Tricobalt Carbonyl Clusters Containing C_n **(** $n = 2, 4, 6$ **) Ligands**

Michael I. Bruce,*,† Brian W. Skelton,‡ Allan H. White,‡ and Natasha N. Zaitseva†

*Department of Chemistry, Uni*V*ersity of Adelaide, Adelaide, South Australia 5005, Australia, and Chemistry M313, Uni*V*ersity of Western Australia, Crawley, Western Australia 6009, Australia*

*Recei*V*ed December 20, 2005*

Treatment of $Co_3(\mu_3-CBr)(\mu$ -dppm)(CO)₇ with zinc dust in refluxing thf afforded $Co_6(\mu_6-C_2)(\mu$ -dppm)₂- $(\mu$ -CO)(CO)₁₂ (5), containing two Co₃ triangles which are linked by a short Co–Co bond and the C₂ ligand. The Pd(0)/Cu(I)-catalyzed reactions of $\text{Co}_3(\mu_3-\text{CBr})(\mu-\text{dppm})(\text{CO})_7$ or $\text{Co}_3(\mu_3-\text{CBr})(\text{CO})_9$ with $Co_3\{\mu_3-C(C\equiv C)_nAu(PPh_3)\}\$ (*µ*-dppm)(CO)₇ (*n* = 1, 2, respectively) gave $\{Co_3(\mu\text{-}dppm)(CO)_7\}$ 2($\mu_3:\mu_3$ - $CC\equiv CC$) (6) and the unsymmetrical C₆ derivative $\{(OC)_9CO_3\}$ *u₃*: μ_3 -C(C $\equiv C$)₂C $\{C_{3}(u \cdot \text{dppm})(CO)_{7}\}$ (4). The former reacted further with dppm to give $\{Co_3(\mu$ -dppm)(CO)₇ $\}$ ₂(μ ₃: μ ₃-CC=CC)(μ -dppm) (7), in which the two $Co₃$ clusters are bridged by the third dppm ligand.

Introduction

Interest in compounds containing unsaturated C_n chains endcapped by transition-metal-ligand groups arises out of the propensity for electronic interactions (electron or hole transport) between the metal centers through the carbon chain. $1-3$ This is particularly apparent when the metal-ligand groupings are redox active, and much recent interest in systems containing Mn , 4 Re, 5 Fe,^{6,7} Ru,⁸ Ru₂, ⁹ and Pt¹⁰ has been summarized in recent reviews.11

Complexes containing C_2 or C_4 groups linking two metal cluster moieties have been known for many years.¹²⁻¹⁴ The molecular structures of both monoclinic¹⁵ and trigonal¹⁶ phases of $\{ (OC)_9CO_3\}_2(\mu_3:\mu_3-C_2)$ (1) confirm the presence of a C-C

bond, measured at 1.37(2) and 1.426(9) Å, respectively. Each carbon atom is also attached to a triangular $Co₃(CO)₉$ cluster

* To whom correspondence should be addressed. E-mail: michael.bruce@adelaide.edu.au.

† University of Adelaide.

- ‡ University of Western Australia.
- (1) Ward, M. D. *Chem. Ind.* **1996**, 568.

(2) Harriman, A. D.; Ziessel, R. *Coord. Chem. Re*V*.* **¹⁹⁹⁸**, *¹⁷¹*, 331.

(3) (a) Paul, F.; Lapinte, C. *Coord. Chem. Re*V*.* **¹⁹⁹⁸**, *¹⁷⁸*-*180*, 431. (b) Paul, F.; Lapinte, C. In *Unusual Structures annd Physical Properties in Organometallic Chemistry*; Gielen, M.; Willem, R.; Wrackmeyer, B.; Eds.; Wiley: Chichester, U.K., 2002; p 220.

(4) (a) Fernandez, F. J.; Alfonso, M.; Schmalle, H. W.; Berke, H. *Organometallics* **2001**, *20*, 3122. (b) Kheradmandan, S.; Heinze, K.; Schmalle, H. W.; Berke, H. *Angew. Chem.* **1999**, *111*, 2412; *Angew. Chem., Int. Ed.* **1999**, *38*, 2270. (c) Keradmandan, S.; Venkatesan, K.; Blacque, O.; Schmalle, H. W.; Berke, H. *Chem. Eur. J.* **2004**, *10*, 4872.

(5) (a) Brady, M.; Weng, W.; Zhou, Y.; Seyler, J. W.; Amoroso, A. J.; Arif, A. M.; Böhme, M.; Frenking, G.; Gladysz, J. A. *J. Am. Chem. Soc.* **1995**, *117*, 11922. (b) Falloon, S. B.; Szafert, S.; Arif, A. M.; Gladysz, J. A. *Chem. Eur. J.* **1998**, *4*, 1033. (c) Bartik, T.; Weng, W.; Ramsden, J. A.; Szafert, S.; Falloon, S. B.; Arif, A. M.; Gladysz, J. A. *J. Am. Chem. Soc.*, **1998**, *120*, 11071. (d) Dembinski, R.; Bartik, T.; Bartik, B.; Jarger, M.; Gladysz, J. A. *J. Am. Chem. Soc.* **2000**, *122*, 810. (e) Meyer, W. E.; Amoroso, A. J.; Horn, C. R.; Jaeger, M.; Gladysz, J. A. *Organometallics* **2001**, *20*, 1115. (f) Brady, M.; Weng, W.; Zhou, Y.; Seyler, J. W.; Amoroso, A. J.; Arif, A. M.; Böhme, M.; Frenking, G.; Gladysz, J. A. *J. Am. Chem. Soc.* **1997**, *119*, 775.

