Hydride Transfer from Rhodium Complexes to Triethylborane

Daniel L. DuBois,*.^{†,§} Daniel M. Blake,[†] Alex Miedaner,[†] Calvin J. Curtis,[†] M. R. DuBois,[‡] James A. Franz,[§] and John C. Linehan[§]

National Renewable Energy Laboratory, 1617 Cole Boulevard, Golden, Colorado 80401-3393, Department of Chemistry, University of Colorado, Boulder, Colorado 80309, and Division of Chemical Sciences, Pacific Northwest National Laboratory, Richland, Washington 99352

Received June 30, 2006

The hydrides HRh(depe)₂ and HRh(dmpe)₂ (depe = $Et_2PCH_2CH_2PEt_2$, dmpe = $Me_2PCH_2CH_2PMe_2$) have thermodynamic hydride donor abilities comparable to LiHBEt₃, as indicated by their ability to transfer a hydride ligand to Et_3B to sequentially form [Et_3BHBEt_3]⁻ and [$HBEt_3$]⁻. HRh(depe)₂ and HRh(dmpe)₂ can be generated from [Rh(dmpe)₂](CF₃SO₃) and [Rh(depe)₂](CF₃SO₃) and hydrogen gas in the presence of a strong base such as potassium *tert*-butoxide or lithium diisopropylamide. This reaction proceeds through the oxidative addition of hydrogen to form the [H_2 Rh(diphosphine)₂](CF₃SO₃) complexes, followed by deprotonation. The oxidative addition of H₂ is favored by diphosphine ligands with electron-donating substituents and large chelate bites. In the present study, the driving force for oxidative addition of H₂ follows the order [Rh(dmpe)₂](CF₃SO₃) > [Rh(depe)₂](CF₃SO₃) (depe = Ph₂PCH₂CH₂PPh₂) by at least 2.7 kcal/mol. The effect of the chelate bite size is larger. [H₂Rh(depx)₂](CF₃SO₃) (depx = 1,2-(Et₂-PCH₂)₂C₆H₄) binds H₂ more strongly than [Rh(depe)₂](CF₃SO₃) by 12 kcal/mol. An understanding of both hydrogen activation and hydride donor abilities is important for developing powerful hydride donors from H₂.

Introduction

The use of hydrogen to form transition metal hydrides that have hydride donor abilities comparable to borohydride reagents is of interest because it offers the possibility of replacing these relatively expensive and energy intensive stoichiometeric reagents with hydrogen.¹ In addition, the formation of B–H bonds from hydrogen could provide attractive routes to the regeneration of borohydrides and other boron compounds that have been proposed for hydrogen storage.² Recent advances in our understanding of the factors controlling the thermodynamic^{3–5} and kinetic^{1.6} hydride donor abilities (hydricities) of transition metal hydrides permit a rational approach to developing molecules that can activate hydrogen and serve as powerful hydride donors.

Previous thermodynamic studies of hydride complexes of the type $[HM(diphosphine)_2]^{n+}$ (n = 0, M = Co, Rh; n = 1, M = Ni, Pd, Pt) demonstrated that they have a range of thermodynamic hydride donor abilities (where the hydride donor ability is defined by the free energy associated with the reaction $HML_n \rightarrow ML_n^+ + H^-$ in acetonitrile) extending over approximately

[§] Pacific Northwest National Laboratory.

(4) Curtis, C. J.; Miedaner, A.; Raebiger, J. W.; DuBois, D. L. Orgnometallics 2004, 23, 511-516.

50 kcal/mol.⁷ The less hydridic [HNi(diphosphine)₂]⁺ members of this class of complexes are more compatible with protic environments, and certain nickel derivatives have been shown to exhibit high activities for the electrocatalytic oxidation and production of hydrogen.⁸ On the more hydridic end of the scale, HRh(*o*-Ph₂PC₆H₄PPh₂)₂ was found to be a better hydride donor than complexes of the type [HW(CO)₄(L)]⁻ (where L = CO, P(OMe)₃, or PPh₃), even though the latter are anionic and further to the left in the periodic table.^{7b,9} The relatively good hydride donor abilities of the five-coordinate, 18-electron [HM-(diphosphine)₂]^{*n*+} complexes is attributed in part to their ability

^{*} Corresponding author. E-mail: daniel.dubois@pnl.gov.

[†] National Renewable Energy Laboratory.

[‡] University of Colorado.

Labinger, J. A. In *Transition Metal Hydrides*; Dedieu, A., Ed.;
 VCH: New York, 1991; pp 361–379.
 (2) (a) Amendola, S. C.; Sharp-Goldman, S. L.; Janjua, M. S.; Spencer,

^{(2) (}a) Amendola, S. C.; Sharp-Goldman, S. L.; Janjua, M. S.; Spencer, N. C.; Kelly, M. T.; Petillo, P. J.; Binder, M. *Int. J. Hydrogen Energy* 2000, 25, 969–975. (b) Chen, Y.; Fulton, J. L.; Linehan, J. C.; Autrey, T. J. Am. Chem. Soc. 2005, 127, 3254–3255.
(3) Raebiger, J. W.; Miedaner, A.; Curtis, C. J.; Miller, S. M.; DuBois,

 ⁽³⁾ Raebiger, J. W.; Miedaner, A.; Curtis, C. J.; Miller, S. M.; DuBois,
 D. L. J. Am. Chem. Soc. 2004, 126, 5502–5514.

⁽⁵⁾ Berning, D. E.; Miedaner, A.; Curtis, C. J.; Noll, B. C.; DuBois, M. R.; DuBois, D. L. *Organometallics* **2001**, *20*, 1832–1839.

