Synthesis and Reactivity of Dihaloboryl Complexes

Holger Braunschweig,* Krzysztof Radacki, Fabian Seeler, and George R. Whittell†

*Institut fu¨r Anorganische Chemie, Uni*V*ersita¨t Wu¨rzburg, Am Hubland, D-97074, Wu¨rzburg, Germany*

*Recei*V*ed May 2, 2006*

Transition metal dihaloboryl complexes of the types $[(\eta^5$ -C₅R₅)Fe(CO)₂BX₂] (R = H, Me; X = F, Cl, Br), $[(\eta^5 - C_5H_4Me)Ru(CO)_2BX_2]$ (X = Cl), and $[(OC)_5MnBX_2]$ (X = Cl, Br) were prepared via salt elimination reactions. Comparison of the CO stretching frequencies indicates a higher degree of Fe-^B d_{π} − p_π back-bonding in the dibromoboryl complexes $[(\eta^5$ -C₅R₅)Fe(CO)₂BBr₂] with respect to their -BCl₂
and -BE₂ analogues. This finding is constitient with the n −n, back-bonding abilities of the hal and $-BF_2$ analogues. This finding is constistent with the $p_\pi-p_\pi$ back-bonding abilities of the halides (F) $> C l > Br$). Reactions of $[(\eta^5 - C_5Me_5)Fe(CO)_2BX_2]$ (X = Cl, Br) with 4-methylpyridine were performed, leading to the formation of the corresponding Lewis-base adducts and, with base in excess, to the first metal-substituted boronium cation $[(\eta^5-C_5Me_5)Fe(CO)_2BBr(NC_5H_4-4-Me)_2]^+$.

Introduction

In the last decade, transition metal complexes of boron, with defined 2c,2e M-B bonds, have become an area of great interest. Particularly boryl complexes $[L_nM-BR_2]$ are most prominent, and more than one hundred fully characterized examples have been reported.¹ Among these, monohaloboryl complexes $[L_nM-B(H_a)R]$ with an additional amino or aryl substituent at boron are well documented, while the knowledge about dihaloboryl complexes $[L_nM-BHa_2]$ is much more restricted. Examples include a few structurally characterized difluoroboryl complexes such as $[Pt(PPh₃)₂(BF₂)₂]$ ² and $[Ir(CO)$ - $(PPh_3)_2(BF_2)_3$,³ derived from the reactions of Pt⁰ and Ir^I precursors with B_2F_4 , and $[(\eta^5-C_5Me_5)Ir(PMe_3)(H)(BF_2)]$,⁴ which was obtained via salt elimination. Very recently, [(*η*5- C_5Me_5)Fe(CO)₂(BF₂)] was reported as an unexpected side product from the reaction of [($η$ ⁵-C₅Me₅)Fe(CO)₂B(OMes)Cl] with Na[BArf 4].5 For these difluoroboryls, no subsequent substitution chemistry at the boron center was reported, presumably because of their reduced Lewis acidity due to strong p*^π*p*^π* back-bonding and the high thermodynamic stability of the $B-F$ bond. As expected, complexes with $-BCl₂$ or $-BBr₂$ ligands show a significantly enhanced reactivity. The spectroscopically characterized dichloroboryl complex $[Os(Cl)(CO)$ - $(PPh_3)_{2}(BCl_2)$] already served as a convenient precursor for

(2) Kerr, A.; Marder, T. B.; Norman, N. C.; Orpen, A. G.; Quayle, M. J.; Rice, C. R.; Timms, P. L.; Whittell, G. R. *Chem. Commun.* **1998**, 319. extensive substitution chemistry, $6a-c$ yielding, for example, the first base-stabilized borylene complex from the reaction with 8-aminoquinoline.6a Likewise, iron half-sandwich complexes of the type $[(\eta^5 - C_5R_5)Fe(CO)_2BX_2]$ (R = Me, H; X = Cl, Br) demonstrated their propensity for boron-centered reactions, thus leading to a variety of novel and unusual coordination modes, including bridging boryl7 and heterodinuclear borylene complexes,⁸ metalloborylenes,⁹ and metal-base-stabilized metalloborylenes,¹⁰ the latter two featuring a "naked" boron atom in the coordination sphere of two or three transition metal centers, respectively. Spectroscopic data for the iron half-sandwich dichloroboryl complexes $[(\eta^5{\text{-}}C_5H_5)Fe(CO)_2BCl_2]$ and $[(\eta^5{\text{-}}C_5H_5)Fe(CO)_2]$ C_5H_4Me)Fe(CO)₂BCl₂], whose synthesis was interestingly accompanied by the formation of $[(\eta^5{\text{-}}C_5H_3\text{MeBCl}_3)Fe(CO)_3]$ as a side product, were initially reported by Aldridge et al.^{11a,b}

In 2004 we communicated the structural characterization of $[(\eta^5{\text{-}}C_5H_5)Fe(CO)_2BCl_2]$ and its reaction with 4-methylpyridine, thus yielding the first Lewis-base adduct directly obtained from a boryl complex.12 It should be noted that several examples for base-stabilized boryl complexes of molybdenum, tungsten, iron, and manganese were previously reported, $13a-c$ which were, however, exclusively obtained from preformed borane adducts.

^{*} Corresponding author. E-mail: h.braunschweig@mail.uni-wuerzburg.de. Fax: +49 931 888 5260. Tel: +49 931 888 4623.

[†] Present address: School of Chemistry, University of Bristol, Bristol, U.K. BS8 1TS.

^{(1) (}a) Irvine, G. I.; Lesley, M. J. G.; Marder, T. B.; Norman, N. C.; Rice, C. R.; Robins, E. G.; Roper, W. R.; Whittell, G. R.; Wright, L. J. *Chem. Re*V*.* **¹⁹⁹⁸**, *⁹⁸*, 2685. (b) Smith, M. R., III. *Prog. Inorg. Chem.* **¹⁹⁹⁹**, *48*, 505. (c) Braunschweig, H.; Colling, M. *J. Organomet. Chem.* **2000**, *⁶¹⁴*-*615*, 18. (d) Braunschweig, H.; Colling, M. *Coord. Chem. Re*V*.* **²⁰⁰¹**, *223*, 1. (e) Braunschweig, H. In *Inorganic Chemistry Highlights*; Meyer, G., Naumann, D., Wesemann, L., Eds.; Wiley-VCH: Weinheim, New York, 2001; pp 213. (f) Braunschweig, H. *Ad*V*. Organomet. Chem.* **²⁰⁰⁴**, *⁵¹*, 163. (g) Aldridge, S.; Coombs, D. L. *Coord. Chem. Re*V*.* **²⁰⁰⁴**, *²⁴⁸*, 535. (h) Braunschweig, H.; Rais, D. *Heteroat. Chem.* **2005**, *16*, 566.