with mean Co-Co and Co-C separations of 2.457(1) and 1.95-(1) Å, respectively. The X-ray structure of the analogous C_4 cluster $(2)^{13c}$ shows that the C₄ ligand linking the two Co₃(CO)₉ clusters has C-C separations of 1.37(1) and 1.24(2) Å, together with mean Co-Co and Co-C distances of 2.47(1) and 1.92(1) Å. In this complex, the carbon chain geometry is consistent with

(6) (a) Akita, M.; Chung, M.-C.; Terada, M.; Miyauti, M.; Tanaka, M.; Moro-oka, Y. *J. Organomet. Chem.* **1998**, *565*, 49. (b) Akita, M.; Sugimoto, S.; Hirakawa, H.; Kato, S.; Terada, M.; Tanaka, M.; Moro-oka, Y. *Organometallics* **2001**, *20*, 1555. (c) Akita, M.; Terada, M.; Moro-oka, Y. *Organometallics* **1992**, *11*, 1825. (d) Chung, M.-C.; Sakurai, A.; Akita, M.; Moro-oka, Y. *Organometallics* **1999**, *18*, 4684. (e) Akaita, M.; Sakurai, A.; Chung, M.-C.; Moro-oka, Y. *J. Organomet. Chem.* **2003**, *670*, 2. (f) Akita, M.; Moro-oka, Y. *Bull. Chem. Soc. Jpn*. **1995**, *68*, 420.

(7) (a) Coat, F.; Guillevic, M.-A.; Toupet, L.; Paul, F.; Lapinte, C. *Organometallics* **1997**, *16*, 5988. (b) Guillemot, M.; Toupet, L.; Lapinte, C. *Organometallics* **1998**, *17*, 1928. (c) Coat, F.; Paul, F.; Lapinte, C.; Toupet, L.; Costuas, K.; Halet, J.-F. *J. Organomet. Chem.* **2003**, *683*, 368. (d) Le Narvor, N.; Toupet, L.; Lapinte, C. *J. Am. Chem. Soc.* **1995**, *117*, 7129.

(8) (a) Bruce, M. I.; Low, P. J.; Costuas, K.; Halet, J.-F.; Best, S. P.; Heath, G. A. *J. Am. Chem. Soc.* **2000**, *122*, 1949. (b) Bruce, M. I.; Ellis, B. G.; Low, P. J.; Skelton, B. W.; White, A. H. *Organometallics* **2003**, *22*, 3184.

(9) (a) Ren, T.; Xu, G.-L. *Comments Inorg. Chem.* **2002**, *23*, 355. (b) Ren, T.; Zou, G.; Alvarez, J. C. *Chem. Commun.* **2000**, 1197.

(10) (a) Peters, T. B.; Bohling, J. C.; Arif, A. M.; Gladysz, J. A. *Organometallics* **1999**, 18, 3261. (b) Mohr, W.; Stahl, J.; Hampel, F.; Gladysz, J. A. *Inorg. Chem.* **2001**, *40*, 3263. (c) Bohling, J. C., Peters, T. B.; Arif, A. M.; Hampel, F.; Gladysz, J. A. In *Coordination Chemistry at the Turn of the Century*; Ondrejovic, G., Sirota, A., Eds.; Slovak Technical University Press: Bratislava, Slovakia, 1999; p 47. (d) Owen, G. R.; Stahl, J.; Hampel, F.; Gladysz, J. A. *Organometallics* **2004**, *23*, 5889. (e) Owen, G. R.; Hampel, F.; Gladysz, J. A. *Organometallics* **2004**, *23*, 5893. (f) Zheng, Q.; Hampel, F.; Gladysz, J. A. *Organometallics* **2004**, *23*, 5896. (g) Mohr, W.; Stahl, J.; Hampel, F.; Gladysz, J. A. *Chem. Eur. J.* **2003**, *9*, 3324.

(11) (a) Low, P. J.; Bruce, M. I. *Ad*V*. Organomet. Chem.* **²⁰⁰²**, *⁴⁸*, 71. (b) Bruce, M. I.; Low, P. J. *Ad*V*. Organomet. Chem.* **²⁰⁰⁴**, *⁵⁰*, 179.

(12) Allegra, G.; Ercoli, R.; Peronaci, E. M. *Chem. Commun.* **1966**, 549. (13) (a) Dellaca, R. J.; Penfold, B. R.; Robinson, B. H.; Robinson, W. T.; Spencer, J. L. *Inorg. Chem.* **1970**, *9*, 2197. (b) Robinson, B. H.; Spencer, J. L.; Hodges, R. *Chem. Commun.* **1968**, 1480. (c) Dellaca, R. J.; Penfold, B. R.; Robinson, B. H.; Robinson, W. T.; Spencer, J. L. *Inorg. Chem.* **1970**, *9*, 2204. (d) Palyi, G.; Varada, G.; Schmiedeknecht, K. *C1 Mol. Chem.* **1985**, *1*, 297. (e) Mlekuz, M.; D'Agostino, M. F.; Kolis, J. W.; McGlinchey, M. J. *J. Organomet. Chem.* **1986**, *303*, 361. (f) Seyferth, D.; Hallgren, J. E.; Spohn, R. J.; Williams, G. H.; Nestle, M. O.; Hung, P. L. K. *J. Organomet. Chem.* **1974**, *65*, 99. (g) Beveridge, A. D.; Clark, H. C. *J. Organomet. Chem.* **1968**, *11*, 601. (h) Bor, G.; Marko, L.; Marko, B. *Chem. Ber.,* **1961**, *95*, 333. (i) Le Coustemer, G.; Mollier, Y. *J. Chem. Soc., Chem. Commun.* **1980**, 38. (j) Varadi, G.; Palyi, G. *Inorg. Chim. Acta* **1976**, *20*, L33.