^{(6) (}a) Labinger, J. A.; Komadina, K. H. J. Organomet. Chem. **1978**, 155, C25–C28. (b) Kao, S. C.; Spillett, C. T.; Ash, C.; Lusk, R.; Park, Y. K.; Darensbourg, M. Y. Organometallics **1985**, 4, 83–91. (c) Kao, S. C.; Gaus, P. L.; Youngdahl, K.; Darensbourg, M. Y. Organometallics **1984**, 3, 1601–1603. (d) Gaus, P. L.; Kao, S. C.; Youngdahl, K.; Darensbourg, M. Y. J. Am. Chem. Soc. **1985**, 107, 2428–2434. (e) Kinney, R. J.; Jones, W. D.; Bergman, R. G. J. Am. Chem. Soc. **1978**, 100, 7902–7915. (f) Cheng, T.-Y.; Bullock, R. M. J. Am. Chem. Soc. **1978**, 100, 7902–7915. (g) Cheng, T.-Y.; Brunschwig, B. S.; Bullock, R. M. J. Am. Chem. Soc. **1998**, 120, 13121–13137. (h) Bullock, R. M.; Voges, M. H. J. Am. Chem. Soc. **2000**, 122, 12594–12595. (i) Cheng, T.-Y.; Bullock, R. M. Organometallics **2002**, 21, 2325–2331. (j) Song, J.-S.; Szalda, D. J.; Bullock, R. M. Organometallics **2001**, 20, 3337–3346. (k) Kobayashi, A.; Takatori, R.; Kikuchi, I.; Konno, H.; Sakamoto, K.; Ishitani, O. Organometallics **2001**, 20, 3361–3363.

^{(7) (}a) Berning, D. E.; Noll, B. C.; DuBois, D. L. J. Am. Chem. Soc. **1999**, *121*, 11432–11447. (b) Price, A. J.; Ciancanelli, R.; Noll, B. C.; Curtis, C. J.; DuBois, D. L.; DuBois, M. R. Organometallics **2002**, *21*, 4833–4839. (c) Miedaner, A.; Raebiger, J. W.; Curtis, C. J.; Miller, S. M.; DuBois, D. L. Organometallics **2004**, *23*, 2670–2679. (d) Curtis, C. J.; Miedaner, A.; Ellis, W. W.; DuBois, D. L. J. Am. Chem. Soc. **2002**, *124*, 1918–1925.

^{(8) (}a) Wilson, A. D.; Newell, R. H.; McNevin, M. J.; Muckerman, J. T.; DuBois, M. R.; DuBois, D. L. J. Am. Chem. Soc. 2006, 128, 358–366.
(b) Curtis, C. J.; Miedaner, A.; Ciancanelli, R. F.; Ellis, W. W.; Noll, B. C.; DuBois, M. R.; DuBois, D. L. Inorg. Chem. 2003, 42, 216–227.

⁽⁹⁾ Ellis, W. W.; Ciancanelli, R.; Miller, S. M.; Raebiger, J. W.; DuBois, M. R.; DuBois, D. L. J. Am. Chem. Soc. 2003, 125, 12230–12236.

to form stable four-coordinate, 16-electron $[M(diphosphine)_2]^{(n+1)+}$ complexes upon hydride transfer. For this class of hydrides, the second-row transition metals are better hydride donors than either the first- or third-row analogues.⁴ The hydride donor abilities also increase as the electron donor abilities of the substituents on the diphosphine ligand increase and the chelate bite sizes decrease.^{3,5} Finally, the neutral HM(diphosphine)₂ complexes of the cobalt triad of metals are better hydride donors than the analogous positively charged $[HM(diphosphine)_2]^+$ members of the nickel triad, as expected.^{7a,10} These trends all suggest that rhodium complexes with small chelate bite sizes and electron-donating substituents should be excellent hydride donors. In this paper, it is shown that HRh(dmpe)₂ and HRh-(depe)₂ have hydride donor abilities similar to LiHBEt₃ on the basis of their ability to reversibly transfer their hydride ligand to triethyboron. In addition, these rhodium hydrides are readily generated from hydrogen in the presence of bases such as potassium tert-butoxide or lithium diisopropylamide.

Results

Reaction of [Rh(diphosphine)₂](CF₃SO₃) Complexes with H₂ in the Absence and Presence of Base. The reactions of H₂ with the five [Rh(diphosphine)₂](CF₃SO₃) complexes shown in eq 1 have been studied in both CD₃CN and tetrahydrofuran (THF) by ¹H and ³¹P NMR spectroscopy. Similar results were obtained for both solvents. No reaction is observed for [Rh-(dppe)₂](CF₃SO₃) under 2-3 atm of H₂ as expected from previous reports.^{11,12} However, the remaining four [Rh-(diphosphine)₂](CF₃SO₃) complexes react rapidly with hydrogen to form dihydride complexes, as indicated by the appearance of new hydride and phosphorus resonances in the ¹H and ³¹P NMR spectra, respectively (reaction 1, see Experimental Section for spectral data for individual complexes). [Rh(depp)₂](CF₃-SO₃) and [Rh(depx)₂](CF₃SO₃) react irreversibly with complete formation of dihydride species. However, under 0.8 atm of hydrogen, only a fraction of [Rh(depe)₂](CF₃SO₃) converts to the dihydride and an equilibrium is established. A rapid reversible reaction was also observed for [Rh(dmpe)₂](CF₃SO₃) consistent with previous work by Chatt and Butter.¹² The equilibrium constant for reaction 1 for [Rh(depe)₂](CF₃SO₃) (K_{eq} = $[H_2Rh^+]/[Rh^+][H_2]$, where the concentration of hydrogen is expressed in atmospheres) was measured to be 0.25 \pm 0.05 atm⁻¹ by integration of the ³¹P NMR spectra at 25 °C. For [Rh- $(dmpe)_2](CF_3SO_3)$, the equilibrium constant for H₂ addition is 1.7 ± 0.2 atm⁻¹. The slightly higher binding constant for [Rh-(dmpe)₂](CF₃SO₃) is expected, because dmpe complexes are generally more electron rich than depe complexes, and both are much more electron rich than [Rh(dppe)₂](CF₃SO₃), which does not react with H₂. The failure to observe H₂ binding by [Rh-(dppe)₂](CF₃SO₃) at 2-3 atm is consistent with a binding constant of less than 0.02 atm^{-1} for this complex.

