## **A PtIII2Si2 Four-Membered Cycle and a Dinuclear Platinum Complex Bridged by a Cyclodisiloxane Ring**

Shigeru Shimada,\*,† Yong-Hua Li,† Maddali L. N. Rao,†,‡ and Masato Tanaka\*,§

*National Institute of Ad*V*anced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan, and Chemical Resources Laboratory, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama 226-8503, Japan*

*Recei*V*ed May 10, 2006*

*Summary: Thermolysis of an equilibrium mixture of* {*1,2-C6H4-*  $(SiMe<sub>2</sub>)(SiH<sub>2</sub>)$ }*Pt(dmpe)* (3; *dmpe* = 1,2-bis(*dimethylphosphino*)ethane) and its dimer 4 afforded a novel dinuclear complex *consisting of a Pt2Si2 four-membered cycle with formal PtIII centers as well as a small amount of an unexpected dinuclear PtII complex bridged by a cyclodisiloxane ring.*

The chemistry of silyl and silylene transition-metal complexes has rapidly grown during the last two decades, and a number of novel structures have been elucidated.1 Hydrosilanes are the most widely used silyl precursors for these complexes. The reactions of dihydrosilanes ( $H_2SiR_2$ ,  $R =$  organic groups, etc.) and trihydrosilanes  $(H_3SiR)$  with transition-metal complexes often generate a more diverse range of products than those of monohydrosilanes (HSiR<sub>3</sub>) because dihydro- and trihydrosilanes have more than one reactive Si-H bond and/or are less sterically hindered than monohydrosilanes; for example, dihydro- and trihydrosilanes can easily form multinuclear complexes.1,2

We have been studying the reaction of chelating hydrosilanes such as  $1,2$ -bis(silyl)benzenes<sup>3</sup> and bis(2-silylphenyl)silane,<sup>4</sup> which have dihydrosilyl and/or trihydrosilyl groups, with group



10 transition-metal complexes. The chelating effects in addition to the characteristics of dihydro- and trihydrosilanes mentioned above make the chemistry of these hydrosilanes very unique. The reaction of  $1,2-C_6H_4(SiH_3)_2$  with Pt(PEt<sub>3</sub>)<sub>3</sub> gives the expected bis(silyl)platinum(II) complex **1**, while complex **1** easily dimerizes with hydrogen elimination to form the mixedvalent  $Pt^{II}Pt^{IV}$  complex 2 (Scheme 1).<sup>5</sup> On the other hand, the similar bis(silyl)platinum(II) complex 3, derived from 1,2-C<sub>6</sub>H<sub>4</sub>- $(SiMe<sub>2</sub>H)(SiH<sub>3</sub>)$  and  $Pt(dmpe)(PEt<sub>3</sub>)<sub>2</sub>$ , has proved to be in equilibrium with another type of dimer **4** (Scheme 2).6 During the formation of complex **2**, several transient species were observed by NMR spectroscopy, although their structures could not be identified. We thought that a complex similar to complex **4** could be a possible intermediate for the formation of complex **2** from **1** and, therefore, thermolysis of an equilibrium mixture of complexes **3** and **4** was examined. In this paper, we report two unexpected dinuclear complexes formed from a mixture of **3** and **4**.

Monitoring the thermolysis of an equilibrium mixture of complexes **3** and **4** at 80 °C or higher by 31P NMR spectroscopy

<sup>\*</sup> To whom correspondence should be addressed. Fax: +81-29-861- 4511. Tel: +81-29-861-6257. E-mail: s-shimada@aist.go.jp (S.S.); m.tanaka@res.titech.ac.jp (M.T.).

<sup>†</sup> National Institute of Advanced Industrial Science and Technology (AIST).

<sup>‡</sup> Present address: Department of Chemistry, Indian Institute of Technology, Kanpur, Kanpur 208016, India. § Tokyo Institute of Technology.

<sup>(1)</sup> For recent reviews: (a) Eisen, M. S. In *The Chemistry of Organic Silicon Compounds*; Rappoport, Z., Apeloig, Y., Eds.; Wiley: New York, 1998; Vol. 2, Part 3, Chapter 35. (b) Ogino, H.; Tobita, H. *Ad*V*. Organomet. Chem.* **<sup>1998</sup>**, *<sup>42</sup>*, 223-290. (c) Corey, J. Y.; Braddock-Wilking, J. *Chem. Re*V*.* **<sup>1999</sup>**, *<sup>99</sup>*, 175-292.