"partial π -delocalization", while the carbonyl groups shield the C=C triple bond so that it does not react with $Co_2(CO)_8$, for example. The next higher ethynologue, ${CO_3(CO)_9}$ ₂ ${µ_3:µ_3\text{-}CC}$ $CC\equiv CC$) (3), has not yet been described, although the $Co₂$ - $(CO)₆$ derivative has been obtained and structurally characterized by two groups.17,18 In connection with our studies on complexes containing carbon chains end-capped by metal cluster moieties, much of which has been centered on compounds containing the $Co_3(\mu$ -dppm)(CO)₇ end group,¹⁹ we have attempted to obtain complexes analogous to **1** and **2** containing these end groups. This paper describes the results of our search and the structures and properties of three complexes which we have characterized, together with the asymmetric bis-cluster compound $\{ (OC)_9Co_3 \}$ - $(\mu_3:\mu_3\text{-CC} \equiv \text{CC} \equiv \text{CC}) {\text{Co}_3(\mu\text{-dppm})(\text{CO})_7}$ (4).

Results and Discussion

Treatment of $Co_3(\mu_3-Br)(\mu$ -dppm)(CO)₇ with zinc dust in refluxing thf afforded a Co₆ cluster identified as $Co₆(\mu₆-C₂)$ - $(\mu$ -dppm)₂(μ -CO)(CO)₁₂ (**5**) by a single-crystal X-ray structure determination, together with small amounts of $Co₃(\mu₃-CCO₂H)$ - $(\mu$ -dppm)(CO)₇.^{20,21} In **5**, the two Co₃ clusters have been linked by a further long $Co-Co$ bond (2.6788(6) Å) at the expense of loss of one of the CO ligands. This Co-Co bond is bridged by a CO group, while the C_2 fragment also links the two clusters by interacting with all six metal atoms. The two dppm ligands bridge Co-Co edges of the triangular faces and adopt a conformation which places them in mutually orthogonal orientations; in one $Co₃$ cluster the three basal Co - Co edges are also bridged by CO ligands.

The C₄ complex $\{Co_3(\mu\text{-dppm})(CO)_7\}$ ₂ $(\mu_3:\mu_3\text{-}CC\equiv CC)$ (6), obtained in 63% yield by the Pd(0)/Cu(I)-catalyzed elimination of AuBr(PPh₃) from an equimolar mixture of $Co₃(\mu$ ₃-CBr)(μ dppm)(CO)₇ and Co₃{ μ ₃-CC=CAu(PPh₃)}(μ -dppm)(CO)₇,²² reacts further with dppm to give ${Co_3(\mu\text{-dppm})(CO)_7}_{2}(\mu_3:\mu_3$ - $CC=CC$)(μ -dppm) (**7**) in 87% yield.²³ The unsymmetrical complex $\{ (OC)_9Co_3\} \{ \mu_3: \mu_3-C(C\equiv C)_2C \} \{ \text{Co}_3(\mu\text{-dppm})(CO)_7 \}$ (4)

(18) (a) Robinson, B. H.; Spencer, J. L. *J. Organomet. Chem.* **1971**, *30*, 267. (b) Dellaca, R. J.; Penfold, B. R. *Inorg. Chem.* **1971**, *10*, 1269.

(19) (a) Bruce, M. I.; Smith, M. E.; Zaitseva, N. N.; Skelton, B. W.; White, A. H. *J. Organomet. Chem.* **2003**, *670*, 170. (b) Bruce, M. I.; Skelton, B. W.; White, A. H.; Zaitseva, N. N. *J. Organomet. Chem.* **2003**, *683*, 398. (c) Antonova, A. B.; Bruce, M. I.; Ellis, B. G.; Gaudio, M.; Humphrey, P. A.; Jevric, M.; Melino, G.; Nicholson, B. K.; Perkins, G. J.; Skelton, B. W.; Stapleton, B.; White, A. H.; Zaitseva, N. N. *Chem. Commun.* **2004**, 960.