Increasing the chelate bite size of the diphosphine ligand also favors H₂ addition. [Rh(depp)₂](CF₃SO₃) and [Rh(depx)₂](CF₃-SO₃) react irreversibly with complete formation of the dihydride species, and in a previous study it was shown that the formation of [H₂Rh(depx)₂](CF₃SO₃) is favored by 11 kcal/mol under 1.0 atm of H₂.¹³ A comparison of the free energies for the addition of H₂ to [Rh(depx)₂](CF₃SO₃) and [Rh(depe)₂](CF₃SO₃) indicates that an increase in the natural bite angle^{14,15} from 78° to 90° results in an increase in the driving force for H₂ addition by at least 12 kcal/mol. The actual increase arising from the increase in natural bite angle is probably somewhat larger. Ethyl substituents are better electron donors than benzyl substituents. and, as discussed in the preceding paragraph, this substituent effect would tend to partly offset the increase caused by an increase in the bite angle.

 $[H_2Rh(depe)_2](CF_3SO_3)$ and $[H_2Rh(dmpe)_2](CF_3SO_3)$ are deprotonated by potassium tert-butoxide in tetrahydrofuran (reaction 2). For $[H_2Rh(dmpe)_2](CF_3SO_3)$, this reaction results in an equilibrium, whereas for [Rh(depe)₂](CF₃SO₃) this reaction goes to completion. When lithium di(isopropyl)amide is used as a base, the reaction goes to completion for both compounds. The combination of these reactions with reaction 1 is the heterolytic cleavage of hydrogen. These monohydride products both exhibit a doublet of pentets at -11.6 ppm (${}^{2}J_{PH} = 15$ Hz, ${}^{1}J_{\text{RhH}} = 15 \text{ Hz}, \text{HRh}(\text{dmpe})_{2}) \text{ and } -12.2 \text{ ppm} ({}^{2}J_{\text{PH}} = 14 \text{ Hz},$ ${}^{1}J_{\text{RhH}} = 13$ Hz, HRh(depe)₂) in the ¹H NMR spectra and a doublet in the ³¹P NMR spectra. These spectral features are consistent with five-coordinate HRh(diphosphine)₂ complexes. The same products are obtained by treatment of [Rh(depe)₂]-(CF₃SO₃) and [Rh(dmpe)₂](CF₃SO₃) with butyllithium in THF. The latter reaction is quantitative and provides a convenient method for the in situ generation of HRh(depe)₂ and HRh-(dmpe)₂. Although solutions of LiAlH₄ in THF also reduce [Rh-(depe)₂](CF₃SO₃) and [Rh(dmpe)₂](CF₃SO₃) to the corresponding monohydrides, these reactions are not as clean as the deprotonation and butyllithium routes. No reactions are observed when [Rh(dmpe)₂](CF₃SO₃) and Rh(depe)₂](CF₃SO₃) are treated with bis(triphenylphosphin)iminium borohydride (PPNBH₄) in THF for two weeks, suggesting that borohydride is not sufficiently hydridic to transfer a hydride ligand to these rhodium complexes.

Hydride Transfer Reactions from Rhodium to Boron. Titration of HRh(dmpe)₂ with BEt₃ in THF results in a hydride resonance that shifts from -0.37 ppm (B/Rh ratio = 0.37) to -2.75 ppm (B/Rh ratio = 6.2) with a sharp break at a 2.0/1.0 ratio (Figure 1). At the same time, ³¹P NMR spectra indicate formation of $[Rh(dmpe)_2]^+$ with a chemical shift identical to that of [Rh(dmpe)₂](CF₃SO₃) and no evidence for a coordinated triethylborohydride ligand. The variation in the position of the

⁽¹⁰⁾ Ciancanelli, R. F.; Noll, B. C.; DuBois, D. L.; DuBois, M. R. J. Am. Chem. Soc. 2002, 124, 2984-2992.

⁽¹¹⁾ Collman, J. P. Acc. Chem. Res. 1968, 1, 136-143. (12) Chatt, J.; Butter, S. A. Chem. Commun. 1967, 501.

⁽¹³⁾ Raebiger, J. W.; DuBois, D. L. Organometallics 2005, 24, 110-118

⁽¹⁴⁾ Casey, C. P.; Whiteker, G. T. Isr. J. Chem. 1990, 30, 299-304. (15) Van Leeuwen, P. W. N. M.; Kamer, P. C. J.; Reek, J. N. H.; Dierkes, P. Chem. Rev. 2000, 100, 2741-2769.

Figure 1. Plot of the chemical shift of the hydride resonance assigned to $[Et_3BHBEt_3]^-$ as a function of the BEt₃/Rh ratio.

Figure 2. Plot of the chemical shift of the hydride resonance assigned to $[Et_3BHBEt_3]^-$ as a function of the $BEt_3/LiHBEt_3$ ratio.

BH resonance is attributed to a rapid equilibrium between BEt₃, [HBEt₃]⁻, and [Et₃BHBEt₃]⁻ in THF. That is, both reactions 3 and 4 are occurring. At low B/Rh ratios, [HBEt₃]⁻ is the dominant boron species, but at high B/Rh ratios [Et₃BHBEt₃]⁻ is the dominant species. Reaction 3 also proceeds in the opposite direction. When LiEt₃BH is added to [Rh(dmpe)₂](CF₃SO₃), HRh(dmpe)₂ is formed. This indicates that reaction 3 is a true equilibrium with HRh(dmpe)₂, having a hydride donor ability comparable to that of LiHBEt₃, "superhydride" in THF. Efforts to obtain reliable equilibrium constants for reaction 3 were complicated by the existence of reaction 4, ion pairing (common in THF), and an apparent disproportionation reaction of LiHBEt₃ to form LiBEt₄ and LiH₂BEt₂. The latter reaction has been reported previously.¹⁶

To confirm that the hydride resonance with a variable chemical shift in the preceding experiment arose from the reaction of triethyl boron with triethylborohydride, lithium triethylborohydride was titrated with triethylborane. The observed chemical shift of the hydride resonance is a function of BEt₃/LiHBEt₃ ratio, with an equivalence point occurring at a 1.0/1.0 ratio (Figure 2), consistent with the formation of Li-[Et₃BHBEt₃]. A ¹¹B NMR spectrum recorded at a 1:1 BEt₃ to LiHBEt₃ ratio shows a single resonance at 8.7 ppm with respect to BF₃·Et₂O. The same chemical shift is observed at a 2.0 B/Rh ratio in Figure 1. The slight difference in the hydride chemical shifts for the [Et₃BHBEt₃]⁻ anion at high BEt₃/LiHBEt₃ ratios

shown in Figure 2 compared to those at high $BEt_3/HRh(dmpe)_2$ ratios in Figure 1 (0.1 ppm) is attributed to the different cations ($[Rh(dmpe)_2]^+$ vs Li⁺) and concentrations, leading to slightly different ion pairing.