⁽³⁾ Lu, N.; Norman, N. C.; Orpen, A. G.: Quayle, M. J.; Timms, P. L.; Whittell, G. R. *J. Chem. Soc., Dalton Trans.* **2000**, 4032.

⁽⁴⁾ Peterson, T. H.; Golden, J. T.; Bergman, R. G. *Organometallics* **1999**, *18*, 2005.

⁽⁵⁾ Kays, D. L.; Rossin, A.; Day, J. K.; Ooi, L.-L.; Aldridge, S. *Dalton Trans*. **2006**, 399.

^{(6) (}a) Irvine, G. J.; Rickard, C. E. F.; Roper, W. R.; Williamson, A.; Wright, L. J. *Angew. Chem.* **2000**, *112*, 978; *Angew. Chem., Int. Ed.* **2000**, *39*, 948. (b) Rickard, C. E. F.; Roper, W. R.; Williamson, A.; Wright, L. J. *Organometallics* **2002**, *21*, 4862. (c) Clark, G. R.; Irvine, G. J.; Roper, W. R.; Wright, L. J. *J. Organomet. Chem.* **2003**, *680*, 81.

⁽⁷⁾ Braunschweig, H.; Radacki, K.; Rais, D.; Whittell, G. R. *Angew. Chem.* **2005**, *117*, 1217; *Angew. Chem., Int. Ed.* **2005**, *44*, 1192.

⁽⁸⁾ Braunschweig, H.; Radacki, K.; Rais, D.; Seeler, F.; Uttinger, K. *J. Am. Chem. Soc.* **2005**, *127*, 1386.

^{(9) (}a) Braunschweig, H.; Radacki, K.; Scheschkewitz, D.; Whittell, G. R. *Angew. Chem.* **2005**, *117*, 1685; *Angew. Chem. Int. Ed.* **2005**, *44*, 1658.

⁽b) Braunschweig, H.; Whittell, G. R. *Chem. Eur. J.* **2005**, *11*, 6128. (10) Braunschweig, H.; Radacki, K.; Rais, D.; Seeler, F. *Angew. Chem.* **2006**, *118*, 1087; *Angew. Chem., Int. Ed.* **2006**, *45*, 1066.

^{(11) (}a) Aldridge, S.; Calder, R. J.; Baghurst, R. E.; Light, M. E.; Hursthouse, M. B. *J. Organomet. Chem.* **2002**, *649*, 9. (b) Aldridge, S.; Calder, R. J.; Coles, S. J.; Hursthouse, M. B. *J. Chem. Crystallogr.* **2003**, *33*, 805.

⁽¹²⁾ Braunschweig, H.; Radacki, K.; Seeler, F.; Whittell, G. R. *Organometallics* **2004**, *23*, 4178.

^{(13) (}a) Kawano, Y.; Yasue, T.; Shimoi, M. *J. Am. Chem. Soc.* **1999**, *121*, 11744. (b) Yasue, T.; Kawano, Y.; Shimoi, M. *Chem. Lett.* **2000**, 58. (c) Yasue, T.; Kawano, Y.; Shimoi, M. *Angew. Chem.* **2003**, *115*, 1769; *Angew. Chem., Int. Ed.* **2003**, *42*, 1727.

We herein report (i) the syntheses of a series of dihaloboryl complexes of iron, ruthenium, and manganese via salt elimination reactions and (ii) selected examples of their reactivity toward 4-methylpyridine, yielding corresponding Lewis-base adducts, and the first transition metal-substituted boronium cation $[(\eta^5$ -C₅Me₅)Fe(CO)₂BBr(NC₅H₄-4-Me)₂]Br.

Results and Discussion

Iron Complexes. The salt elimination reaction of the highly nucleophilic¹⁴ $[(\eta^5$ -C₅R₅)Fe(CO)₂]⁻ anion (R = H, Me) with haloboranes (e.g., $CIB(1, 2-O_2C_6H_4)$, $CIBPh_2$, $(CIBNH)_3$, $Cl(Me_2N)$ - $BB(NMe_2)Cl)^{15a-c}$ or dihaloboranes (e.g., Br_2BMes , Cl_2 - $BNMe_2$ ^{16,17} is a well-established and versatile route for the preparation of iron half-sandwich boryl complexes. Here, we studied the reactions between $M[(\eta^5 - C_5R_5)Fe(CO)_2]$ (M = K, $R = H$; $M = Na$, $R = Me$) and BF_3 ^{*}OEt₂ or BX₃ (X = Cl, Br), which provided a general access to dihaloboryl complexes of the type $[(\eta^5 - C_5R_5)Fe(CO)_2BX_2]$ (1-6).

In particular, the addition of excess BF_3 ⁻OEt₂ to a suspension of K[$(\eta^5$ -C₅H₅)Fe(CO)₂] or Na[$(\eta^5$ -C₅Me₅)Fe(CO)₂] in toluene at 0 °C yields, as judged by ¹¹B NMR spectroscopy, $[(\eta^5 C_5H_5$)Fe(CO)₂BF₂] (1) ($\delta = 47.1$ {*J*_{B-F} = 181 Hz}) and [(η ⁵- C_5Me_5 Fe(CO)₂BF₂] (2) ($\delta = 48.3$ {*J*_{B-F} = 189 Hz}). Both compounds can be isolated by crystallization from hexane at -60 °C as analytically pure red solids in yields of $37-45$ %. The spectroscopic data of **2** are essentially identical to these, recently reported by Aldridge et al.5