(20) Zinc dust (excess) was added to a solution of $Co₃(\mu₃-CBr)(\mu-dppm)$ -(CO)9 (50 mg, 0.06 mmol) in thf (6 mL), and the mixture was heated at the reflux point for 4 h. The filtered solution was evaporated, and a $CH₂Cl₂$ extract of the residue was separated by preparative tlc (acetone/hexane 3/7). The first black band $(R_f \ 0.46)$ contained $\text{Co}_3(\mu_3\text{-CH})(\mu\text{-dppm})(\text{CO})$ ₉ (5.3 mg, 11%), and the second green band $(R_f 0, 31)$ afforded $Co_3(\mu_3-CCO_2H)$ -(*µ*-dppm)(CO)9 (2.9 mg, 6%), both identified by comparison with authentic samples. A slow-moving brown-purple band $(R_f 0.21)$ yielded $\text{Co}_6(\mu_6-\text{C}_2)$ -(*µ*-dppm)2(*µ*-CO)(CO)12 (**5**; 16.3 mg, 37%), obtained as dark crystals (CH2- Cl₂/MeOH). Anal. Found: C, 51.70; H, 2.92. Calcd (C₆₅H₄₄Co₆O₁₃P₄; M_r) 1510): C, 51.65; H, 2.91. IR (CH2Cl2, cm-1): *^ν*(CO) 2045 s, 2015 vs, 1991 m, 1875 vw, 1848 vw, 1819 vw, 1785 vw. 1H NMR: *δ* 2.84, 4.39 (2 [×] m, 2 [×] 2H, dppm), 7.37-7.87 (m, 40H, Ph). 31P NMR: *^δ* 32.25, 44.8 $(2 \times s$ (br)). ES MS (positive ion, MeOH + NaOMe, m/z): 1533, [M + Na]⁺. ES MS (negative ion, MeOH + NaOMe, m/z): 1509, [M - H]⁻; 1491, $[M - H - CO]$ ⁻.

(21) Bruce, M. I.; Kramarczuk, K. A.; Perkins, G. J.; Skelton, B. W.; White, A. H.; Zaitseva, N. N. *J. Cluster Sci.* **2004**, *15*, 119.

was formed similarly in 72% yield from $Co₃(\mu_3-CBr)(CO)$ ₉ and $Co₃(\mu_3$ -CC=CC=CAu(PPh₃)}(μ -dppm)(CO)₇.²⁴ All of the complexes were identified by elemental microanalyses and mass spectrometry.

The IR spectra of **³**-**⁷** each contained terminal *^ν*(CO) absorptions between 2063 and 1933 cm^{-1} , with weak bands between 1875 and 1785 cm^{-1} arising from the bridging CO groups in **5**. Comparison of the spectra of **2** (2107 w, 2090 s, 2065 vs, 2037 s, 1983 vw cm⁻¹) and $\boldsymbol{6}$ is instructive, the stronger absorptions in particular showing a pronounced shift to lower wavenumbers, consistent with increased back-bonding from the more electron-rich dppm-substituted clusters. For **3**, *ν*(CO) bands

^{(14) (}a) Worth, G. H.; Robinson, B. H.; Simpson, J. *Organometallics* **1992**, *11*, 3863. (b) Robinson, B. H.; Tham, W. S. *J. Organomet. Chem.* **1968**, *16*, P45. (c) Matheson, T. W.; Robinson, B. H.; Tham, W. S. *J. Chem. Soc. A* **1971**, 1457.

⁽¹⁵⁾ Brice, M. D.; Penfold, B. R. *Inorg. Chem.* **1972**, *11*, 1381.

⁽¹⁶⁾ Geiser, U.; Kini, A. M. *Acta Crystallogr.* **1993**, *C49*, 1322.

⁽¹⁷⁾ Seyferth, D.; Spohn, R. J.; Churchill, M. R.; Gold, K.; Scholer, F. *J. Organomet. Chem.* **1970**, *23*, 237.

⁽²²⁾ A mixture of $Co_3(\mu_3-CBr)(\mu$ -dppm)(CO)₉ (34 mg, 0.04 mmol), Co₃- $\{\mu_3$ -CC=CAu(PPh₃)}(μ -dppm)(CO)₉ (50 mg, 0.04 mmol), Pd(PPh₃)₄ (6 mg, 0.005 mmol), and CuI (1 mg, 0.005 mmol) in thf (4 mL) was stirred at room temperature for 2 h. After removal of solvent under reduced pressure, the residue was taken up in CH₂Cl₂ and separated by preparative tlc (acetone/ hexane $3/7$). One major brown band $(R_f 0.28)$ was collected to give dark brown crystals of $\{ (OC)_7(\mu$ -dppm)Co₃ $\}_2(\mu_3:\mu_3$ -CC=CC) (6; 40 mg, 63%). Anal. Found: C, 52.30; H, 2.66. Calcd (C₆₈H₄₄Co₆O₁₄P₄; $M_r = 1562$): C 52.27; H, 2.84. IR (Nujol, cm⁻¹): $ν$ (C=C) 2113 w. IR (CH₂Cl₂): $ν$ (CO) 2063 m, 2049 m, 2009 vs (br), 1975 (sh), 1961 (sh). 1H NMR: *δ* 3.59, 4.08 (2 [×] m, 2 [×] 2H, dppm), 7.06-7.45 (m, 40H, Ph). 13C NMR: *^δ* 40.8 $(s$ (br), CH₂), 96.1 (C_β), 128.0-132.6 (m, Ph), 204.1, 217.45 (2 × s (br), CO). 31P NMR: *δ* 31.1 (dppm). ES MS (positive ion, MeOH, *m*/*z*): 1562, M⁺; 1534-1478, [M - *n*CO]⁺ (*n* = 1-3). ES MS (negative ion, MeOH + NaOMe, *m*/z): 1561, [M - H]⁻.