It was also found that HRh(depe)₂ transfers a hydride to BEt₃ to form an equilibrium mixture of products, similar to reactions 3 and 4 for HRh(dmpe)₂, and again the reverse reaction is observed, confirming a true equilibrium. These studies indicated that HRh(depe)₂ is a slightly poorer hydride donor than HRh-(dmpe)₂. The sequence of reactions 5–8 have been used to determine more quantitatively the difference in hydride donor abilities of these two complexes. It can be seen from eq 9 that this difference is the sum of the free energies associated with the ligand exchange reactions 6 and 7, for which equilibrium constants of 6.2 and 2.9, respectively, have been determined at 25 °C. As a result, HRh(dmpe)₂ is a 1.7 kcal/mol better hydride donor than HRh(depe)₂. In eq 9, a lower value of $\Delta G^{\circ}H^{-1}$ indicates a better hydride donor.

$$\mathrm{HRh(depe)}_{2} \rightarrow [\mathrm{Rh(depe)}_{2}]^{+} + \mathrm{H}^{-}$$
 (5)

$$\operatorname{Rh}(\operatorname{depe})_2]^+ + 2 \operatorname{dmpe} \Leftrightarrow \left[\operatorname{Rh}(\operatorname{dmpe})_2\right]^+ + 2 \operatorname{depe} (6)$$

$$\operatorname{HRh}(\operatorname{dmpe})_2 + 2 \operatorname{depe} \Leftrightarrow \operatorname{HRh}(\operatorname{depe})_2 + 2 \operatorname{dmpe}$$
 (7)

$$\mathrm{HRh}(\mathrm{dmpe})_2 \rightarrow [\mathrm{Rh}(\mathrm{dmpe})_2]^+ + \mathrm{H}^- \tag{8}$$

 $\Delta G^{\circ}_{\mathrm{H}^{-}}(\mathrm{dmpe}) =$

ł

 $\Delta G^{\circ}_{\rm H^{-}}(\text{depe}) - RT \ln K_{\rm eq}(6) - RT \ln K_{\rm eq}(7)$ (9)

Discussion

The development of catalysts that can efficiently activate hydrogen and serve as hydride transfer agents requires an understanding of the factors controlling the activation of hydrogen as well as those controlling hydride transfer. The activation of hydrogen by these catalysts should be fast and reversible. For example, in the storage of hydrogen, it is desirable to rapidly bind and release hydrogen with a relatively small swing in hydrogen pressures to avoid large losses in efficiency. A common mode of activation of hydrogen is oxidative addition to a transition metal. As pointed out by Goldman and co-workers, our understanding of the factors that govern the thermodynamics of this and related oxidative addition reactions is limited.¹⁷ In addition, the results are sometimes contradictory. For instance the influence of ancillary halogen ligands is different for different metals,^{18,19} and different results have been reported for even the same metal.^{18,20} Goldman and co-workers' study of H2 addition to (X-PCP)Ir(CO) complexes (where X-PCP is a series of 2,6-(R₂PCH₂)-4-(X)-C₆H₂ ligands containing para substituents on the bound arene ring) demonstrated that π -bonding effects can lead to a situation in which increased electron density on the metal disfavors the addition of H₂. In other systems, it has been observed that increasing

⁽¹⁷⁾ Krogh-Jespersen, K.; Czerw, M.; Zhu, K.; Singh, B.; Kanzelberger, M.; Darji, N.; Achord, P. D.; Renkema, K. B.; Goldman, A. S. *J. Am. Chem. Soc.* **2002**, *124*, 10797–10809.

⁽¹⁸⁾ Vaska, L.; Werneke, M. F. Ann. N. Y. Acad. Sci. 1971, 172, 546–562.

⁽¹⁹⁾ Hascall, T.; Rabinovich, D.; Murphy, V. J.; Beachy, M. D.; Friesner, R. A.; Parkin, G. J. Am. Chem. Soc. **1999**, *121*, 11402–11417.

⁽²⁰⁾ Strohmeier, W. J. Organomet. Chem. **1971**, 32, 137–143.

the electron density at the metal center favors oxidative addition of H₂. For example, Chatt and Butter reported that $[Rh(dmpe)_2]^+$ reacts with H₂, but $[Rh(dppe)_2]^+$ does not.¹² It is also known that Vaska's complex, IrCl(PPh₃)₂(CO), adds hydrogen, whereas the analogous rhodium complex does not.^{11,21} This has also been attributed to greater electron density at Ir compared to Rh.¹¹ In the present study, the driving force for [Rh(diphosphine)₂](CF₃-SO₃) complexes to undergo oxidative addition of H₂ follows the order $[Rh(dmpe)_2](CF_3SO_3) > [Rh(depe)_2](CF_3SO_3) > [Rh (dppe)_2$ (CF₃SO₃). On the basis of the equilibrium constants for H_2 binding by these complexes, [Rh(dmpe)₂](CF₃SO₃) binds H₂ more strongly than [Rh(depe)₂](CF₃SO₃) by 1.1 kcal/mol, and [Rh(depe)₂](CF₃SO₃) binds hydrogen more strongly than [Rh(dppe)₂](CF₃SO₃) by at least 1.6 kcal/mol. This order suggests that increasing the electron donor ability of the diphosphine ligand favors oxidative addition of H₂ for this class of complexes.