The reactions of excess BX_3 ($X = Cl$, Br) with Na[$(\eta^5-C_5R_5)$ -Fe(CO)₂] (R = H, Me) in toluene at -78 °C yield the dichloroboryl complexes $[(\eta^5-C_5R_5)Fe(CO)_2BCl_2]$ (3: $R = H;$ **4**: $R = Me$) and the dibromoboryl complexes $[(\eta^5 - C_5R_5)Fe(CO)_2$ -BBr₂] (5: R = H; 6: R = Me), which display broad ¹¹B NMR signals at $\delta = 90.0$ (3), 94.9 (4), 85.9 (5), and 91.0 (6). According to ${}^{1}H$ NMR spectroscopy, the reaction mixtures contain small amounts of $[(\eta^5-C_5R_5)Fe(CO)_2X]$ (R = H, Me; $X = Cl$, Br), which are in the case of 5 and 6 highly dependent on the purity of BBr3. Purification of the latter over mercury followed by condensation in vacuo prior to use significantly minimizes the amount of unwanted FeBr species. After removal of all volatiles in vacuo, extraction with hexane, and crystallization at -60 °C, analytically pure compounds $3-6$ were isolated as red solids in yields of 31-48%.The complexes **¹**-**⁶** are air- and moisture-sensitive but can be stored under argon at -30 °C for several weeks without decomposition. As for the corresponding trihaloboranes, **³**-**⁶** vaporize when exposed to air, due to hydrolysis of the $B-X$ bonds. In solution, compound **5** shows decomposition after 1 day and **6** after a few hours, which is consistent with the enhanced stabilization of the bulky C_5Me_5 ligand in comparison to the parent C_5H_5 group. While **¹**-**⁶** are all very soluble in toluene, the solubility in hexane varies from good $(1-4)$ to moderate $(5, 6)$.

The nature of the metal-boron bond and in particular the role of Fe-B d_{π} - p_{π} back-bonding in boryl complexes of the type $[(\eta^5$ -C₅R₅)Fe(CO)₂BR₂] have been extensively studied on the basis of structural and IR data.¹ The CO stretching frequencies of the dibromoboryl complexes **5** (2045, 2000) and

a Reaction conditions: (i) BF_3 · OE_2 or BX_3 ($X = Cl$, Br); (ii) $K[(\eta^5 - Cl_3) \cdot \text{C} \$ C_5H_5)Fe(CO)₂] or Na[(η^5 -C₅Me₅)Fe(CO)₂] 1 equiv, toluene, 0 or -78 $^{\circ}C.$

Table 1. Spectroscopic Data of 1-**¹²**

	$11B$ NMR [ppm]	IR (toluene) \lceil cm ⁻¹ \rceil
$[(\eta^5$ -C ₅ H ₅)Fe(CO) ₂ BF ₂](1)	47.1	2022, 1965
$[(\eta^5-C_5Me_5)Fe(CO)_2BF_2]$ (2)	$(J_{B-F} = 181 \text{ Hz})$ 48.3 $(J_{B-F} = 189 \text{ Hz})$	2002, 1946
$[(\eta^5-C_5H_5)Fe(CO)_2BCI_2]$ (3)	90.0	2026, 1974
$[(\eta^5$ -C ₅ Me ₅)Fe(CO) ₂ BCl ₂](4)	94.9	2006, 1955
$[(\eta^5$ -C ₅ H ₅)Fe(CO) ₂ BBr ₂](5)	85.9	2045, 2000
$[(\eta^5-C_5Me_5)Fe(CO)_2BBr_2]$ (6)	91.0	2022, 1975
$[(\eta^5$ -C ₅ Me ₅)Fe(CO) ₂ BCl ₂ -	21.3	1958, 1899
(NC_5H_4-4-Me) (7)		
$[(\eta^5-C_5Me_5)Fe(CO)_2BBr_2-$	14.3	1963, 1904
(NC_5H_4-4-Me) (8)		
$[(\eta^5$ -C ₅ Me ₅)Fe(CO) ₂ BBr-	21.0	1977, 1918
$(NC_5H_4-4-Me)_2BF(9)$		
$[(\eta^5$ -C ₅ H ₄ Me)Ru(CO) ₂ -	81.0	2021, 1958
$BCl2$] (10)		
$[(OC)_{5}MnBCl_{2}]$ (11)	94.2	2115, 2052, 2012
$[(OC)5 MnBBr2] (12)$	92.9	2116, 2051, 2013

6 (2022, 1975) are shifted to significantly higher wavenumbers in comparison to their dichloro- and diflouroboryl analogues **¹**-**⁴** (**1**: 2022, 1965; **³**: 2026, 1974; **²**: 2002, 1946; **⁴**: 2006, 1955) (Table 1). This is consistent with a higher degree of d_{π} ^p*^π* back-bonding in **⁵** and **⁶** and is not surprising, when the p*^π* p_{π} back-bonding abilities of the halides (F > Cl > Br) are considered. Comparison with $[(\eta^5{\text{-}}C_5H_5)Fe(CO)_2B(1,2{\text{-}}O_2C_6H_4)]$ $(2024, 1971)^{15a}$ also indicates the presence of a relevant *π*-interaction in the case of **5**.

We recently compared **3** with its Lewis-base adduct $[(\eta^5 C_5H_5$)Fe(CO)₂BCl₂(NC₅H₄-4-Me)], thus gaining valuable information about the degree of Fe-B d_{π} - p_{π} back-bonding in the former.12 Analogously to the reported preparation, the addition of 1 equiv of 4-methylpyridine to **4** and **6** in toluene yields the corresponding base-stabilized boryl complexes $[(\eta^5 C_5Me_5$)Fe(CO)₂BX₂(NC₅H₄-4-Me)] (7: X = Cl; 8: X = Br). Crystals suitable for X-ray diffraction were obtained from solutions of **7** and **8** in benzene (Figure 1). Both compounds crystallize in the orthorhombic space group *Pnma*, and the asymmetric unit contains half a molecule with a crystallographic mirror plane bisecting the N, $ipso-C$, B, Fe atoms and the C_5 - $Me₅$ ring. The geometry around boron is that of a slightly distorted tetrahedron, in agreement with its sp³-hybridization. The Fe(1)-B(1) (**7**: 2.129(3) Å; **⁸**: 2.106(7) Å), B(1)-N(1) (**7**: 1.623(4) Å; **⁸**: 1.628(9) Å), and B(1)-Cl(1) (**7**: 1.884(2) Å) bond distances are similar to those in $[(\eta^5{\text{-}}C_5H_5)Fe(CO)_2$ - $BCl_2(NC_5H_4-4-Me)$] (Fe-B = 2.1326(14) Å; B-N = 1.6103-(17) Å; $B - Cl = 1.8814(14)$ Å).¹² Unfortunately, all attempts to grow single crystals of the corresponding boryl complexes **4**

⁽¹⁴⁾ Dessy, R. E.; Pohl, R. L.; King, R. B. *J. Am. Chem. Soc.* **1966**, *88*, 5121.

^{(15) (}a) Hartwig, J. F.; Huber, S. *J. Am. Chem. Soc.* **1993**, *115*, 4908. (b) Braunschweig, H.; Kollann, C.; Müller, M. *Eur. J. Inorg. Chem.***1998**, 291. (c) Braunschweig, H.; Ganter, B.; Koster, M.; Wagner, T. *Chem. Ber.* **1996**, *129*, 1099.