<sup>(2)</sup> Examples: (a) Hoyano, J. K.; Elder, M.; Graham, W. A. G. *J. Am. Chem. Soc.* **<sup>1969</sup>**, *<sup>91</sup>*, 4568-4569. (b) Elder, M. *Inorg. Chem.* **<sup>1970</sup>**, *<sup>9</sup>*, <sup>762</sup>-767. (c) Bennett, M. J.; Simpson, K. A. *J. Am. Chem. Soc.* **<sup>1972</sup>**, *<sup>93</sup>*, <sup>7156</sup>-7160. (d) Tobita, H.; Kawano, Y.; Shimoi, M.; Ogino, H. *Chem. Lett.* **<sup>1987</sup>**, 2247-2250. (e) Wang, W. D.; Hommeltoft, S. I.; Eisenberg, R. *Organometallics* **<sup>1988</sup>**, *<sup>7</sup>*, 2417-2419. (f) Campion, B. K.; Heyn, R. H.; Tilley, T. D. *Organometallics* **<sup>1992</sup>**, *<sup>11</sup>*, 3918-3920. (g) Suzuki, H.; Takao, T.; Tanaka, M.; Morooka, Y. *J. Chem. Soc., Chem. Commun.* **<sup>1992</sup>**, 476- 478. (h) Osakada, K.; Tanabe, M.; Tanase, T. *Angew. Chem., Int. Ed.* **2000**, *<sup>39</sup>*, 4053-4055.

<sup>(3) (</sup>a) Shimada, S.; Tanaka, M.; Shiro, M. *Angew. Chem., Int. Ed. Engl.* **<sup>1996</sup>**, *<sup>35</sup>*, 1856-1858. (b) Shimada, S.; Rao, M. L. N.; Tanaka, M. *Organometallics* **<sup>1999</sup>**, *<sup>18</sup>*, 291-293. (c) Shimada, S.; Rao, M. L. N.; Hayashi, T.; Tanaka, M. *Angew. Chem., Int. Ed.* **<sup>2001</sup>**, *<sup>40</sup>*, 213-216. (d) Chen, W. Z.; Shimada, S.; Tanaka, M. *Science* **<sup>2002</sup>**, *<sup>295</sup>*, 308-310.

<sup>(4) (</sup>a) Chen, W. Z.; Shimada, S.; Hayashi, T.; Tanaka, M. *Chem. Lett.* **<sup>2001</sup>**, 1096-1097. (b) Chen, W. Z.; Shimada, S.; Tanaka, M.; Kobayashi, Y.; Saigo, K. *J. Am. Chem. Soc.* **<sup>2004</sup>**, *<sup>126</sup>*, 8072-8073.

<sup>(5)</sup> Shimada, S.; Tanaka, M.; Honda, K. *J. Am. Chem. Soc.* **1995**, *117*, <sup>8289</sup>-8290.

<sup>(6)</sup> Shimada, S.; Rao, M. L. N.; Li, Y. H.; Tanaka, M. *Organometallics* **<sup>2005</sup>**, *<sup>24</sup>*, 6029-6036.



showed the emergence of four new signals. The new signals have equal intensities, and each of the signals is accompanied by two sets of platinum satellites, suggesting the formation of a new dinuclear platinum complex with four phosphorus atoms in different environments. Another experiment on a larger scale afforded light orange crystals in 65% yield. Single-crystal X-ray analysis disclosed that the new complex is not the mixed-valent  $Pt^{II}Pt^{IV}$  complex 5, which is similar to complex 2, but complex **6**, which has an unprecedented structure (Scheme 3 and Figure 1).<sup>7</sup> Complex 6 has a puckered (PtSi)<sub>2</sub> four-membered cycle, each Pt center of which is bound to three silicon atoms and is formally  $Pt^{III}$ .<sup>8</sup> Complex 6 is the first example of a  $(PtSi)_2$  fourmembered cycle with formal  $Pt^{III}$  centers. We have reported that the formation of the tetrakis(silyl)platinum(IV) complex  ${1,2-C_6H_4(SiMe_2)(SiH_2)}_2Pt^{IV}$ (dmpe) is much slower than that of  $\{1,2-C_6H_4(SiH_2)\}\$ <sub>2</sub>Pt<sup>IV</sup>(PEt<sub>3</sub>)<sub>2</sub>, probably because of the steric repulsion between the methyl groups on the silicon and phosphorus atoms in the former complex.6 A similar steric repulsion in complex **5** is probably, at least in part, the reason for the selective formation of complex **6**.