It is also known that chelate bite angles exert a strong influence on the rates and selectivities of a wide variety of catalytic reactions.^{22,23} For example, the rates of olefin insertion reaction into M-H or M-C bonds of M(diphosphine)(R)(olefin) complexes (where M = Pd or Pt) are orders of magnitude higher for complexes containing ligands with large bite angles compared to those with small bite angles.^{24,25} A similar trend has been observed for reductive elimination reactions (the reverse of oxidative addition reactions). Examples include the elimination of nitriles from Pd(diphosphine)(R)(CN) complexes and hydrocarbons from (diphosphine) MR_2 complexes (M = Ni, Pd).^{26–28} If thermodynamic studies were to parallel these kinetic studies, one would expect that oxidative addition reactions might be favored by small chelate bite sizes. However, it is also known that addition of H₂ to the $[Rh(Ph_2P(CH_2)_nPPh_2]^+$ cation is reversible for n = 3, but for n = 1 or 2 no reaction is observed.²⁹

The 12 kcal/mol increase in driving force for the oxidative addition of H₂ to [Rh(depx)₂](CF₃SO₃) compared to [Rh(depe)₂]-(CF₃SO₃) clearly demonstrates a strong chelate bite size effect on the oxidative addition of H₂ to square planar d⁸ metal complexes. The origin of this effect can be attributed to the lowering of the energy of the lowest unoccupied molecular orbital as the bite size increases. This drop in orbital energy is caused by an increasingly large tetrahedral distortion that occurs as the ligand bite size increases. Such a distortion has been documented by extensive structural studies of nickel, palladium, and platinum complexes.^{3,7a,30} Previous theoretical studies have shown that this tetrahedral distortion results in a decrease in the antibonding overlap between the phosphorus σ orbitals and the d_{xy} orbital of the metal complex as the chelate bite size increases.³⁰ In addition, this orbital rehybridizes and becomes more suitably oriented for interaction with the hydrogen σ

- (21) Vaska, L.; Diluzio, J. W. J. Am. Chem. Soc. 1962, 84, 679-680.
 (22) Freixa, Z.; van Leeuwen, P. W. N. M. J. Chem. Soc., Dalton Trans.
 2003, 1890-1901.
- (23) Kamer, P. C. J.; van Leeuwen, P. W. N. M.; Reek, J. N. H. Acc. Chem. Res. 2001, 34, 895–904.
- (24) Thorn, D. L.; Hoffmann, R. J. Am. Chem. Soc. 1978, 100, 2079–2090.
- (25) Dekker, G. P. C. M.; Elsevier, C. J.; Vrieze, K.; van Leeuwen, P. W. N. M.; Roobeek, C. F. J. Organomet. Chem. **1992**, 430, 357–372.
- (26) Marcone, J. E.; Moloy, K. G. J. Am. Chem. Soc. **1998**, 120, 8257–8528
- (27) Kohara, T.; Yamamoto, T.; and Yamaoto, A. J. Organomet. Chem. 1980, 192, 265–274.
- (28) Brown, J. M.; Guiry, P. J. Inorg. Chim. Acta 1994, 220, 249–259.
 (29) (a) James, B. R.; Mahajan, D. Can. J. Chem. 1980, 58, 996. (b)
 Zhou, Z.; Facey, G.; James, B. R.; Alper, H. Organometallics 1996, 15, 2496–2503.
- (30) Miedaner, A.; Haltiwanger, R. C.; DuBois, D. L. Inorg. Chem. 1991, 30, 417–427.

orbital. At the same time, the filled d_{xz} and d_{yz} orbitals increase in energy. The result is a geometry that is better optimized for interaction with H₂.

A detailed study of the heats for the oxidative addition reaction of tetrachloro-1,2-benzoquinone to $[M(dppv)_2]^+$ complexes (where M = Co, Rh, and Ir and dppv = cis-1,2-bis-(diphenylphosphino)ethylene) found the order $Co > Ir > Rh.^{31}$ If the trend described by Blake and co-workers on the effect of the metal are combined with the chelate bite and substituent effects described in the preceding paragraphs, one would expect cobalt complexes containing diphosphine ligands with large bite angles and electron-donating substituents to bind H₂ very strongly. However, our interest in this project was in complexes that could reversibly activate H₂ at or near 1 atm pressure and that could be used to generate hydride donor complexes that are sufficiently hydridic to form B-H bonds. The [Rh(dmpe)₂]- (CF_3SO_3) and $[Rh(depe)_2](CF_3SO_3)$ complexes appear to have the desired features for reversible hydrogen activation and for hydride transfer to boron.

The generation of hydridic reagents (i.e., reagents able to donate H⁻) from molecular hydrogen intrinsically involves the heterolytic cleavage of hydrogen and the protonation of a base. This is achieved for [Rh(dmpe)₂](CF₃SO₃) and [Rh(depe)₂](CF₃-SO₃) by following the oxidative addition of hydrogen (reaction 1) with the deprotonation of the resulting dihydride species (reaction 2). Potassium phenoxide is not a sufficiently strong base to deprotonate either $[H_2Rh(dmpe)_2](CF_3SO_3)$ or $[H_2Rh (depe)_2$ (CF₃SO₃), and lithium diisopropylamide completely deprotonates both to form the corresponding monohydrides. Potassium *tert*-butoxide deprotonates [H₂Rh(depe)₂](CF₃SO₃) quantitatively, but [H₂Rh(dmpe)₂](CF₃SO₃) exhibits an equilibrium. As a result, the acidity of [H₂Rh(dmpe)₂](CF₃SO₃) is comparable to that of *tert*-butyl alcohol in THF. Ideally, these comparisons should be made in acetonitrile, because there is a large body of pK_a and hydricity data on similar complexes in this solvent.³² However, attempts to carry out these deprotonation reactions in either acetonitrile or benzonitrile were unsuccessful because of competing reactions of the generated monohydride species with these solvents.

The final step in demonstrating that transition metal hydrides generated from hydrogen can have hydride donor abilities comparable to borohydride reagents is the transfer of a hydride ligand from the transition metal hydride to boron. Of course the generation of $[BH_4]^-$ from solutions of BH_3 in THF is one possibility. However, commercially available solutions are stabilized by the addition of $[BH_4]^-$ ions. To avoid this complication, we selected BEt₃ as our hydride acceptor. The formation of $[HBEt_3]^-$ would represent the formation of an even more hydridic reagent than $[BH_4]^-$. The selection of HRh(depe)₂ and HRh(dmpe)₂ as potential hydride donors was guided by the considerations outlined in the Introduction.

