

Volume 25, Number 18, August 28, 2006

© Copyright 2006 American Chemical Society

Communications

Tin Trihydride as a Ligand in Osmium Complexes

Gabriele Albertin,*,[†] Stefano Antoniutti,[†] Alessia Bacchi,[‡] Marco Bortoluzzi,[†] Giancarlo Pelizzi,[‡] and Gianluigi Zanardo[†]

Dipartimento di Chimica, Università Ca' Foscari di Venezia, Dorsoduro 2137, 30123 Venezia, Italy, and Dipartimento di Chimica Generale ed Inorganica, Chimica Analitica, Chimica Fisica, Università di Parma, Parco Area delle Scienze 17/a, 43100 Parma, Italy

Received July 18, 2006

Summary: Tin trihydride $Os(SnH_3)(Tp)L(PPh_3)$ [$L = P(OMe)_3$, $P(OEt)_3$] complexes were prepared by allowing chloro $OsCl-(Tp)L(PPh_3)$ complexes to react first with $SnCl_2$ and then with $NaBH_4$ in ethanol. The complexes were characterized spectroscopically and by the X-ray crystal structure determination of the $Os(SnH_3)(Tp)\{P(OMe)_3\}(PPh_3)$ derivative. Reaction of tin trihydride complexes with CO_2 led to formate $Os[SnH\{OC(H)=O\}_2](Tp)L(PPh_3)$ derivatives.

Organotin compounds have been widely used as ligands in transition metal chemistry^{1,2} in order to modify the properties of complexes and often to improve their catalytic activity.³ However, despite extensive studies, no example of a stable complex⁴ containing the simplest of the tin ligands, trihydride SnH₃, has ever been reported. This is somewhat surprising, as

* Corresponding author. Fax: +39 041 234 8917. E-mail: albertin@ unive.it.

(1) Holt, M. S.; Wilson, W. L.; Nelson, J. H. Chem. Rev. 1989, 89, 11-49.

(3) (a) Hermans, S.; Johnson, B. F. G. *Chem. Commun.* **2000**, 1955–1956. (b) Adams, R. D.; Captain, B.; Johansson, M.; Smith, J. L., Jr. *J. Am. Chem. Soc.* **2005**, *127*, 488–489.

(4) A very unstable compound, formulated as $Mn(SnH_3)(CO)_5$, was obtained from the reaction of $Na[Mn(CO)_5]$ with SnH_3C1 at -45 °C. However, the ¹¹⁹Sn and ¹¹⁷Sn satellites in the proton signals attributed to the SnH₃ group in the ¹H NMR spectra were not observed. See: Foster, S. P.; Mackay, K. M. *J. Organomet. Chem.* **1983**, 247, 21–26.

the chemistry of the EH₃ ligands is very well known⁵ for carbon, the [M]-CH₃ complexes of which lie at the heart of organometallic chemistry. Some examples of [M]-SiH₃ and [M]-GeH₃ complexes have also been reported for silicon and germanium,⁶ but only theoretical studies on model [M]-SnH₃ complexes are described for tin.⁷

In this communication we report the synthesis of the first transition metal complexes containing tin trihydride as a ligand, together with some reactivity studies that highlight the unprecedented insertion of CO_2 into the coordinate⁸ Sn-H bond.

The reaction of chloro $OsCl(Tp)L(PPh_3)$ complexes [Tp = tris(pyrazolyl)borate; L = P(OMe)_3, P(OEt)_3] with SnCl₂ gives trichlorostannyl $Os(SnCl_3)(Tp)L(PPh_3)$ derivatives (1), in about 80% yield. Treatment of 1 with NaBH₄ in ethanol gives the trihydridestannyl $Os(SnH_3)(Tp)L(PPh_3)$ complexes (2) as white microcrystals in 70% yield (Scheme 1).

[†] Università Ca' Foscari, Venezia.

[‡] Università degli Studi, Parma.

^{(2) (}a) Clark, A. M.; Rickard, C. E. F.; Roper, W. R.; Woodman, T. J.; Wright, L. J. *Organometallics* **2000**, *19*, 1766–1774. (b) Esteruelas, M. A.; Lledos, A.; Maseras, F.; Olivan, M.; Oñate, E.; Tajada, M. A.; Tomas, J. *Organometallics* **2003**, *22*, 2087–2096, and references therein. (c) Neale, N. R.; Tilley, T. D. J. Am. Chem. Soc. **2005**, *127*, 14745–14755.