⁺ NaOMe, *^m*/*z*): 1561, [M - H]-. (23) A solution containing **6** (70 mg, 0.045 mmol) and dppm (17.2 mg, 0.045 mmol) in thf (7 mL) was treated with Me₃NO (6.8 mg, 0.09 mmol), and the mixture was stirred at room temperature for 1 h. After removal of solvent under reduced pressure, a dichloromethane extract of the residue was purified by preparative tlc (acetone/hexane 3/7). The major purple band $(R_f 0.31)$ contained $\{ (OC)_{7}(\mu$ -dppm)Co₃ $\}$ ₂ $(\mu_3:\mu_3$ -CC=CC) $(\mu$ -dppm) (7; 73.6 mg, 87%), which formed dark red crystals (CH₂Cl₂/MeOH). Anal. Found: C, 57.64; H, 3.40. Calcd (C₉₁H₆₆Co₆O₁₂P₆; M_r = 1891): C, 57.74; H, 3.49. C, 57.64; H, 3.40. Calcd (C₉₁H₆₆Co₆O₁₂P₆; *M*_r = 1891): C, 57.74; H, 3.49.
IR (Nujol): *ν*(C≡C) 2133 vw. IR (CH₂Cl₂): *ν*(CO) 2012 vs, 1993 s (sh), 1982 m, 1962 m, 1933 (sh) cm-1. 1H NMR: *δ* 3.37, 3.54, 3.81 (3 × m, 3 \times 2H, dppm), 7.13-7.37 (m, 60H, Ph). ¹³C NMR: δ 30.65 (s (br), CH₂), 95.75 (\hat{C}_{β}) , 128.1-132.7 (m, Ph), 202.6, 213.1 (2 × s (br), CO). ³¹P NMR: *δ* 31.2 (dppm). ES MS (positive ion, MeOH, *m*/*z*): 1891, M+; 1863, 1835, $[M - n\overrightarrow{CO}]^+$ $(n = 1, 2)$.

are at 2099 m, 2058 vs, 2039 m, 2016 vs, 1971 (sh), and 1954 (sh) cm⁻¹ and a weak band at 2115 cm⁻¹ is assigned to ν (CC). For **4**, ν (CC) is at 2115 cm⁻¹ and the ν (CO) bands are found between 2099 and 1954 cm⁻¹ (cf. 2089 cm⁻¹ and between 2064 and 1974 cm⁻¹, respectively, for $\{Co_3(\mu\text{-dppm})(CO)_7\}$ $C(C=C)_{2}C$ ^{19a}).

In the ¹H and ³¹P NMR spectra, resonances at $δ$ _H ca. 2.85 and 4.35 (CH₂), $δ$ _H 7.0-7.9 (Ph), and $δ$ _P 31-32 are assigned to the dppm ligands. In the case of **5**, two 31P resonances are found at δ_P 32.25 and 44.8, which can be assigned to the dppm ligands on the non-CO-bridged and CO-bridged Co₃ clusters, respectively, by comparison with related complexes. For **6** and **7**, 13C NMR spectra could be obtained and showed the dppm CH₂ (δ _C ca. 40) and Ph (δ _C ca. 128–132.5), together with the inner carbons of the C_4 chains at δ_C 96.13 (6) or 95.75 (7). The Co–CO ligands are found as broad singlets at δ_c ca. 203 and 215. Three ¹³C resonances from the C_6 chain in 4 are found at *δ* 95.8, 112.5, and 123.0, with the CO ligands of the two clusters at δ 199.2 (Co₃(CO)₉) and 201.5, 209.4 (Co₃(dppm)(CO)₇). As is often the case, the carbons attached to the $Co₃$ clusters were not found, probably as a result of broadening by the cobalt quadrupole. The electrospray mass spectra (ES MS) were measured in solutions containing NaOMe to aid ionization and contained cations such as $[M + Na]^+$ and $[M - nCO]^+$ or anions such as $[M - H - nCO]$, consistent with their compositions.

Molecular Structures. The molecular structures of **⁵**-**⁷** have been determined by single-crystal X-ray diffraction studies: **5** modeled as its $3CH_2Cl_2$ solvate, 6 as 4PhMe and $2CH_2Cl_2 \cdot 2C_6H_6$ solvates, as well as the unsolvated form, results from the latter being presented in Figure 2 and the main text. In addition, the structure of **2** has been redetermined from a specimen obtained during the course of another study.25

In 5 (Figure 1), the two $Co₃$ clusters have been linked by a further long $Co-Co$ bond (2.6788(6) \AA) at the expense of loss of one of the CO ligands. This Co-Co bond is bridged by a CO group, while the C_2 fragment also links the two clusters by interacting with all six metal atoms. The two dppm ligands bridge Co-Co edges of the triangular faces and adopt a conformation which places them in mutually orthogonal orientations (interplanar dihedral angle $89.79(4)^\circ$); in one Co₃ cluster the three basal Co-Co edges are also bridged by CO ligands. The $Co-Co$ separations in the two $Co₃$ fragments of **5** (labeled **A** and **B** here) fall into four types and range between 2.4069 and 2.5412(6) Å. The shortest, $Co(4)$ – $Co(5)$ in cluster **B**, is bridged by both CO and one dppm ligand, while the two other CObridged edges are longer, at 2.4682 and 2.4806(6) Å. In the