There are more than 20 examples of  $(PtSi)_2$  four-membered cycles that have been structurally characterized by single-crystal



**Figure 1.** Molecular structure of complex **6** (50% probability ellipsoids). Hydrogen atoms bound to carbon atoms are omitted for clarity. Selected bond lengths  $(A)$  and angles (deg): Pt1-Pt2  $= 2.9947(2)$ , Pt1 $-Si1 = 2.3676(9)$ , Pt1 $-Si2 = 2.3757(10)$ , Pt1  $Si3 = 2.3486(9)$ , Pt2 $-Si1 = 2.3777(9)$ , Pt2 $-Si3 = 2.3370(9)$ , Pt2 $Si4 = 2.4095(9)$ , Pt1-P1 = 2.3353(9), Pt1-P2 = 2.3149(9), Pt2- $P3 = 2.3260(9)$ ,  $Pt2-P4 = 2.2733(9)$ ,  $Si1 \cdots Si3 = 3.0219(12)$ ,  $Si2 \cdot$  $\cdot$ Si3 = 3.2723(13); Pt1-Si1-Pt2 = 78.26(2), Pt1-Si3-Pt2 =  $79.45(2)$ , Si1-Pt1-Si2 = 82.28(3), Si1-Pt1-Si3 = 79.70(3), Si1- $Pt1-P1 = 171.29(3), Si1-Pt1-P2 = 92.40(3), Si1-Pt2-Si3 =$ 79.72(3), Si1-Pt2-Si4 = 145.69(3), Si1-Pt2-P3 = 97.59(3),  $Si1-Pt2-P4 = 108.19(3), Si2-Pt1-Si3 = 87.68(3), Si2-Pt1 P1 = 106.42(3),$   $Si2-Pt1-P2 = 111.51(3),$   $Si3-Pt1-P1 =$ 99.97(3), Si3-Pt1-P2 = 158.24(3), Si3-Pt2-Si4 = 81.93(3),  $Si3-Pt2-P3 = 175.80(3), Si3-Pt2-P4 = 95.98(3), Si4-Pt2 P3 = 98.80(3), Si4-Pt2-P4 = 102.34(3).$ 

 $X$ -ray analysis.<sup>5-6,9,10</sup> These complexes can be classified into two categories by the diagonal Si-Si and Pt-Pt distances. Complexes belonging to one category (category A) have short diagonal Si-Si distances (2.55-2.88 Å) and long diagonal Pt-Pt distances  $(3.66-4.05 \text{ Å})$ . On the other hand, complexes belonging to the other category (category B) have long diagonal Si-Si distances  $(3.84-3.97 \text{ Å})$  and short diagonal Pt-Pt distances (2.68-2.74 Å). However, complex **<sup>6</sup>** belongs to neither of the two categories; diagonal  $Si-Si$  (3.0219(12) Å) and Pt-Pt (2.9947(2) Å) distances in **6** are between those of categories A and B.

The structure of complex **6** is somewhat similar to that of dinuclear nickel complexes 7 having formal Ni<sup>III</sup> centers, which were obtained from the reaction of  $1,2-C_6H_4(SiH_3)_2$  and  $Ni(dmpe)_2$  or  $Ni(depe)(PEt_3)_2$  (depe = 1,2-bis(diethylphosphino)ethane).<sup>3c</sup> In complexes 7, two  $[1,2-C<sub>6</sub>H<sub>4</sub>(SiH<sub>2</sub>)(\mu-SiH)]$  ligands



are symmetrically bound to the nickel centers and the structures are  $C_2$ -symmetric. On the other hand, in complex 6 two  $[1,2 C_6H_4(SiMe_2)(\mu$ -SiH)] ligands are unsymmetrically bound to the platinum centers. In complexes 7, the  $Si<sup>1</sup> \cdots Si<sup>4</sup>$  and  $Si<sup>2</sup> \cdots Si<sup>3</sup>$ distances are short  $(2.685(1)-2.7049(9)$  Å) and are comparable to the longest  $Si-Si$  single bond,<sup>11</sup> while no short  $Si\cdot\cdot\cdot Si$  contact is found in  $6(Si2-Si3 = 3.2723(13)$  Å). As previously reported,