⁽¹⁶⁾ Aldridge, S.; Coombs, D. L.; Jones, C. *Chem. Commun.* **2002**, 856. (17) Braunschweig, H.; Kollann, C.; Englert, U. *Eur. J. Inorg. Chem.* **1998**, *4*, 465.

Figure 1. Molecular structures of **7** and **8**. Selected bond lengths [Å] and angles [deg]: **7**: Fe1-B1 = 2.129(3), B1-Cl1 = 1.884-(2), $B1-N1 = 1.623(4)$, $Fe1-B1-N1 = 115.77(19)$, $Fe1-B1 Cl1 = 111.85(11), N1-B1-C11 = 104.50(13);$ **8**: Fe1-B1 = 2.106(7), $B1-Br1 = 2.069(4)$, $B1-N1 = 1.628(9)$, $Fe1-B1-N1$ $= 117.1(4)$, Fe1-B1-Br1 = 112.3(2), N1-B1-Br1 = 104.1(3).

Figure 2. Molecular structure of **9**. Selected bond lengths [Å] and angles [deg]: Fe1-B1 = 2.1465(19), B1-Br1 = 2.061(2), B1- $N11 = 1.626(2), B1-N22 = 1.596(2); Fe1-B1-N11 = 112.56-$ (12), Fe1-B1-N21 = 118.44(12), Fe1-B1-Br1 = 111.51(9), $Br1-B1-N11 = 104.83(11), Br1-B1-N21 = 105.67(11).$

and **6** failed, thus precluding a structural comparison between these species.

Interestingly, in the case of **6**, the addition of excess 4-methylpyridine leads to a yellow precipitate, which is poorly soluble in toluene but well soluble in dichloromethane. The ¹¹B NMR spectrum indicates the formation of a new species **9** with a signal at $\delta = 21.0$, which is slightly low-field shifted with respect to that of **8** (δ = 14.3). Recrystallization of **9** from hot toluene afforded crystals suitable for X-ray diffraction (Figure 2). **9** crystallizes in the triclinic space group $\overline{P1}$ and represents, to the best of our knowledge, the first metal-substituted boronium species.¹⁹ The boron center is tetrahedrally coordinated by two neutral 4-methylpyridine donors, bromine, and iron. In comparison to **8** (Fe-B = 2.106(7) Å, B-N = 1.628-

a Reaction conditions: (i) 4-methylpyridine, 1 equiv, toluene, 0° C; (ii) 4-methylpyridine, ca. 2 equiv*,* toluene*,* 0 °C.

(9) Å), the Fe(1)-B(1) (2.1465(19) Å) distance is elongated, while the $B(1)-N(11)/N(21)$ (average 1.611(2) Å) contacts are slightly shortened. The $B(1)$ -Br(1) (2.061(2) Å) bond distance is longer than that in the, however only slightly related, boronium ion $[\{C_6H_4(Ph_2P)_2\}BBrH]^+$ (B-Br = 1.975(7) Å).²⁰ Obviously, the presence of 4-methylpyridine in excess induces the liberation of one boron-bound bromide with addition of the neutral base to the boron center. It should be noted that we recently observed a similar bromide-pyridine exchange at a platinum-coordinated boryl ligand, which led to a cationic, basestabilized borylene complex.21**Ruthenium and Manganese Complexes.** Although to a lesser extent than the aformentioned iron-based nucleophile $[(\eta^5-C_5R_5)Fe(CO)_2]^-$, corresponding anionic ruthenium and manganese species, in particular $[(\eta^5{\text{-}}C_5R_5)$ - $Ru(CO)_2]^{-}$, $^{22a-d}$ $[(\eta^5-C_5R_5)Mn(H)(CO)_2]^{-}$, 23 and $[(OC)_5Mn]^{-}$, 24a,b have been successfully utilized for the preparation of various boryl compexes.

To prove the generality of the synthesis of dihaloboryl complexes via salt elimination reactions, anionic Ru- and Mnbased carbonylates were employed. Na $[(\eta^5 - C_5H_4Me)Ru(CO)_2]$ was reacted with BCl₃ in toluene at -78 °C, yielding, as indicated by ¹¹B NMR data, the dihaloboryl complex $[(\eta^5{\text{-}}C_5H_4{\text{-}}C_6H_5H_5H_6{\text{-}}C_6H_7{\text{-}}C_7H_8{\text{-}}C_7H_8{\text{-}}C_8{\text{-}}C_7{\text{-}}C_7{\text{-}}C_7{\text{-}}C_7{\text{-}}C_7{\text{-}}C_7{\text{-}}C_7{\text{-}}C_7{\text{-}}C_7{\text{-}}C_7{\text{-}}C_7{\text{-}}C_7{\text{-}}C_7{\text{-}}C_7{\$ Me)Ru(CO)₂BCl₂] (**10**) (δ = 81.0). After workup, **10** is obtained as a green oil, which, according to multinuclear NMR spectroscopy, is free of accompanying impurities.

The reactions of $K[Mn(CO)_5]$ with excess $BCl₃$ in toluene and BBr_3 in hexane yield the dihaloboryl complexes $[(OC)_{5}Mn-$

⁽¹⁸⁾ Coombs, D. L.; Aldridge, S.; Rossin, A.; Jones, C.; Willock, D. J. *Organometallics* **2004**, *23*, 2911.

⁽¹⁹⁾ For a recent review about cationic boron compounds see: Piers, W.; Conrey, K.; Bourke, S. *Angew. Chem.* **2005**, *117*, 5142; *Angew. Chem., Int. Ed.* **2005**, *44*, 5016.

⁽²⁰⁾ Sigl, M.; Schier, A.; Schmidbaur, H. *Chem. Ber.* **1997**, *130*, 1411. (21) Braunschweig, H.; Radacki, K.; Rais, D.; Scheschkewitz, D. *Angew. Chem.* **2005**, *117*, 5796; *Angew. Chem. Int. Ed.* **2005**, *44*, 5651.

^{(22) (}a) Braunschweig, H.; Koster, M.; Wang, R. *Inorg. Chem.* **1999**, *38*, 415. (b) Hartwig, J. F.; Waltz, K. M. *Science* **1997**, *277*, 211. (c) Braunschweig, H.; Kollann, C.; Klinkhammer, K. W. *Eur. J. Inorg. Chem.* **1999**, 1523. (d) Braunschweig, H.; Radacki, K.; Rais, D.; Seeler, F. *Organometallics* **2004**, *23*, 5545.