Figure 1. Plot of a molecule of $\text{Co}_{6}(\mu_{6}-\text{C}_{2})(\mu-\text{dppm})_{2}(\mu-\text{CO})(\text{CO})_{12}$ (**5**), showing the atom-numbering scheme. Selected distances (Å) and angles (deg): $Co(1)-Co(2) = 2.4991(7), Co(1)-Co(3) =$ $2.5079(6)$, Co(2)-Co(3) = 2.5412(6), Co(3)-Co(6) = 2.6788(6), $Co(4)-Co(5) = 2.4069(7), Co(4)-Co(6) = 2.4682(6), Co(5)-Co (6) = 2.4806(6), Co(1)-P(1) = 2.1929(9), Co(2)-P(2) = 2.2243 (8)$, Co(4)-P(4) = 2.2348(9), Co(5)-P(5) = 2.2416(8), Co(1,2,3)- $C(1) = 1.927(3), 1.873(2), 2.001(3), Co(4,5,6) - C(2) = 1.946(3),$ $1.938(2)$, $2.024(3)$, $C(1) - C(2) = 1.367(3)$; $C_0(1,2,3) - C(1) - C(2)$ $= 136.3(2), 141.4(2), 102.2(2), \text{Co}(4,5,6) - \text{Co}(2) - \text{Co}(1) = 138.1$ (2), 143.4(2), 115.7(2).

other $Co₃$ cluster **A**, the dppm-bridged edge is 2.4991(7) Å, some 0.093 Å longer than $Co(4)-Co(5)$. Surprisingly, the two nonbridged $Co(1,2)-Co(3)$ bonds differ by 0.04 Å, reflective of a more general asymmetry about the $Co(3,6)C(1,2)$ plane. Somewhat longer Co-P bonds (2.2348, 2.2416(8) Å) are found for cluster **B** as compared to those for for cluster **A** (2.1929, 2.2243(8) Å). This is a result of these Co atoms being also involved in bonding to the bridging CO ligands and hence not back-bonding as efficiently into the phosphorus ligand. Both sets of values may be compared with those found in the prototypical complex $Co_3(\mu_3\text{-CH})(\mu\text{-dppm})(CO)_7$, which has Co–Co separations of 2.462(2) Å (dppm-bridged) and 2.452, 2.474(2) Å and Co-P distances of 2.162(2) Å.²¹

The most interesting feature of the structure of 5 is the C_2 ligand, which interacts with all six metal atoms ($Co-C =$ $1.873-2.024(3)$ Å). The somewhat unsymmetrical bonding appears to result from formation of shorter bonds to the cobalt atoms also supporting the dppm ligand, separations to atoms $Co(3,6)$ being considerably longer at 2.001 and 2.024(3) Å as well as from the $Co(3)-Co(6)$ interaction and its CO bridge. In $Co₃(\mu₃-CH)(\mu$ -dppm)(CO)₇, the Co–C distances are between 1.836 and 1.898(9) Å, with no particular relationship to whether the Co is bonded to dppm.²¹ The C(1)–C(2) bond length is 1.367(3) Å, the same as that in the monoclinic phase $(1.37(2))$ Å)¹⁵ but shorter than that found in the trigonal phase of $1(1.426 (9)$ Å).¹⁶

Complexes **6** and **7** (Figures 2 and 3) are derived from **2** by replacement of two CO ligands by two and three dppm ligands, respectively. In the former, the Co-Co edges bridged by dppm are somewhat longer, at 2.4826 and 2.4755(8) Å, than the other two in each cluster $(2.4501 - 2.4672(6)$ Å) while, in comparison, the basal $Co₃$ triangle in 2 is considerably expanded $(Co-Co-$ (av) $= 2.522(10)$ Å). The Co-P distances are in the range $2.178-2.187(1)$ Å, there being no essential difference from those found in **5** above. The third dppm ligand in **7** bridges the nonbonded $Co(3)-Co(6)$ vector with $Co-P$ distances of 2.216 and 2.242(1) Å. In this molecule, one of the non-dppm-bridged Co-Co bonds in each cluster is considerably longer (2.4948-

⁽²⁴⁾ A solution containing Co3(*µ*3-CBr)(CO)9 (41.6 mg, 0.08 mmol), Co3- $\{\mu_3$ -CC=CC=CAu(PPh₃) $\{\mu$ -dppm)(CO)₉ (100 mg, 0.08 mmol), Pd(PPh₃)₄ $(9 \text{ mg}, 0.008 \text{ mmol})$, and CuI $(1 \text{ mg}, 0.006 \text{ mmol})$ in thf (7 mL) was left at room temperature for 1 h. After removal of solvent, the residue was taken up in CH_2Cl_2 and purified by preparative tlc (acetone/hexane 3/7). The major brown band $(R_f 0.57)$ afforded $\{(OC)_9Co_3\}$ $(\mu_3:\mu_3-C$ $(C\equiv C)_2C)$ -{Co3(*µ*-dppm)(CO)7} (**8**; 70.8 mg, 72%) as small red platelike crystals. Anal. Found: C, 44.88; H, 1.68. Calcd (C₄₇H₂₂C_{O6}O₁₆P₆; $M_r = 1258$): C, 44.83; H, 1.75. IR (CH₂Cl₂, cm⁻¹): *ν*(C≡C) 2115 vw. IR (CH₂Cl₂): *ν*-(CO) 2099 m, 2058 vs, 2039 m, 2016 s, 1971 (sh), 1954 m. 1H NMR: *δ* 3.54, 4.37 ($2 \times m$, $2 \times 1H$, dppm), 7.30–7.40 (m, 20H, Ph). ¹³C NMR: δ 44.65 (t, $J(CP) = 19$ Hz, dppm), 95.8, 112.5, 123.0 (carbon chain), 128.55-135.3 (m, Ph), 199.2 (s (br), Co₃(CO)₉), 201.5, 209.4 (2 \times s (br), Co3(CO)7(dppm)). 31P NMR: *δ* 35.2 (s (br), dppm). ES MS (positive ion, MeOH + NaOMe, *m/z*): 1281, [M + Na]⁺. ES MS (negative ion, MeOH + NaOMe, *m/z*): 1289, [M + OMe]⁻; 1230, [M + OMe - CO]⁻. A red + NaOMe, *m*/*z*): 1289, [M + OMe]⁻; 1230, [M + OMe − CO]⁻. A red band (*R_f* 0.50) contained {Co₃(*µ*-dppm)(CO)*7*}₂{*µ*3*;µ*₃-C(C≡C)₄C} (5.2 mg, 8%), identified by comparison with an authentic sample.19a