(9) (a) Auburn, M.; Ciriano, M.; Howard, J. A. K.; Murray, M.; Pugh, N. J.; Spencer, J. L.; Stone, F. G. A.; Woodward, P. *J. Chem. Soc., Dalton Trans.* **<sup>1980</sup>**, 659-666. (b) Zarate, E. A.; Tessier-Youngs, C. A.; Youngs, W. J. *J. Am. Chem. Soc.* **<sup>1988</sup>**, *<sup>110</sup>*, 4068-4070. (c) Zarate, E. A.; Tessier-Youngs, C. A.; Youngs, W. J. *J. Chem. Soc., Chem. Commun.* **<sup>1989</sup>**, 577- 578. (d) Heyn, R. H.; Tilley, T. D. *J. Am. Chem. Soc.* **<sup>1992</sup>**, *<sup>114</sup>*, 1917- 1919. (e) Levchinsky, Y.; Rath, N. P.; Braddock-Wilking, J. *Organometallics* **<sup>1999</sup>**, *<sup>18</sup>*, 2583-2586. (f) Sanow, L. M.; Chai, M. H.; McConnville, D. B.; Galat, K. J.; Simons, R. S.; Rinaldi, P. L.; Youngs, W. J.; Tessier, C. A. *Organometallics* **<sup>2000</sup>**, *<sup>19</sup>*, 192-205. (g) Braddock-Wilking, J.; Levchinsky, Y.; Rath, N. P. *Organometallics* **<sup>2000</sup>**, *<sup>19</sup>*, 5500-5510. (h) Braddock-Wilking, J.; Levchinsky, Y.; Rath, N. P. *Organometallics* **<sup>2001</sup>**, *<sup>20</sup>*, 474- 480. (i) Braddock-Wilking, J.; Levchinsky, Y.; Rath, N. P. *Inorg. Chim. Acta* **<sup>2002</sup>**, *<sup>330</sup>*, 82-88. (j) Tanabe, M.; Osakada, K. *Inorg. Chim. Acta* **<sup>2003</sup>**, *<sup>350</sup>*, 201-208. (k) Braddock-Wilking, J.; Corey, J. Y.; Trankler, K. A.; Dill, K. M.; French, L. M.; Rath, N. P. *Organometallics* **<sup>2004</sup>**, *<sup>23</sup>*, 4576- 4584. (l) Yamada, T.; Tanabe, M.; Osakada, K.; Kim, Y. J. *Organometallics* **<sup>2004</sup>**, *<sup>23</sup>*, 4771-4777. (10) CSD, version 5.27, November 2005.

(11) Wieberg, N.; Schuster, H.; Simon, A.; Peters, K. *Angew. Chem., Int. Ed. Engl.* **1986**, *25*, 79.

<sup>(7)</sup> Crystal data for  $\mathbf{6} \cdot \mathbf{C}_6H_6$ :  $C_{34}H_{60}P_4Pt_2Si_4$ ,  $M_r = 1095.27$ , monoclinic, <br>(ce group  $P_2/c$  (No. 14),  $a = 14.9570(9)$  Å,  $b = 15.2972(10)$  Å,  $c =$ space group *P*2<sub>1</sub>/*c* (No. 14),  $a = 14.9570(9)$  Å,  $b = 15.2972(10)$  Å,  $c = 18.6367(12)$  Å  $\beta = 96.8210(10)$ °  $V = 4233.9(5)$  Å<sup>3</sup>  $Z = 4$ ,  $u = 6.861$  $18.6367(12)$  Å,  $\beta = 96.8210(10)^\circ$ ,  $V = 4233.9(5)$  Å<sup>3</sup>,  $Z = 4$ ,  $\mu = 6.861$  $mm^{-1}$ ,  $T = 153(2)$  K, R1 = 0.0208 for 8381 observed reflections with *I* > 2 $\sigma$ (*I*) from 9353 unique reflections, wR2 = 0.0507, GOF = 1.027.

<sup>(8)</sup> One of the reviewers suggested that the electron counting can also be done by considering the bridging *µ*-SiHAr group as a neutral 2e donor and the SiMe<sub>2</sub>Ar group as an anionic 2e donor. This would give formal  $Pt<sup>I</sup>$ centers.