⁽²³⁾ Braunschweig, H.; Colling, M.; Kollann, C.; Englert, U. *J. Chem. Soc., Dalton Trans.* **2002**, 2289.

^{(24) (}a) Waltz, K. M.; He, X.; Muhoro, C.; Hartwig, J. F. *J. Am. Chem. Soc.* **1995**, *117*, 11357. (b) Coombs, D. L.; Aldridge, S.; Jones, C. *J. Chem. Soc., Dalton Trans.* **2002**, 3851.

Figure 3. Molecular structure of **11**. Selected bond lengths [Å] and angles [deg]: $Mn1-B1 = 2.060(5)$, $B1-C11 = 1.777(3)$; $Mn1-B1-C11 = 124.46(14), Mn1-C1-O1 = 179.2(3), Mn1 C2-O2 = 177.1(3), C1-Mn1-C2 = 89.85(11), C1-Mn1-B1 =$ 87.50(10), $C2-Mn1-B1 = 83.68(9)$.

 BX_2] (11: $X = CI$; 12: $X = Br$), which are characterized by a broad ¹¹B NMR signal at δ = 94.2 (11) and 92.9 (12), respectively. Interestingly, the formation of **12** is not observed when toluene is used as a solvent, and the ¹¹B NMR spectrum of the dark orange reaction mixture shows several signals of unidentified species in the area $\delta = 0$ – 10. Pure 11 is obtained as a bright yellow solid by sublimation at room temperature and 12 as a yellow solid by crystallization from hexane at -30 °C. Both compounds are well soluble in toluene and hexane, vaporize when exposed to air, and show decomposition in solution at room temperature after a few hours, but can be stored under argon at -30 °C for several weeks. Single crystals suitable for X-ray diffraction of **11** were obtained from a toluene solution at -60 °C. 11 crystallizes in the orthorhombic space group *Fdd*2 and adopts C_{2v} symmetry (Figure 3). The Mn(1)-B(1) (2.060-(5) Å) distance is shorter than in $[(OC)_5MnB(1,2-O_2C_6H_4)]$ $(Mn-B = 2.108(6)$ Å),^{24a} indicating stronger Mn-B d_{π}-p_π back-bonding in **11**. This is, however, as reflected by the average C_{eq} -Mn(1)-B(1) (85.6°) and Mn- C_{eq} -O (178.2°) angles, which are equivalent within experimental error in both compounds, not accompanied by a more pronounced umbrella effect, which was observed for a corresponding pair of structurally related borylene complexes of the type $[(OC)_5Cr=B-R]$ (R = $N(SiMe₃)₂$, $Si(SiMe₃)₃$.²⁵

All attempts of growing single crystals of **12** from toluene, hexane, or mixtures of both at various temperatures failed. However, a few yellow crystals suitable for X-ray diffraction were obtained from a solution of **12** in toluene/hexane after three weeks at -30 °C, which show a broad signal in the ¹¹B NMR spectrum at $\delta = 63.1$ and turned out to be the bisboryloxide $[\{({\rm OC})_5{\rm MnBBr}\}_2{\rm O}]$ (13) (Figure 4). 13 crystallizes in the monoclinic space group *C*2/*c*. The boron atoms are slightly distorted trigonal planar coordinated by the manganese, chlorine, and oxygen atoms. The $Mn(1)-B(1)$ (2.093(2) Å) bond distance is slightly longer than in **¹¹** (2.060(5) Å). The B-O-B (159.3- (3)°) angle is significantly widened compared to the, to our knowledge, only structurally characterized halosubstituted bisboryloxide $[(i-Pr₂N)BC1]₂O (134.2(2)^o)²⁶$ or $(CatB)₂O (134.2-$ (2)^o) (Cat = 1,2-O₂C₆H₄).²⁷ These data provide evidence for an increased O-B p_{π} - p_{π} interaction in 13, which can be assigned to the weaker π -donating abilities of the $-Mn(CO)_{5}$

Figure 4. Molecular structure of **13**. Selected bond lengths [Å] and angles $[deg]$: Mn1-B1 = 2.093(2), B1-Br1 = 1.981(2), B1- $06 = 1.342(2)$; B1-O6-B1A = 159.3(3), Mn1-B1-Br1 = $121.91(10)$, Mn1-B1-O6 = 126.03(15), C1-Mn1-C3 = 169.40- (8) , C2-Mn1-C4 = 173.70 (8) , C1-Mn1-C2 = 90.48 (9) , C3- $Mn1-C4 = 89.79(9)$, C3-Mn1-B1 = 84.75(8), C3-Mn1-C5 $= 94.62(8)$.

fragment in comparison to $-NR_2$ or $-OR$ substituents. Due to slow diffusion of water into the flask, **13** is obviously formed by partial hydrolysis of **12** and subsequent condensation. Several attempts for a direct preparation of **13** from **12**, in particular by treatment with water vapor, by controlled hydrolysis with different water-containing solvents, or by reactions with Me₃-SiOSiMe₃ or Li_2O ,²⁸ failed. In all cases, ¹¹B NMR spectroscopy of the reaction mixtures gave evidence for the formation of **13**, which then, however, could not be isolated in the desired purity and yield.

Conclusion

A wide variety of dihaloboryl complexes were obtained via salt elimination reactions from suitable Fe-, Ru-, and Mn-based carbonylates. In particular, the properties of the iron complexes of the type $[(\eta^5$ -C₅R₅)(OC)₂Fe-BHal₂] (R = H, Me) are in agreement with the trend expected for a series of compounds with B-F, B-Cl, and B-Br bonds. IR data indicate an increase in d_{π} - p_{π} back-bonding along the series Fe-BF₂ < Fe-BCl₂ < Fe-BBr2, reflecting the decreasing potential of the halide for an effective p_{π} - p_{π} overlap with the small boron center. Thus, the Fe center appears to compensate, at least to some extent, for the reduced electronic stabilization of the boron atom provided by the heavier halides. Nevertheless, dibromoboryls proved to be far more reactive than their flouro- and chlorosubstituted counterparts. This is for example indicated by the labilility of the complex $[(\eta^5{\text{-}}C_5H_5)Fe(CO)_2BBr_2]$ (5) or the facile hydrolysis of [(OC)5MnBBr2] (**12**) yielding the bisboryloxo species $[\{(OC)_5MnBBr\}_2O]$ (13). The boron centers in the complexes $[(\eta^5 \text{-} C_5 \text{Me}_5) \text{Fe(CO)}_2 \text{BX}_2]$ (4: X = Cl; 6: X = Br) proved to be sufficiently Lewis-acidic to readily add 4-methylpyridine, thus forming the corresponding base adducts $[(\eta^5 C_5Me_5$)Fe(CO)₂BX₂(NC₅H₄-4-Me)] (7: X = Cl; 8: X = Br). Here again, the bromo complex **6** displayed its enhanced reactivity and formed, in the presence of excess base, the unprecedented metal-substituted boronium species **9**.