^{(5) (}a) Collman, J. P.; Hegedus, L. S.; Norton, J. R.; Finke, R. G. *Principles and Applications of Organotransition Metal Chemistry*, 2nd ed.; University Science Books: Mill Valley, CA, 1987. (b) Crabtree, R. H. *The Organometallic Chemistry of the Transition Metals*, 3rd ed.; Wiley: New York, 2001.

^{(6) (}a) Castillo, I.; Tilley, T. D. Organometallics 2000, 19, 4733-4739.
(b) Woo, H.-G.; Heyn, R. H.; Tilley, T. D. J. Am. Chem. Soc. 1992, 114, 5698-5707. (c) Hao, L.; Lebuis, A.-M.; Harrod, F. J.; Samuel, E. Chem. Commun. 1997, 2193-2194. (d) Audett, J. A.; Mackay, K. M. J. Chem. Soc., Dalton Trans. 1988, 2635-2643.

^{(7) (}a) Biswas, B.; Sugimoto, M.; Sakaki, S. Organometallics **1999**, *18*, 4015–4026. (b) Turki, M.; Daniel, C.; Zalis, S.; Vlcek, A., Jr.; van Slageren, J.; Stufkens, D. J. J. Am. Chem. Soc. **2001**, *123*, 11431–11440. (c) Matsubara, T.; Hirao, K. Organometallics **2002**, *21*, 4482–4489. (d) Bihlmeir, A.; Greene, T. M.; Himmel, H.-J. Organometallics **2004**, *23*, 2350–2361.

^{*a*} $L = P(OMe)_3$ (**a**), $P(OEt)_3$ (**b**).

The complexes were characterized spectroscopically (IR, ¹H, ³¹P, ¹¹⁹Sn NMR) and by X-ray crystal structure determination⁹ of Os(SnH₃)(Tp){P(OMe)₃}(PPh₃) (**2a**) (Figure 1). Compound

Figure 1. Perspective view of complex $Os(SnH_3)(Tp)\{P(OMe)_3\}$ -(PPh₃) (**2a**), with thermal ellipsoids drawn at the 50% probability level. Phenyl (at P1) and methoxy groups (at P2) have been omitted for clarity. Coordination geometry for the two independent molecules: Os-N2 = 2.147(5)/2.145(5), Os-N4 = 2.181(5)/2.160-(5), Os-N6 = 2.189(5)/2.183(5), Os-P1 = 2.315(1)/2.324(2), Os-P2 = 2.214(2)/2.212(2), Os-Sn = 2.6360(5)/2.6473(5) Å. Sn-H distances¹⁰ range between 1.73 and 1.90 Å.

2a crystallizes in the triclinic *P*1 space group, with two independent molecules in the asymmetric unit. The two Os- $(SnH_3)(Tp){P(OMe)_3}(PPh_3)$ molecules are very similar, and Figure 1 shows the structure and numbering scheme of one of them. Osmium coordination is octahedral, with the monodentate PPh₃, P(OMe)₃, and SnH₃ ligands arranged in *fac* geometry at the three sites left free by the tripodal tris(pyrazolyl)borate molecule. The complex is chiral, but both enantiomers are present in the centrosymmetric crystal. Os–Sn bond distances (2.6360(5), 2.6473(5) Å) fall in the range observed for the 29 examples of compounds containing a terminal Os–SnX₃ bond reported in the crystallographic literature (2.61–2.73 Å). The Sn–H bond distances¹⁰ range between 1.73 and 1.90 Å.

(9) *Crystal data*: C₃₀H₃₇BN₆O₃OsP₂Sn (**2a**), fw = 911.30, crystal dimensions 0.3 × 0.2 × 0.1 mm, triclinic, space group *P*I, *Z* = 4, *a* = 11.2586(8) Å, *b* = 15.005(1) Å, *c* = 21.336(2) Å, *a* = 81.162(1)°, β = 77.028(1)°, γ = 88.442(1)°, *V* = 3470.7(5) Å³, ρ = 1.744 Mg m⁻³, 14 118 unique reflections (*R*(int) = 0.0466), 10 201 observed (*I* > 2 σ (*I*)), 14 118 data, 826 parameters, 8 restraints, R1 = 0.0377, wR2 = 0.0920 (on *I* > 2 σ (*I*)), R1 = 0.0622, wR2 = 0.1040 on all data.