**Figure 2.** Molecular structure of complex **9** (50% probability ellipsoids). Hydrogen atoms are omitted for clarity. Selected bond lengths (Å) and angles (deg): Pt1-Si1 = 2.3364(18), Pt1-Si2 = 2.3772(15), Pt1-P1 = 2.314(2), Pt1-P2 = 2.3103(16), Si1-Si1'  $= 2.433(2),$  Si1-O1 = 1.684(4), Si1-O1' = 1.710(4); Si1-Pt1- $Si2 = 78.22(6)$ ,  $Si1-Pt1-P1 = 173.25(4)$ ,  $Si1-Pt1-P2 = 98.39 (6)$ , Si2-Pt1-P1 = 97.50 $(6)$ , Si2-Pt1-P2 = 174.39 $(5)$ , P1-Pt1- $P2 = 85.44(6),$   $Si1-O1-Si1' = 91.6(2),$   $O1-Si1-O1' = 88.4(2).$ 

the reaction of  $Ni(dmpe)_2$  with  $1,2-C_6H_4(SiMe_2H)(SiH_3)$  did not afford a complex similar to **6** or **7** but gave complex **8** having Si-Si bonds, which may be produced through an intermediate similar to  $7^{3c}$  On the other hand, no  $Si-Si$  bond formation has<br>been observed in the reaction of 1.2-C<sub>c</sub>H<sub>*i*</sub>(SiMe<sub>2</sub>H<sub>)</sub>(SiH<sub>2</sub>) with been observed in the reaction of  $1,2-C_6H_4(SiMe<sub>2</sub>H)(SiH<sub>3</sub>)$  with platinum(0) phosphine complexes.

During the thermolysis of an equilibrium mixture of complexes **3** and **4**, we occasionally observed the formation of a small quantity of a solid precipitate, whose structure was confirmed by single-crystal X-ray analysis to be the dinuclear  $Pt<sup>II</sup>$  complex 9 having a cyclodisiloxane core (Figure 2).<sup>12,13</sup> The Si $\cdots$ Si distance (2.433(2) Å) of the cyclodisiloxane ring in **<sup>9</sup>** is similar to observed distances in related examples (2.31- 2.47 Å).<sup>10</sup>

(12) Single crystals of **9** (∼1 mg) were obtained when the thermolysis was conducted in a NMR tube. Attempts to obtain compound **9** in large quantities under various conditions have not been successful so far. Therefore, this compound was characterized only by X-ray analysis.

(13) Crystal data for **9**: C<sub>28</sub>H<sub>52</sub>O<sub>2</sub>P<sub>4</sub>Pt<sub>2</sub>Si<sub>4</sub>, *M<sub>r</sub>* = 1047.13, triclinic, space group *P*1 (No. 2), *a* = 8.8853(13) Å, *b* = 10.2640(9) Å, *c* = 11.3562(13) group *P*1 (No. 2),  $a = 8.8853(13)$  Å,  $b = 10.2640(9)$  Å,  $c = 11.3562(13)$ <br> $\stackrel{\text{d}}{\triangle}$   $\alpha = 98.945(10)$ <sup>o</sup>  $\beta = 109.916(8)$ <sup>o</sup>  $\nu = 97.737(10)$ <sup>o</sup>  $V = 942.06(19)$ Å,  $\alpha = 98.945(10)^\circ$ ,  $\beta = 109.916(8)^\circ$ ,  $\gamma = 97.737(10)^\circ$ ,  $V = 942.06(19)$ <br> $\AA^3$   $Z = 1$ ,  $\mu = 7.708$  mm<sup>-1</sup>,  $T = 223(2)$  K, R1 = 0.0273 for 3097 observed  $\AA^3$ ,  $Z = 1$ ,  $\mu = 7.708$  mm<sup>-1</sup>,  $T = 223(2)$  K, R1 = 0.0273 for 3097 observed reflections with  $I > 2\sigma(I)$  from 3505 unique reflections, wR2 = 0.0631,  $GOF = 1.001.$ 

Isolated examples of cyclodisiloxanes are limited, and compound **9** is the first example of a transition-metal-bound cyclodisiloxane. The cyclodisiloxanes so far reported have been prepared by the oxidation of disilenes<sup>14</sup> or oxadisilirane<sup>15</sup> or dimerization of unstable silanone intermediates.<sup>16</sup> Therefore, the mechanism of the formation of compound **9** from the platinumsubstituted dihydrosilane **3** or its dimer **4** is quite interesting. Attempts to determine the oxygen source  $(O_2, H_2O, ...)$  and to clarify the mechanism of the formation of compound **9** are underway.