Experimental Section

1. General Considerations. All manipulations were conducted either under an atmosphere of dry argon or in vacuo using standard Schlenk line or glovebox techniques. Solvents (toluene, benzene, and hexane) were purified by distillation from appropriate drying agents (sodium and sodium wire) under dry argon, immediately prior to use. Deuterated solvents $(C_6D_6$ and CD_2Cl_2) were degassed

^{(25) (}a) Braunschweig, H.; Colling, M.; Kollann, C.; Merz, K.; Radacki, K. *Angew. Chem.* **2001**, *113*, 4327; *Angew. Chem., Int. Ed.* **2001**, *40*, 4198. (b) Braunschweig, H.; Colling, M.; Kollann, C.; Stammler, H.-G.; Neumann, B. *Angew. Chem.* **2001**, *113*, 2359; *Angew. Chem., Int. Ed.* **2001**, *40*, 2298. (26) Maringgele, W.; Noltemeyer, M.; Meller, A. *Organometallics* **1997**,

¹⁶, 2276.

⁽²⁷⁾ Lang A.; Khizek J.; Nöth H.; Schur S.; Thomann M *Z. Anorg. Allg. Chem.* **1997**, *623*, 901.

⁽²⁸⁾ Paetzold, P.; Geret-Baumgarten, L.; Boese, R. *Angew. Chem.* **1992**, *104*, 1071.

by three freeze-pump-thaw cycles and stored over molecular sieves in the glovebox. IR spectra were recorded as toluene $(1-8)$, **¹⁰**-**12**) or dichloromethane (**9**) solutions between KBr plates on a Bruker Vector 22 FT-IR-spectrometer. ¹H and ¹³C{¹H} NMR spectra were acquired on a Bruker AMX 400 NMR spectrometer at 400.14 and 100.63 MHz (**3**, **¹⁰**-**12**) and a Bruker Avance 500 NMR spectrometer at 500.13 and 125.76 MHz (**1**, **²**, **⁴**-**9**), respectively, and referenced to external TMS via the residual protio solvent (¹H) or the solvent itself (¹³C). ¹⁹F{¹H} NMR spectra were recorded on a Bruker DRX 300 NMR spectrometer at 282.40 MHz and referenced to external CFCl₃. $^{11}B{^1H}$ NMR spectra were recorded on a Bruker Avance 200 NMR spectrometer at 64.22 MHz and referenced to external BF_3 · OEt_2 . Microanalyses for C, H, and N were performed by Mrs. L. Michels (University of Wuerzburg) on a Leco CHNS-932 instrument.

2. Synthetic Procedures. Synthesis of $[(\eta^5 - C_5H_5)Fe(CO)_2BF_2]$ **(1).** A Schlenk tube containing a suspension of $K[(\eta^5-C_5H_5)Fe$ $(CO)_2$] $(0.23 \text{ g}, 1.06 \text{ mmol})$ in toluene (10 mL) was cooled to 0 $^{\circ}$ C, and BF₃ \cdot Et₂O (0.15 mL, 0.17 g, 1.21 mmol) was added dropwise. The reaction mixture was allowed to warm to room temperature and was stirred for 15 min, resulting in the formation of a cloudy, red solution. Subsequent removal of all volatiles in vacuo at room temperature afforded a red solid. Hexane (20 mL) was added, and residual solids were separated by centrifugation. The clear, red supernatant liquors were then decanted, reduced in volume by ca. 50%, and cooled to -60 °C. After a period of ca. 6 h, the red-colored crystals of pure **1** that had formed were isolated and dried in vacuo (yield 0.090 g, 37%). IR: 2022, 1965 cm-1, *ν*(CO). NMR (C₆D₆): ¹H 3.99 (s, C₅H₅); ¹³C{¹H} 83.72 (s, C₅H₅), 213.0 (s, CO); ¹¹B{¹H} 47.1 (t, $J_{\rm B-F}$ = 181 Hz); ¹⁹F{¹H} 2.72 (q, $J_{\rm B-F} = 181$ Hz). Anal. Calcd for C₇H₅O₂BF₂Fe: C 37.24; H 2.23. Found: C 37.16; H 2.22.

Synthesis of $[(\eta^5-C_5Me_5)Fe(CO)_2BF_2]$ (2). A Schlenk tube containing a suspension of $\text{Na}[(\eta^5 \text{-} C_5 \text{Me}_5) \text{Fe}(\text{CO})_2]$ (0.15 g, 0.56) mmol) in toluene (10 mL) was cooled to 0 $^{\circ}$ C, and BF₃ \cdot Et₂O (0.10 mL, 0.12 g, 0.81 mmol) was added dropwise. The reaction mixture was allowed to warm to room temperature and was stirred for 15 min, resulting in the formation of a cloudy, red solution. Subsequent removal of all volatiles in vacuo at room temperature afforded a dark red solid. Hexane (10 mL) was added and residual solids were separated by centrifugation. The clear, red supernatant liquors were then decanted, reduced in volume by ca. 50%, and cooled to -60 °C. After a period of ca. 14 h, the red-colored crystals of pure **2** that had formed were isolated and dried in vacuo (yield 0.067 g, 40%). IR: 2002, 1946 cm⁻¹, *ν*(CO). NMR (C₆D₆): ¹H 1.45 (s, C_5Me_5); ¹³C{¹H} 10.20 (s, C_5Me_5), 96.62 (s, C_5Me_5), 215.7 (s, CO); ¹¹B{¹H} 48.3 (t, $J_{\rm B-F} = 189$ Hz); ¹⁹F{¹H} -3.77 (q, $J_{\rm B-F} = 187$ Hz). Anal. Calcd for $C_7H_5O_2BFeF_2$: C 48.71; H 5.11. Found: C 48.72; H 4.96.

