 127.9, 129.7 (s, C_{para}, C_{meta}, and C_{ortho} of *C*₆H₅), 133.9, 135.4, 135.8 (s, C_{arom} of Xylyl), 141.2 (s, C₁ of Xylyl), 141.6 (d, ¹J_{CP} = 23 Hz, C_{ipso} of C_6H_5 , 214.3 (s, *C*=N), 262.6 (d, ¹J_{CP} = 46.5 Hz, *C*S₂). ³¹P{¹H} NMR (202 MHz, C₆D₆): δ 18.6 (s, *PPh₂*). Anal. Calcd for

 $C_{38}H_{45}NNbPS_2Si_2$: C, 60.06; H, 5.97; N, 1.84. Found: C, 60.17; H, 6.11; N, 1.89.

Preparation of $[Nb(\eta^5-C_5H_4\sin\theta_3)](k^2-S,S-SC(S)(PPh_2))]$ **(23).** A mixture of $[Nb(\eta^5-C_5H_4SiMe_3)_2(\kappa^1-S-SC(S)(PPh_2))(L)]$ [L = CNBun (**20**), CNCy (**21**), and CNXylyl (**22**)] (0.56 g, 0.82 mmol) and dry THF (20 mL) was stirred at room temperature for 15 days. During this time the solution changed color from dark red to dark green. The solvent was evaporated under vacuum to dryness. The dark green oily residue was extracted with hexane (5 mL). The solid was filtered off to give 90% yield of **23**.

Complex 23. IR (Nujol): *ν* (cm⁻¹) 1000 (*C*=*S*). ¹H NMR (500 MHz, C6D6): *δ* 0.23 (s, 18 H, Si*Me*3), 4.94, 5.09 (m, 4 H each a complex signal, C₅*H*₄SiMe₃); 6.55 (t, ³*J*_{HH} = 7.2 Hz, 2 H, C₆*H*₅), 6.80 (d, ${}^{3}J_{\text{HH}} = 7.1$ Hz, 4 H, C₆H₅), 7.53 (t, ${}^{3}J_{\text{HH}} = 7.1$ Hz, 4 H, C_6H_5). ¹³C{¹H} NMR (125 MHz, C_6D_6): δ 0.4 (SiMe₃), 105.9 $(C¹, C₅H₄SiMe₃),$ 97.8, 105.3 ($C²⁻³$, exact assignment not possible, $C_5H_4\text{SiMe}_3$); 124.3, 125.7, 129.7 (C_6H_5), 141.8 (d, ¹ $J_{CP} = 23.00$ Hz, C_6H_5), 244.0 (d, ¹J_{CP} = 20.00 Hz, CS_2). ³¹P NMR (C_6D_6): δ 2.03 (*PPh*₂). ³¹P{¹H} NMR (202 MHz, C₆D₆): δ 2.03 (q, ³J_{PH} = 7.30 Hz, *PPh₂*). Anal. Calcd for C₃₀H₃₉NbPS₂Si₂: C, 55.97; H, 6.11. Found: C, 56.00; H, 5.93.

X-ray Crystallographic Structure Determination of 11 and 12. Single crystals of a red block of **11** and red prismatic crystals of **12** were placed in a NONIUS-MACH3 diffractometer equipped with graphite-monochromated Mo K α radiation ($\lambda = 0.71073$ Å). The crystal data, data collection, structural solution, and refinement parameters for both compounds are given in Table 2. Intensity data were collected using an *ω*/2*θ* scan technique. Examination of two standard reflections, monitored after 60 min, showed no sign of crystal deterioration. Data were corrected for Lorentz and polarization effects, and semiempirical absorption correction (psi-scans) was made.²⁴ The structures were solved by direct methods using the SIR92 computer program,²⁵ completed by subsequent difference Fourier syntheses, and refined by full matrix least-squares procedures (SHELXL97)²⁶ on F^2 . All non-hydrogen atoms were refined with anisotropic thermal parameters. The hydrogen atoms were placed using a "riding model" and included in the refinement at calculated positions. Compound **11** exhibited a rotational disorder of the SiMe₃ groups with a 50:50 occupancy ratio. Furthermore the cyclohexylisocyanide ligand appeared disordered over two distinct sites in 50:50 ratio.

The single crystals obtained for compound **19** diffracted particularly poorly and were of rather poor quality. For this reason only a rough model of the structure could be obtained. Crystal data: monoclinic, $P2_1/n$, $a = 21.397(2)$ Å, $b = 11.022(2)$ Å, $c =$ 19.600(3) Å, $\beta = 107.19(1)$ °; $V = 4416(1)$, $Z = 4$.

Acknowledgment. We gratefully acknowledge financial support from the Dirección General de Investigación Científica Spain (MEC Grant. No. BQU2002-04638-CO2-02) and the Junta de Comunidades de Castilla-La Mancha (Grant Nos. PAC-02-003, GC-02-010, PBI05-23, and PBI-05-029).

Supporting Information Available: Detailed X-ray crystallographic data of atomic positional parameters, bond distances and angles, and anisotropic thermal parameters for complexes **11** and **12**. Tables of X-ray crystallographic data for complexes **11** and **12**. This material is available free of charge via the Internet at http://pubs.acs.org.

OM060283P

⁽²⁴⁾ North, A. C. T.; Phillips D. C.; Mathews, F. S. *Acta Crystallogr. Sect. A* **1968**, *24*, 351.

⁽²⁵⁾ Altomare, A.; Cascarano, G.; Giacovazzo C.; Guagliardi, A. *J. Appl. Crystallogr*. **1993**, *26*, 343.

⁽²⁶⁾ Sheldrick, G. M. *SHELXL97*, Programs for the Refinement of Crystal Structures from the Diffraction Data; University of Göttingen: Göttingen, Germany, 1997.