Borohydride reagents are typically used to generate transition metal hydrides, and BH_4^- salts are the most widely used reagents for this purpose. However, because of their greater hydride donor ability, Et_3BH^- salts have frequently been used to generate more hydridic transition metal hydrides.³³ As

⁽³¹⁾ Mondal, J. U.; Bulls, R.; Blake, D. M. Inorg. Chem. 1982, 21, 1668–1670.

^{(32) (}a) Kristjánsdóttir, S. S.; Norton, J. R. In *Transition Metal Hydrides: Recent Advances in Theory and Experiment*; Dedieu, A., Ed.; VCH: New York, 1991; pp 309–359. (b) Izutsu, K. *Acid–Base Dissociation Constants in Dipolar Aprotic Solvents*, IUPAC Chemical Data Series, No. 35; Blackwell Scientific Publications: Oxford, 1990.

^{(33) (}a) Crabtree, R. H.; Hlatky, G. G. *Inorg. Chem.* **1982**, *21*, 1273–1275. (b) Dawson, D. M.; Meetsma, A.; Roedelof, J. B.; Teuben, J. H. *Inorg. Chim. Acta* **1997**, *259*, 237–239.

discussed in the Results section, hydride transfer to BEt₃ to form first [Et₃BHBEt₃]⁻ and then [HBEt₃]⁻ is observed for both HRh- $(dmpe)_2$ and HRh $(depe)_2$ as well as the reverse reactions. At high B to Rh ratios, the hydride species formed contains two borons per hydride transferred, as indicated by the formation of a species with a chemical shift of 2.8 ppm (see Figure 1). This same species is also observed for mixtures of BEt₃ and LiHBEt₃ with ratios greater than 1.0 (Figure 2). At B to Rh ratios less than 2.0, increasing amounts of [HBEt₃]⁻ are formed, as indicated by a positive shift in hydride resonance and the shift of the ethyl resonances toward those observed for pure LiHBEt₃. This indicates that HRh(dmpe)₂ is capable of transferring a hydride ligand to [Et₃BHBEt₃]⁻ to form [HBEt₃]⁻. For HRh(dmpe)₂, equilibrium 3 lies further to the right than for HRh-(depe)₂. This is expected, because HRh(dmpe)₂ is a better hydride donor than HRh(depe)₂ by 1.7 kcal/mol, as confirmed by reactions 6 and 7. These results demonstrate that HRh(dmpe)₂ and HRh(depe)₂ have hydride donor abilities comparable to those of LiHBEt₃ and greater than those of [Et₃BHBEt₃]⁻ in THF.

The combination of reactions 1-3 is reaction 10, the heterolytic cleavage of H₂ by triethyl boron and potassium tertbutoxide to form potassium triethylborohydride and butanol. Because reactions 1-3 are all reversible for [Rh(dmpe)₂](CF₃- SO_3), this cycle represents an energetically efficient way of generating potassium triethylborohydride from hydrogen. Although these steps can be carried out independently in a stepwise manner, attempts to observe this reversible transformation catalytically in a single solution have not been successful. If reactions 1 and 2 are performed first in an NMR tube and Et₃B is added, the formation of HBEt₃⁻ is observed. In contrast, if potassium tert-butoxide, [Rh(dmpe)₂](CF₃SO₃), and BEt₃ are all mixed in an NMR tube and then H₂ is added, the formation of HBEt₃⁻ is not observed. This is attributed to the formation of a strong adduct between triethylborane and the tert-butoxide anion. This is not surprising, and for the development of a catalytic system it will be necessary to select a base and conditions so that the base interacts much more strongly with a proton than with boron.

$$BEt_3 + KO^tBu + H_2 \rightarrow KHBEt_3 + HO^tBu \qquad (10)$$

Summary

These studies demonstrate that the rhodium hydrides HRh-(depe)₂ and HRh(dmpe)₂ have thermodynamic hydride donor abilities comparable to LiHBEt3, so-called "superhydride". These hydrides can be generated from hydrogen gas in the presence of a strong base. These results raise the interesting possibility of using hydrogen and a base to carry out reactions that typically require borohydride reagents. A stepwise process for generating potassium triethylborohydride from H₂, potassium tert-butoxide, and triethylborane has been demonstrated. In addition, the relative hydride donor abilities of HRh(dmpe)₂ and HRh(depe)₂ were determined using a potentially useful new method based on facile exchange of diphosphine ligands. Finally, the results presented here, in combination with previous results on oxidative addition reactions of [Rh(diphosphine)₂]⁺ cations,²⁹ demonstrate that chelate bites sizes (or natural bite angles) have a large effect on the thermodynamic driving force for the oxidative addition of H₂. An understanding of both hydrogen activation and hydride donor abilities is important for developing powerful hydride donors from H₂.

Experimental Section

General Procedures. NMR spectra were recorded on a Varian Inova 400 MHz spectrometer. ¹H chemical shifts are reported relative to tetramethylsilane using residual solvent protons as a secondary reference. ³¹P chemical shifts are reported relative to external phosphoric acid, and all ³¹P NMR spectra were proton decoupled unless stated otherwise. ¹¹B chemical shifts are reported relative to external BF₃·Et₂O, and all ¹¹B NMR spectra were proton decoupled unless stated otherwise. All syntheses were performed under an inert atmosphere using standard Schlenk techniques or in a glovebox. Solvents were distilled under nitrogen using standard procedures. Potassium tert-butoxide was purified by sublimation. [Rh(diphosphine)₂]CF₃SO₃ complexes were prepared using literature methods.^{3,29} Bis(1,5-cyclooctadiene)rhodium(I) triflate, [Rh(COD)₂]-CF₃SO₃, was purchased from Strem Chemicals, Inc. The ligand α, α' -bis(diethylphosphino)xylene (depx) was prepared as previously described.3