Synthesis of $[(\eta^5\text{-}C_5H_5)Fe(CO)_2BCl_2]$ **(3) was already reported.¹²**

Synthesis of $[(\eta^5-C_5Me_5)Fe(CO)_2BCI_2]$ (4). A Schlenk tube containing a suspension of $\text{Na}[(\eta^5 \text{-} C_5 \text{Me}_5)\text{Fe}(\text{CO})_2]$ (1.43 g, 7.15 mmol) in toluene (20 mL) was cooled to -78 °C and evacuated, and gaseous $BCl₃$ (2.88 g, 24.6 mmol) introduced. The reaction mixture was slowly allowed to warm to -30 °C, at which point the orange-colored suspension began to darken. Stirring was continued at this temperature for ca. 1 h, resulting in the formation of a cloudy, dark red solution. Subsequent removal of all volatiles in vacuo at room temperature afforded a dark red oil. Hexane (20 mL) was added, and residual solids were separated by centrifugation. The clear, red supernatant liquors were then decanted, reduced in volume by ca. 50%, and cooled to -60 °C. After a period of ca. 16 h, the red-colored crystals of pure **4** that had formed were isolated and dried in vacuo (yield 0.58 g, 31%). IR: 2006, 1955 cm-1, *ν*- (CO). NMR (C_6D_6): ¹H 1.43 (s, C₅Me₅); ¹³C{¹H} 9.29 (s, C₅Me₅), 96.31 (s, *C*₅Me₅), 215.2 (s, CO); ¹¹B{¹H} 94.9 (br s, $ω_{1/2} = 137$ Hz). Anal. Calcd for $C_{12}H_{15}O_2BFeCl_2$: C 43.83; H 4.60. Found: C 44.07; H 4.50.

Synthesis of $[(\eta^5{\text -}C_5H_5)Fe(CO)_2BBr_2]$ (5). A Schlenk tube containing a suspension of $\text{Na}[(\eta^5 \text{-} C_5 H_5) \text{Fe(CO)}_2]$ (0.40 g, 2.00) mmol) in toluene (15 mL) was cooled to -78 °C, and BBr₃ (0.30) mL, 0.79 g, 3.16 mmol) was added dropwise. The reaction mixture was slowly allowed to warm to -30 °C, at which point the orangecolored suspension began to darken. Stirring was continued at this temperature for ca. 1 h, resulting in the formation of a cloudy, dark red solution. Subsequent removal of all volatiles in vacuo at room temperature afforded a dark red oil. Hexane (20 mL) was added, and residual solids were separated by centrifugation. The clear, red supernatant liquors were then decanted, reduced in volume by ca. 50%, and cooled to -60 °C. After a period of ca. 16 h, the redcolored crystals of pure **5** that had formed were isolated and dried in vacuo (yield 0.33 g, 48%). IR: 2045, 2000 cm⁻¹, *ν*(CO). NMR (C_6D_6) : ¹H 4.01 (s, C₅H₅); ¹³C{¹H} 87.40 (s, C₅H₅), 212.7 (s, CO); ¹¹B{¹H} 85.9 (br s). Anal. Calcd for C₇H₅O₂BFeBr₂: C 24.19; H 1.45. Found: C 24.03; H 1.57.

Synthesis of $[(\eta^5 \text{-} C_5 \text{Me}_5) \text{Fe}(\text{CO})_2 \text{BBr}_2]$ (6). A Schlenk tube containing a suspension of $\text{Na}[(\eta^5 \text{-} C_5 \text{Me}_5) \text{Fe}(\text{CO})_2]$ (0.51 g, 1.88) mmol) in toluene (15 mL) was cooled to -78 °C, and BBr₃ (0.18) mL, 0.47 g, 1.88 mmol) was added dropwise. The reaction mixture was slowly allowed to warm to -30 °C, at which point the orangecolored suspension began to darken. Stirring was continued at this temperature for ca*.* 1 h, resulting in the formation of a cloudy, dark red solution. Subsequent removal of all volatiles in vacuo at room temperature afforded a dark red oil. Hexane (20 mL) was added, and residual solids were separated by centrifugation. The clear, red supernatant liquors were then decanted, reduced in volume by ca. 50%, and cooled to -60 °C. After a period of ca. 16 h, the redcolored crystals of pure **6** that had formed were isolated and dried in vacuo (yield 0.28 g, 35%). IR: 2022, 1975 cm-1, *ν*(CO). NMR (C_6D_6) : ¹H 1.40 (s, C₅Me₅); ¹³C{¹H} 9.11 (s, C₅Me₅), 96.46 (s, C_5Me_5), 214.2 (s, CO); ¹¹B{¹H} 91.0 (br s). Anal. Calcd for C12H15O2BFeBr2: C 34.50; H 3.62. Found: C 34.88; H 3.60.

Synthesis of $[(\eta^5\text{-}C_5Me_5)Fe(CO)_2BCl_2\text{-}NC_5H_4\text{-}4-Me]$ (7). A solution of **4** (0.49 g, 1.89 mmol) in toluene (15 mL) was cooled to 0 \degree C, and a solution of 4-methylpyridine (0.18 g, 1.89 mmol) in further toluene (5 mL) added dropwise. The reaction mixture was allowed to warm, with stirring, to room temperature, and all volatiles were removed in vacuo to afford pure **7** in quantitative yield. IR: 1958, 1899 cm⁻¹, *ν*(CO). NMR (C₆D₆): ¹H 1.27 (s, 3H, NC₅H₄-4-*Me*), 1.90 (s, 15H, C5Me5), 6.19 (m, 2H, NC5H2-3,5-*H*2-4-Me), 9.26 (m, 2H, NC₃H₄-2,6-H₂-4-Me); ¹³C{¹H} 10.11 (s, C₅Me₅) 20.34 (s, NC5H4-4-*Me*), 97.06 (s, *C*5Me5), 124.8 (s, NC4-4-*C*-H4-4-Me), 144.0 (s, N*C*4H4-4-Me), 215.2 (s, CO); 11B{1H} 21.3 (s). Anal. Calcd for $C_{18}H_{22}O_2NBFeCl_2$: C 51.24; H 5.26; N 3.32. Found: C 50.47; H 5.37; N 3.68.