(10) Hydrogen atoms bonded to Sn were located on Fourier maps and constrained to have all similar Sn-H bond lengths and thermal parameters. Comparison of the three Os–N distances observed for tripodal ligand Tp suggests ranking the *trans* influence of PPh₃, P(OMe)₃, and SnH₃ molecules: the trihydridestannyl group appears to be the most effective in elongating the opposite Os–N bonds (Os–N = 2.183(5), 2.189(5) Å, respectively, for the two independent molecules), followed by P(OMe)₃ (2.181-(5), 2.160(5) Å) and PPh₃ (2.147(5), 2.145(5) Å).

The IR spectra (KBr) of trihydridestannyl **2** complexes show two absorptions between 1761 and 1718 cm⁻¹, attributed to the ν_{SnH} of the SnH₃ ligand. In the spectra of labeled Os(SnD₃)-(Tp){P(OEt)₃}(PPh₃) (**2b**₁), the two ν_{SnD} bands were observed at 1259 and 1238 cm⁻¹.

Diagnostic for the presence of tin trihydride as a ligand are both ¹H and ¹¹⁹Sn NMR spectra. In the proton spectra, a doublet of doublets, with the characteristic satellites due to coupling with ¹¹⁹Sn and ¹¹⁷Sn, was observed at 2.46 (**2a**) and 2.63 ppm (**2b**) and attributed to SnH₃ protons. The ¹¹⁹Sn NMR spectra appear as a quartet of doublets of doublets at -545.2 (**2a**) and -542.2 ppm (**2b**), due to coupling with the hydride and phosphorus nuclei, fitting the presence of the SnH₃ group.

Use of the NaBH₄ protocol to synthesize **2** is rare in organometallic tin chemistry,¹¹ which generally involves oxidative addition or nucleophilic substitution reactions to coordinate tin compounds to metal fragments.^{1,2} The nature of the ancillary ligands in stabilizing [Os]-SnH₃ complexes (**2**) also seems to be crucial, since both Tp and phosphite¹² ligands are required for the synthesis of stable tin trihydride derivatives.¹³

Tin trihydride **2** complexes react with CCl_4 sequentially to give tin dihydride [Os]-SnH₂Cl (**3**), hydride [Os]-SnHCl₂ (**4**), and trichloride [Os]-SnCl₃ (**1**) complexes (Scheme 2).

Both dihydride $Os(SnH_2Cl)(Tp){P(OMe)_3}(PPh_3)$ (**3a**) and monohydride $Os(SnHCl_2)(Tp){P(OMe)_3}(PPh_3)$ (**4a**) chlorostannyl derivatives were separated in pure form and characterized by standard methods. Diagnostic were the proton-coupled ¹¹⁹Sn NMR spectra, which appear as a triplet of doublets of doublets at -274.1 ppm for dihydride **3a** and as a doublet of doublets of doublets at -307.8 ppm for monohydride **4a**. Also of interest was the shift of the tin hydride signal in the proton spectra on going from complex **2** to **4**, which moved from 2.46 (**2a**) to 5.85 (**3a**) and reached 9.22 ppm in **4a**.

The reaction with CCl₄ is classic for transition metal hydrides¹⁴ and indicates the polyhydridic character of the SnH₃ group. Support for this hypothesis comes from the reaction with carbon dioxide, which quickly reacted with Os(SnH₃)(Tp)L-(PPh₃) to give tin formate Os[SnH{OC(H)=O}₂](Tp)L(PPh₃) derivatives (**5**), which were isolated as solids and characterized

⁽⁸⁾ Thermodynamic parameters for the formation of tributylformate Bu₃-SnO₂CH from the reaction of Bu₃SnH with CO₂ have been reported: Klingler, R. J.; Bloom, I.; Rathke, J. W. *Organometallics* **1985**, *4*, 1893–1894.

⁽¹¹⁾ Lappert, M. F.; McGeary, M. J.; Parish, R. V. J. Organomet. Chem. 1989, 373, 107–117.

⁽¹²⁾ The important role of phosphite ligands in the chemistry of classical and nonclassical transition metal hydrides has previously been highlighted; see: Albertin, G.; Antoniutti, S.; Bettiol, M.; Bordignon, E.; Busatto, F. *Organometallics* **1997**, *16*, 4959–4969. Albertin, G.; Antoniutti, S.; Bortoluzzi, M. *Inorg. Chem.* **2004**, *43*, 1328–1335, and references therein.

⁽¹³⁾ Related ruthenium $Ru(SnH_3)(Tp)L(PPh_3)$ [$L = P(OMe)_3$, $P(OEt)_3$] complexes have recently been prepared in our laboratory.