**Acknowledgment.** This work was supported by a Grantin-Aid for Scientific Research (No. 15350037) from the Ministry of Education, Culture, Sports, Science and Technology of Japan and the Japan Science and Technology Corporation (JST) through the CREST program. M.L.N.R. thanks the JST for a postdoctoral fellowship.

**Supporting Information Available:** Text giving experimental details and spectroscopic data for complex **6** and a CIF file giving X-ray crystallographic data. This material is available free of charge via the Internet at http:/pubs.acs.org.

## OM0604019

(15) (a) Ando, W.; Kako, M.; Akasaka, T.; Kabe, Y. *Tetrahedron Lett.* **<sup>1990</sup>**, *<sup>31</sup>*, 4177-4180. (b) Mangette, J. E.; Powell, D. R.; Calabrese, J. C.; West, R. *Organometallics* **<sup>1995</sup>**, *<sup>14</sup>*, 4064-4073. (c) Willms, S.; Grybat, A.; Saak, W.; Weidenbruch, M.; Marsmann, H. *Z. Anorg. Allg. Chem.* **2000**, *<sup>626</sup>*, 1148-1152.

(16) (a) Tamas, J.; Gomory, A.; Besenyei, I.; Nefedov, O. M.; Khabashesku, V. N.; Kerzina, Z. A.; Kagramanov, N. D.; Maltsev, A. K. *J. Organomet. Chem.* 1988, 349, 37–41. (b) Belzner, J.; Ihmels, H.; Kneisel, *Organomet. Chem.* **<sup>1988</sup>**, *<sup>349</sup>*, 37-41. (b) Belzner, J.; Ihmels, H.; Kneisel, B. O.; HerbstIrmer, R. *Chem. Ber.* **<sup>1996</sup>**, *<sup>129</sup>*, 125-130. (c) Iwamoto, T.; Masuda, H.; Ishida, S.; Kabuto, C.; Kira, M. *J. Am. Chem. Soc.* **2003**, *125*, <sup>9300</sup>-9301. (d) Mickoleit, M.; Schmohl, K.; Michalik, M.; Oehme, H. *Eur. J. Inorg. Chem.* **<sup>2004</sup>**, 1538-1544.

<sup>(14) (</sup>a) Fink, M. J.; DeYoung, D. J.; West, R. *J. Am. Chem. Soc.* **1983**, *<sup>105</sup>*, 1070-1071. (b) Fink, M. J.; Haller, K. J.; West, R.; Michl, J. *J. Am. Chem. Soc.* **<sup>1984</sup>**, *<sup>106</sup>*, 822-823. (c) Michalczyk, M. J.; Fink, M. J.; Haller, K. J.; West, R.; Michl, J. *Organometallics* **<sup>1986</sup>**, *<sup>5</sup>*, 531-538. (d) Yokelson, H. B.; Millevolte, A. J.; Adams, B. R.; West, R. *J. Am. Chem. Soc.* **1987**, *109*, 4116-4118. (e) Millevolte, A. J.; Powell, D. R.; Johnson, S. G.; West, R. *Organometallics* **1992**, *11*, 1091-1095. (f) Sohn, H. L.; Tan, R. P.; R. *Organometallics* **<sup>1992</sup>**, *<sup>11</sup>*, 1091-1095. (f) Sohn, H. L.; Tan, R. P.; Powell, D. R.; West, R. *Organometallics* **<sup>1994</sup>**, *<sup>13</sup>*, 1390-1394. (g) Suzuki, H.; Tokitoh, N.; Okazaki, R.; Harada, J.; Ogawa, K.; Tomoda, S.; Goto, M. *Organometallics* **1995**, *14*, 1016. (h) Weidenbruch, M.; Pellmann, A.; Pohl, S.; Saak, W.; Marsmann, H. *Chem. Ber.* **1995**, *128*, 935. (i) Wiberg, N.; Niedermayer, W.; Polborn, K.; Mayer, P. *Chem. Eur. J.* **<sup>2002</sup>**, *<sup>8</sup>*, 2730- 2739.