Synthesis of $[(\eta^5-C_5Me_5)Fe(CO)_2BBr_2$ **'NC₅H₄-4-Me]** (8). A solution of **6** (0.16 g, 0.38 mmol) in toluene (5 mL) was cooled to 0 °C and a solution of 4-methylpyridine (0.036 g, 0.38 mmol) in further toluene (2 mL) added dropwise. The reaction mixture was allowed to warm, with stirring, to room temperature. The clear red solution was reduced in volume by ca. 50%, hexane (3 mL) was added, and cooling to -30 °C over a period of 16 h afforded yellow crystals of **8** (0.16 g, 81%). IR: 1963, 1904 cm-1, *ν*(CO). NMR (C_6D_6) : ¹H 1.28 (s, 3H, NC₅H₄-4-*Me*), 1.85 (s, 15H, C₅Me₅), 6.11 (m, 2H, NC₅H₂-3,5-H₂-4-Me), 9.62 (m, 2H, NC₃H₄-2,6-H₂-4-Me); 13C{1H} 9.99 (s, C5*Me*5) 20.30 (s, NC5H4-4-*Me*), 97.49 (s, *C*5Me5), 124.5 (s, NC4-4-*C*-H4-4-Me), 145.1 (s, N*C*4H4-4-Me), 221.1 (s, CO); ¹¹B{¹H} 14.3 (s). Anal. Calcd for C₁₈H₂₂O₂NBFeBr₂·C₆H₆: C 48.94; H 4.79; N 2.38. Found: C 48.76; H 4.87; N 2.52.

Synthesis of $[(\eta^5 - C_5Me_5)Fe(CO)_2BBr(NC_5H_4 - 4Me)_2]Br (9)$. **6** (0.31 g, 0.74 mmol) and 4-methylpyridine (0.14 g, 1.54 mmol) in toluene (7 mL) were stirred for 5 min. Hexane (5 mL) was added, and the yellow precipitate was collected by centrifugation, washed

Table 2. Crystallographic Data for Compounds 7-**9, 11, and 13**

with hexane $(2 \times, 5 \text{ mL})$, and dried in vacuo. **9** was obtained as a bright yellow solid (0.34 g, 76%). IR: 1977, 1918 cm-1, *ν*(CO). NMR (CD₂Cl₂): ¹H 1.73 (s, 15H, C₅Me₅), 2.62 (s, 6H, NC₅H₄-4-Me), 7.71 (m, 4H, NC₅H₂-3,5-H₂-4-Me), 8.79 (m, 2H, NC₃H₄-2,6-H2-4-Me); 13C{1H} 9.94 (s, C5*Me*5), 21.30 (s, NC5H4-4-*Me*), 97.33 (s, *C*5Me5), 125.4 (s, NC4-4-*C*-H4-4-Me), 128.2 (s, NC3-3,5-*C*2- H₄-4-Me), 128.3 (s, NC₃-2,6-C₂-H₄-4-Me), 219.5 (s, CO); ¹¹B{¹H} 21.0 (s). Anal. Calcd for C₂₄H₂₉O₂N₂BFeBr₂: C 47.73; H 4.84; N 4.64. Found: C 47.64; H 4.78; N 4.34.

Synthesis of $[(\eta^5 - C_5H_4Me)Ru(CO)_2BCl_2]$ **(10).** A Schlenk tube containing a suspension of Na $[(\eta^5{\text{-}}C_5H_5)Ru(CO)_2]$ (0.60 g, 2.31) mmol) in toluene (15 mL) was cooled to -78 °C and evacuated, and gaseous $BCl₃$ (1.44 g, 12.3 mmol) introduced. The reaction mixture was slowly allowed to warm to -30 °C and stirred for ca. 1 h, resulting in the formation of a cloudy, dark green solution. Subsequent removal of all volatiles in vacuo, at room temperature, afforded a dark green oil. Hexane (20 mL) was added, and residual solids were separated by centrifugation. All volatiles were removed in vacuo, yielding **10** as a pale green oil (yield 0.17 g, 23%). IR: 2021, 1958 cm⁻¹, *ν*(CO). NMR (C₆D₆): ¹H 1.57 (s, 3H, C₅H₄-*Me*) 4.54 (m, 2H, C5*H*4-Me) 4.60 (m, 2H, C5*H*4-Me); 13C{1H} 13.82 (s, C5H4-*Me*) 84.09 (s, *C*4-1-C- H4-1-Me) 84.80 (s, *C*4-1-C- H4-1-Me) 105.6 (s, C4-1-*C*- H4-1-Me) 200.7 (s, CO); 11B{1H} 81.0 (br s).

Synthesis of $[(OC)_5MnBCl_2]$ (11). A Schlenk tube containing a suspension of $K[Mn(CO)_5]$ (1.20 g, 5.12 mmol) in toluene (15 mL) was cooled to -78 °C and evacuated, and gaseous BCl₃ (1.44) g, 12.3 mmol) introduced. The reaction mixture was slowly allowed to warm to room temperature. Stirring was continued at this temperature for ca. 1 h, resulting in the formation of an orange solution and a white solid. The solid was separated by centrifugation, and the clear, orange solution was decanted and cooled to -³⁰ °C. After a period of ca. 12 h, pale yellow crystals of **¹¹** had formed, which were isolated and purified by sublimation at room temperature and 10^{-3} Torr (yield 0.92 g, 65%). IR: 2115, 2052, 2012 cm⁻¹, *ν*(CO). NMR (C₆D₆): ¹³C{¹H} 208.8 (s, CO); ¹¹B- ${^{1}H}$ 94.2 (br s). Anal. Calcd for C₅O₅MnBCl₂: C 21.70. Found: C 21.79.

Synthesis of [(OC)₅MnBBr₂] (12). A Schlenk tube containing a suspension of $K[Mn(CO)_5]$ (0.21 g, 0.90 mmol) in hexane (20 mL) was cooled to 0° C, and BBr₃ (0.20 mL, 0.53 g, 2.10 mmol) was added dropwise. The reaction mixture was allowed to warm to room temperature and stirred for 15 min, resulting in the formation of an orange solution and a white solid. The solid was separated by centrifugation, and the clear, orange solution was decanted, reduced in volume by ca. 50%, and cooled to -30 °C. After a period of ca. 16 h, the yellow-colored crystals of pure **12** that had formed were isolated and dried in vacuo (yield 0.33 g, 50%). IR: 2116, 2051, 2013 cm⁻¹, $ν$ (CO). NMR (C₆D₆): ¹³C{¹H} 208.5 (s, CO); ¹¹B{¹H} 92.9 (br s). Anal. Calcd for $C_5O_5MnBBr_2$: C 16.43. Found: C 16.68.

Acknowledgment. The authors thank the DFG for financial support.

Supporting Information Available: Text detailing the structural determinations for **7**, **8**, **9**, **11**, and **13** (including CIF files). This material is available free of charge via the Internet at http://pubs.acs.org.

OM060377Z