⁽²⁵⁾ A serendipitous preparation of **2** enabled a structural determination to be made that was considerably more precise than that described over 30 years ago.13,15 Structural parameters from the present determination are used in the discussion above.

Figure 2. Plot of a molecule of ${Co_3(\mu\text{-}dppm)(CO)_7}$ ₂ $(\mu_3:\mu_3\text{-}CC\equiv$ CC) (**6**), showing the atom-numbering scheme. Selected distances (\AA) and angles (deg): $Co(1)-Co(2) = 2.4826(6), Co(1)-Co(3) =$ $2.4501(7)$, Co(2)-Co(3) = 2.4590(7), Co(4)-Co(5) = 2.4755(8), $Co(4)-Co(6) = 2.4672(6), Co(5)-Co(6) = 2.4697(8), Co(1)-P(1)$ $= 2.183(1), Co(2)-P(2) = 2.178(1), Co(4)-P(4) = 2.180(1), Co (5)-P(5) = 2.187(1), Co(1,2,3)-C(1) = 1.895(3), 1.902(3), 1.958 (3), \text{Co}(4,5,6) - \text{C}(4) = 1.921(3), 1.896(4), 1.952(3), \text{C}(1) - \text{C}(2) =$ 1.381(5), $C(2)-C(3) = 1.232(4)$, $C(3)-C(4) = 1.370(4)$; Co- $(1,2,3)-C(1)-C(2) = 136.4(2), 135.0(2), 123.6(3), C(1)-C(2)$ $C(3) = 171.8(4), C(2)-C(3)-C(4) = 169.9(4), C(3)-C(4) Co(4,5,6) = 129.4(3), 141.6(3), 123.8(3).$

Figure 3. Plot of a molecule of $\{Co_3(\mu\text{-}dppm)(CO)_7\}$ ₂ $(\mu_3:\mu_3\text{-}CC\equiv$ CC) $(\mu$ -dppm) (7) , showing the atom-numbering scheme. Selected distances (Å) and angles (deg): $Co(1)-Co(2) = 2.4983(10)$, Co- $(1)-\text{Co}(3) = 2.4654(9), \text{Co}(2)-\text{Co}(3) = 2.4948(9), \text{Co}(4)-\text{Co}(5)$ $= 2.4827(9)$, Co(4)-Co(6) $= 2.5097(9)$, Co(5)-Co(6) $= 2.4723$ - (9) , Co(1)-P(1) = 2.199(1), Co(2)-P(2) = 2.186(1), Co(3)-P(7) $= 2.216(2), Co(4) - P(4) = 2.217(1), Co(5) - P(5) = 2.201(2), Co (6)-P(8) = 2.242(3), Co(1,2,3)-C(1) = 1.923(5), 1.920(4), 1.960 (4)$, Co $(4,5,6)-C(4) = 1.937(5)$, 1.930(4), 1.946(5), C(1)-C(2) = 1.396(7), $C(2) - C(3) = 1.236(7)$, $C(3) - C(4) = 1.387(7)$; Co- $(1,2,3)-C(1)-C(2) = 141.7(4), 129.2(4), 124.0(3), C(1)-C(2)$ $C(3) = 168.3(5), C(2)-C(3)-C(4) = 172.0(5), C(3)-C(4) Co(4,5,6) = 126.1(3), 141.9(4), 127.6(3).$

(9), 2.5097(9) Å) than the other two (2.4654, 2.4723(9) Å); the dppm-bridged Co $-Co$ bonds are 2.4983 and 2.4827(9) Å.

The Co–C bonds in **6** range between 1.895 and 1.921(3) \AA for $Co(1,2,4,5)$, i.e., those attached to dppm, while the remaining $Co-C$ bonds are longer $(1.958, 1.952(3)$ Å). The four-carbon chain has interatomic distances of 1.381(5), 1.232(4), and 1.370- (4) Å, suggesting some delocalization of the π -electron density along the chain. Angles at the two central carbons are 171.8(4) and 169.9(4)°, indicating a larger than normal distortion away from linearity. In **2**, the geometry is somewhat different, with slightly longer C-Co bonds (average 1.964(10) \AA), C-C

Table 1. Redox Chemistry of Cobalt Clusters*^a*

complex	E_1°/V	E_{2}°/V	$\Delta E^{\circ}/mV$	K_C
1 ^b	-0.77	-0.41	360	1.21×10^6
2^b 5	-0.68 -1.18	-0.39 $+0.22$	210 1400	3.54×10^{3}
6 ^c	-1.45	-1.21	240	1.14×10^{4}
	-1.33	$+0.06$	1390	