^{(14) (}a) Muetterties, E. L. *Transition Metal Hydrides*; Marcel Dekker: New York, 1971. (b) Dedieu, A. *Transition Metal Hydrides*; Wiley-VCH: New York, 1992.

(Scheme 3). The reaction proceeds with the insertion of two CO_2 molecules into two Sn-H bonds, to give the final tin hydridebis(formate) species 5.

^{*a*} [Os] = Os(Tp)L(PPh₃); L = P(OMe)₃ (**a**), P(OEt)₃ (**b**).

Insertion of CO₂ into the M–H bond of classical hydrides is well-known^{15,16} and studied as an important step of its functionalization reactions. Insertion into the tin hydride bond has been reported in only one case⁸ for a free Bu₃SnH compound, so that our reaction on the [Os]-SnH₃ group is the first example of insertion of CO₂ into the coordinate Sn–H bond.^{1,2,17}

Complexes **5** were isolated as white powders and characterized by spectroscopic methods. The IR spectra of bis(formate) Os[SnH{OC(H)=O}₂](Tp)L(PPh₃) complexes (**5**) show one strong band at 1676–1675 cm⁻¹ due to ν_{SnH} and two medium absorptions at 1662–1629 cm⁻¹ attributed^{15,16} to the $\nu_{OCOasym}$ of the two η^1 -formate O–C(H)=O groups. In the high-frequency region of ¹H NMR spectra, a multiplet appears at 8.99 (**5a**) and 9.60 ppm (**5b**), with the characteristic satellites of ¹¹⁹Sn and ¹¹⁷Sn attributed to SnH proton resonances. Two singlets at 8.21 and 7.81 (**5a**) and 8.14 and 8.01 ppm (**5b**) also appear in the spectra, which, in an HMQC experiment, were correlated with two singlets¹⁸ at 158.2 and 157.8 (**5a**) and 167.0 and 166.2 ppm (**5b**) of the ¹³C spectra and attributed to the resonance of the two =CH formate groups, respectively.^{15,16,19} The ¹¹⁹Sn NMR spectra appear as a doublet of doublets of doublets at -341.5 (**5a**) and -349.5 ppm (**5b**) due to coupling with phosphorus nuclei and the hydride of the SnH{OC(H)=O}₂ group, fitting the proposed formulation for the complexes.

The behavior of $[Os]SnH_3$ complexes toward CCl_4 and CO_2 highlights the hydridic nature of the SnH_3 group and leads us to regard our $Os(SnH_3)(Tp)L(PPh_3)$ species from two points of view, i.e., as either metal complexes containing SnH_3 as a ligand or tin polyhydride complexes stabilized by the $Os(Tp)L(PPh_3)$ fragment.

We are currently extending experimental work to prepare other tin trihydride complexes and study the influence of the stannyl group on the properties of the metal fragments.

Acknowledgment. The financial support of MIUR (Rome), PRIN 2004, is gratefully acknowledged. We thank Daniela Baldan for technical assistance.

Supporting Information Available: Experimental, analytical, and spectroscopic data for new compounds (PDF); crystallographic data for compound **2a** (CIF). This material is available free of charge via the Internet at http://pubs.acs.org.

OM0606441

^{(15) (}a) Yin, X.; Moss, J. R. *Coord. Chem. Rev.* **1999**, *181*, 27–59. (b) Jessop, P. G.; Hsiao, Y.; Ikariya, T.; Noyori, R. J. Am. Chem. Soc. **1996**, *119*, 344–355.

^{(16) (}a) Whittlesey, M. K.; Perutz, R. N.; Moore, M. H. Organometallics **1996**, 25, 5166–5169. (b) Field, L. D.; Lawrenz, E. T.; Shaw, W. J.; Turner,
P. Inorg. Chem. 2000, 39, 5632–5638, and references therein.

⁽¹⁷⁾ Davies, A. G. Organotin Chemistry; Wiley-VCH: Weinheim, Germany, 2004.

⁽¹⁸⁾ In the proton-coupled ¹³C NMR spectra of **5a** at 203 K, two doublets appear at 158.2 and 157.8 ppm, whose J_{CH} value of about 200 Hz is characteristic for a CH formyl resonance (see ref 16).

⁽¹⁹⁾ In transition metal complexes containing a formyl [M]- η^1 -OC(H)= O group, a CH resonance appears between 9.32 and 7.47 ppm in ¹H NMR spectra, and a carbonyl carbon resonance typically occurs between 184 and 170 ppm in ¹³C spectra (see ref 16b). These data strongly support the presence of η^1 -formate groups in our complexes **5**.