Reaction of H₂ Gas with [Rh(diphosphine)₂](CF₃SO₃) Complexes. [Rh(dmpe)₂](CF₃SO₃). An NMR tube capped with a rubber septum and containing a 0.043 M solution of [Rh(dmpe)₂](CF₃- SO_3) in acetonitrile- d_3 (1.0 mL) was equilibrated in a constanttemperature bath at 25.0 \pm 0.2 °C. The solution was purged with H₂ gas (0.82 atm, ambient pressure, Golden, CO) using a needle for 15 min. The NMR tube was removed from the bath and inserted into an NMR probe maintained at 25.0 \pm 0.2 °C. ³¹P NMR spectra were recorded and integrated to determine the ratio of [H₂Rh-(dmpe)₂](CF₃SO₃) to [Rh(dmpe)₂](CF₃SO₃). Using the data obtained from four separate experiments an equilibrium constant of 2.1 \pm 0.1 atm⁻¹ was obtained ($K = [H_2Rh^+]/[Rh^+]P_{H2}$, uncertainty reported at 2σ). Spectral data for [Rh(dmpe)₂](CF₃SO₃): ¹H NMR (acetonitrile-d₃): δ 1.73 (m, 8 H, PCH₂CH₂P), 1.46 (m, 24 H, PCH₂CH₃). ³¹P NMR (acetonitrile- d_3): δ 36.25 (d, ¹J_{RhP} = 123 Hz). Spectral data for [H₂Rh(dmpe)₂](CF₃SO₃) (under H₂): ¹H NMR (acetonitrile- d_3): δ 1.7 (br m, 8 H, PCH₂CH₂P), 1.47 (br s, 24 H, PCH₃), -10.27 (br d, splitting = 145 Hz, RhH). ³¹P NMR (acetonitrile- d_3): δ 26.42 (br d), 38.0 (br d). Purging the NMR tubes with N₂ results in spectra identical to that of [Rh(dmpe)₂]- $(CF_3SO_3).$

[**Rh(depe)**₂](**CF**₃**SO**₃). An experiment identical to that described for [Rh(dmpe)₂](**CF**₃**SO**₃) was performed with [Rh(depe)₂](**CF**₃**SO**₃). From these data an equilibrium constant of 0.23 ± 0.02 atm⁻¹ was calculated. Spectral data for [Rh(depe)₂](**CF**₃**SO**₃): ¹H NMR (acetonitrile-*d*₃): δ 1.93 and 1.75 (two m, 24 H, PCH₂CH₂P and PCH₂CH₃), 1.07 (m, 24 H, PCH₂CH₃). ³¹P NMR (acetonitrile-*d*₃): δ 63.18 (d, ¹J_{RhP} = 126 Hz). Spectral data for [H₂Rh(depe)₂](**CF**₃-SO₃) (under H₂): ¹H NMR (acetonitrile-*d*₃): δ 1.95 and 1.78 (br m, 24 H, PCH₂CH₂P and PCH₂CH₃), 1.07 (m, 24 H, PCH₂CH₃), -10.7 (br d, splitting = 132 Hz, RhH). ³¹P NMR (acetonitrile-*d*₃): δ 47.5 (br m), 64.5 (br m).

[Rh(depp)_2](CF₃SO₃). For this complex the reaction with H₂ is quantitative. Spectral data for [Rh(depp)_2](CF₃SO₃): ¹H NMR (acetonitrile-*d*₃): δ 2.0 (m, 4 H, PCH₂CH₂CH₂P), 1.80 and 1.73 (two m, 24 H, CH₂PCH₂CH₃), 1.12 (m, 24 H, PCH₂CH₃). ³¹P NMR (acetonitrile-*d*₃): δ 5.02 (d, ¹J_{RhP} = 126 Hz). Spectral data for [H₂-Rh(depp)₂](CF₃SO₃): ¹H NMR (acetonitrile-*d*₃): δ 2.2–1.4 (br ms, PCH₂CH₂CH₂CH₂CH₂CH₃), 1.47 (br s, PCH₂CH₃), -10.82 (AA' portion of an AA'MM'XX'Z spin system, RhH). ³¹P NMR (acetonitrile-*d*₃): δ 15.00 (apparent dt), -6.20 (complex m). This complex may also be a diphosphine-bridged complex (see ref 27).

[**Rh**(**dppe**)₂](**CF**₃**SO**₃) and [**Rh**(**depx**)₂](**CF**₃**SO**₃). No reaction of the well-known [**Rh**(**dppe**)₂](**CF**₃**SO**₃) complex with H₂ was observed under 2–3 atm of H₂. The irreversible addition of H₂ to [**Rh**(depx)₂](**CF**₃**SO**₃) was reported previously.¹³

Heterolytic Cleavage of H_2 with Potassium *tert*-Butoxide and $[Rh(dmpe)_2](CF_3SO_3)$. Potassium *tert*-butoxide (0.015 g, 0.13 mmol) was added to a solution of $[Rh(dmpe)_2](CF_3SO_3)$ in THF (0.043 M, 1.0 mL, 0.043 mmol) in an NMR tube, and the tube

was shaken to produce a clear solution. A ³¹P NMR spectrum was recorded on this solution after 30 min. The only resonances observed were those for unreacted [Rh(dmpe)₂](CF₃SO₃). After purging the sample with hydrogen for 15 min, ¹H and ³¹P NMR spectra were again recorded. Resonances assigned to [Rh(dmpe)₂]-(CF₃SO₃) (5%) and HRh(dmpe)₂ (95%) were observed. ¹H NMR (THF, external lock): δ –11.61 (doublet of pentets, ²*J*_{PH} = 15 Hz, ¹*J*_{RhH} = 15 Hz, *H*Rh). ³¹P NMR (THF, external lock): δ 32.95 (d, ¹*J*_{RhP} = 124 Hz, [Rh(dmpe)₂](CF₃SO₃), 5%), 23.32 (d, ¹*J*_{RhP} = 139 Hz, HRh(dmpe)₂, 95%).

Heterolytic Cleavage of H₂ with Potassium *tert*-Butoxide and [Rh(depe)₂](CF₃SO₃). A similar reaction was repeated using potassium *tert*-butoxide (0.015 g, 0.13 mmol) and a solution of [Rh(depe)₂](CF₃SO₃) in THF (0.043 M, 1.0 mL, 0.043 mmol). In this case the conversion to HRh(depe)₂ was quantitative. ¹H NMR (THF, external lock): δ -12.17 (doublet of pentets, ²J_{PH} = 14 Hz, ¹J_{RhH} = 13 Hz, *H*Rh). ³¹P NMR (THF, external lock): δ 54.32 (d, ¹J_{RhP} = 140 Hz).