^{*a*} Conditions: 10^{-3} M complex, 0.1 M [NBu₄]PF₆ in CH₂Cl₂, referenced to $\text{FeCp}_2/\text{[FeCp}_2]^+$ = +0.46 V, three-electrode cell equipped with Pt-disk working electrode, Pt-gauze auxiliary electrode, and Pt-wire pseudoreference electrode, scan rate 0.2 V s⁻¹. *b* References 26 and 27. $c E_3$ ° +0.85 V.

separations of 1.412 and 1.258(4) Å, and angles at the central carbons of 178.9(3)^o. In **7**, the range of Co-C distances (1.920- $1.960(4)$ Å) does not show any dependence on the nature of the dppm attachment. Again the C-C distances along the chain $(1.396, 1.236, 1.387(7)$ Å) show evidence of electron delocalization, with angles at $C(2)$ and $C(3)$ of 168.3 and 172.0(5)°, respectively.

In these three complexes, it is instructive to compare the torsion angles between the two dppm-bridged Co-Co vectors in each complex, as indicated by $Co(3)-C(1)-C(2 \text{ or } 4)-Co-$ (6) values of $-6.2(2)$, $-50.4(2)$, and $41.7(3)$ ° for $5-7$, respectively. While the simplest explanation for this varying twisting would appear to be steric interference between the dppm Ph substituents, also involving the equatorial CO groups to a degree, an electronic effect cannot be ruled out in the case of **⁵**, in which the basal Co-Co bonds are also CO-bridged. In the CCo3 clusters, the presence of bridging CO groups has been interpreted in terms of a more electron-rich cluster, as found, for example, in the cases of $Co_3(\mu$ -CCl)(CO)₉ and its PCy₃substituted analogues.²⁵

Electrochemistry. Earlier extensive electrochemical studies of **1** and **2** have shown that each undergoes two distinct oneelectron-reduction processes, a shift of the first to more negative potentials occurring as the carbon chain is lengthened from C_2 to C_4 ^{26,27} The reduction products are generally unstable at room temperature, and electron-transfer-catalyzed substitution of CO groups by ligands such as tertiary phosphines does not occur (in contrast to the situation with mono-cluster species).26,28 At low temperatures, chemically reversible processes are found. Spectroscopic studies have been interpreted as showing conversion of the initial reduced species to a CO-bridged isomer which can be oxidized to the neutral **1**. ²⁶ In their CVs (Table 1), the two 1e waves are separated by ca. 360 mV for **1** and by ca. 200 mV for 2, with comproportionation constants, K_C , of 1.21 \times 10⁶ and 3.54 \times 10³, respectively. Both results suggest that there is effective electronic communication between the two sites of reduction, the $CCo₃$ clusters, dependent upon the separation between the clusters (separation between $CCo₃$ centers ca. 4.6 Å in **1** and ca. 7.1 Å in **2**). For **2**, a reversible oxidation is found at ca. $+0.85$ V.

The CVs of **⁵**-**⁷** are also given in Table 1. For **⁵** and **⁷**, only one reduction wave is found, assigned to the cluster core. An oxidation wave for **5** at $+0.22$ V, assigned to $[Co(CO)₄]$ ⁻, together with some minor waves may indicate that these processes are not fully reversible at room temperature. Two 1e processes are found for **6**, which may be compared with the

^{(26) (}a) Worth, G. H.; Robinson, B. H.; Simpson, J. *Organometallics* **1992**, *11*, 3863. (b) Brooksby, P. A.; Duffy, N. W.; McQuillan, A. J.; Robinson, B. H.; Simpson, J. *J. Organomet. Chem.* **1999**, *582*, 183.

^{(27) (}a) Osella, D.; Gambino, O.; Nervi, C.; Ravera, M.; Bertolino, D. *Inorg. Chim. Acta* **1993**, *206*, 155. (b) Osella, D.; Milone, L.; Nervi, C.; Ravera, M. *J. Organomet. Chem.* **1995**, *488*, 1.

⁽²⁸⁾ Dawson, P. A.; Robinson, B. H.; Simpson, J. *J. Chem. Soc., Dalton Trans.* **1979**, 1762.

two processes observed for the non-phosphine-substituted complex 2 at -0.62 and -0.82 V (separation 210 mV). It is more difficult to reduce 6 than it is to reduce 2 ($E = -1.21$, -1.45 V, $\Delta E = 240$ mV), and no oxidation wave is found. Addition of the bis-tertiary phosphine ligand to the $Co₃$ cluster is expected to increase the electron density within the $CCo₃$ core, in comparison with **2**, as also shown by the *ν*(CO) values, resulting in a system which is more difficult to reduce. The magnitude of the ∆*E* values (210 mV for **2** vs 240 mV for **6**, with K_C in the order $1 > 6 > 2$) suggests that electronic communication between the cluster cores through the carbon chain is marginally more pronounced in **6** than in **2**. For **7**, on the other hand, which is easier to reduce than $6(E = -1.33)$

V), only one process is found, although a second, oxidation, event is found at $+0.06$ V.

Acknowledgment. We thank Professor Brian Nicholson (University of Waikato, Hamilton, New Zealand) for providing the mass spectra and the ARC for support of this work.

Supporting Information Available: Full details of the crystal structure determinations of **²** and **⁵**-**⁷** (CCDC 278100-278103, 281788) as CIF files. This material is available free of charge via the Internet at http://pubs.acs.org.

OM058056V