Heterolytic Cleavage of H_2 with Lithium Diisopropylamide and [Rh(dmpe)_2](CF₃SO₃). A similar reaction was repeated using lithium diisopropylamide (0.015 g, 0.14 mmol) and a solution of [Rh(dmpe)_2](CF₃SO₃) in THF (0.043 M, 1.0 mL, 0.043 mmol). In this case the conversion to HRh(dmpe)₂ was quantitative.

Generation of HRh(dmpe)₂ from [Rh(dmpe)₂](CF₃SO₃) and Butyllithium. A solution of butyllithium (2.5 M, 17 μ L, 0.043 mmol) in THF was added to a solution of [Rh(dmpe)₂](CF₃SO₃) in THF (0.043 M, 1.0 mL, 0.043 mmol) in an NMR tube. The tube was shaken to produce a clear solution, and after 30 min ¹H and ³¹P NMR spectra were recorded. The quantitative formation of HRh(dmpe)₂ was observed. A similar reaction of [Rh(depe)₂]-(CF₃SO₃) with butyllithium also quantitatively produces HRh-(depe)₂.

Titration of HRh(dmpe)2 with Triethylborane. A solution of HRh(dmpe)₂ in THF (0.171 M, 1.0 mL, 0.171 mmol) in an NMR tube was titrated with 9, 24, 48, 98, and 148 μ L of triethylborane. This corresponds to BEt₃ to Rh ratios of 0.37, 1.00, 2.00, 4.08, and 6.16, respectively. This titration was followed by ¹H and ³¹P NMR spectroscopy. Both indicated a disappearance of HRh(dmpe)₂ and the formation of [Rh(dmpe)₂]⁺. At a 2.00 BEt₃ to Rh ratio only [Rh(dmpe)₂]⁺ was observed. Concurrent with these changes to the rhodium species was the appearance of a resonance at -1.53ppm in the ¹H NMR spectrum at a BEt₃ to Rh ratio of 0.37 that grew in intensity and shifted in a negative direction as this ratio increased. A plot of the shift of this resonance versus the BEt₃ to Rh ratio is shown in Figure 1. At a 1.0/1.0 BEt₃/HRh ratio the [Rh⁺]/[HRh] was 2.5/1.0, and the ¹¹B NMR spectrum showed a new broad resonance (half-height width of ~150 Hz) at 9.0 ppm. Additional resonances were observed at -14.0 ppm (20% unassigned) and -16.6 ppm (5% assigned to BEt₄]⁻) after 24 h. Similar results were obtained for the reaction carried out between HRh-(depe)₂ and BEt₃, but at the same BEt₃ to Rh ratios, less hydride transfer from Rh to B was observed.

Reaction of LiHBEt₃ with [Rh(dmpe)₂](CF₃SO₃). A solution of LiHBEt₃ in THF (1.0 M, 200 mL, 0.20 mmol) was added to a solution of [Rh(dmpe)₂](CF₃SO₃) in THF (0.043 M, 1.0 mL, 0.043 mmol). Both HRh(dmpe)₂ and [Rh(dmpe)₂](CF₃SO₃) were observed by ³¹P NMR spectroscopy in a 2.2/1.0 ratio ([HRh]/[Rh⁺]) after 10 min, and this ratio persisted for at least 24 h. In separate experiments, smaller amounts resulted in smaller conversions and larger amounts in larger conversions. At a 1.0/1.0 LiHBEt₃/Rh ratio the [HRh]/[Rh⁺] was 0.77/1.00. Similar results were obtained for [Rh(depe)₂](CF₃SO₃), but conversion to HRh(depe)₂ was more complete at the same LiHBEt₃/Rh ratios.

Titration of LiHBEt₃ with BEt₃. Aliquots of triethylborane were added to a solution of LiHBEt₃ in THF (1.0 mL, 1.0 M, 1.0 mmol). This titration was followed by ¹H NMR spectroscopy. A broad triplet and a broad quartet assigned to the ethyl group on boron were observed, consistent with a rapidly exchanging system. In addition, a hydride resonance was observed with chemical shifts gradually changing with addition of BEt₃ from -0.76 to -2.85 ppm. A plot of the shift of this resonance versus the BEt₃ to LiHBEt₃ ratio is shown in Figure 2. A ¹¹B NMR spectrum recorded at a 1/1 ratio exhibited a single resonance at 8.7 ppm assigned to [Et₃BHBEt₃]⁻ and a small resonance at -16.6 pm (5%) assigned to [BEt₄]⁻.

Ligand Exchange Reactions. Reaction of depe with [Rh- $(dmpe)_2$ (CF₃SO₃). Bis(diethylphosphino)ethane (depe, 20 μ L, 0.086 mmol) was added to a solution of [Rh(dmpe)₂](CF₃SO₃) in acetonitrile-d₃ (0.043 M, 1.0 mL, 0.043 mmol). A ³¹P NMR spectrum recorded after 10 min indicated a rapid redistribution of the two ligands and the presence of all three possible rhodium species ([Rh(dmpe)₂](CF₃SO₃), [Rh(depe)(dmpe)](CF₃SO₃), and [Rh(depe)₂](CF₃SO₃)) as well as uncoordinated depe and dmpe ligands. This ratio remained constant for at least 4 days. Integration of the ³¹P NMR spectrum was used to determine the ratios of rhodium species and ligand species. From these data for four experiments, an equilibrium constant of 6.2 ± 0.3 was determined for the equilibrium constant $K = \{ [depe]^2 [Rh(dmpe)_2^+] / [dmpe]^2 \}$ $[Rhdepe)_2^+]$ for eq 6. A similar procedure was used to determine an equilibrium constant of 2.9 \pm 0.3 for eq 7, where $K = \{[dmpe]^2 [HRh(depe)_2]/[depe]^2[HRhdmpe)_2]$.

Acknowledgment. This research was supported by the Director's Discretionary Research and Development Program of the National Renewable Energy Laboratory and, in part, by the Chemical Sciences Program of the Office of Basic Energy Sciences of the Department of Energy. The Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy.

OM060584Z