A Stable Magnesium Bromosilylenoid: Transmetalation of a Lithium Bromosilylenoid by Magnesium Bromide

Young Mook Lim,[†] Hyeon Mo Cho,[†] Myong Euy Lee,^{*,†} and Kyoung Koo Baeck[‡]

Department of Chemistry, Yonsei University Wonju Campus, Gangwon-do 220-710, Korea, and Department of Chemistry, Kangnung National University, Gangnung, Gangwon-do, 210-702, Korea

Received July 1, 2006

The reaction of lithium bromosilylenoid with MesLi at -10 °C followed by addition of MgBr₂ gave lithium mesitylsilylenoid as a complex with magnesium bromide that was transmetalated by MgBr₂ at 45 °C in THF to give magnesium silylenoid as a weak MgBr₂ complex of trisylmesitylsilylene. A new magnesium mesitylsilylenoid species was stable at reflux temperature in THF and *n*-hexane and showed amphiphilic properties in the reaction with 2-propanol, water, and ⁿBuLi, respectively.

Introduction

Silylenoids, R₂SiMX, compounds in which an electropositive metal (M, usually alkali metal) and a leaving group (X, usually halogen) are bound to the same silicon atom, have been postulated as key intermediates in the reduction of dihalosilanes to synthesize silylenes¹ or polysilanes.² The experimental aspects of a few novel silylenoids, Ph₂Si(O'Bu)Li,³ Tbt(Dip)SiLiBr⁴ (Tbt = 2,4,6-tris[bis(trimethylsilyl)methyl]phenyl; Dip = 2,6-diiso-propylphenyl), aminonaphthylphenylsilylenoid,⁵ (Mes)₂Si(SMes)-Li,⁶ and (R₃Si)₂SiFLi,⁷ have been reported.^{8,9}

Recently we reported the stable silylenoids $(Tsi)X_2SiLi$ (Tsi = trisyl = C(SiMe₃)₃, X = Br, Cl) at room temperature synthesized from the reduction of TsiSiX₃ with lithium naphthalenide (LiNp) or C₈K.¹⁰ In their reactions, these species showed amphiphilic properties. Toward 2-propanol and 2,3-

† Yonsei University Wonju Campus.

[‡] Kangnung National University.

Gaspar, P. P.; West, R. In *The Chemistry of Organic Silicon Compounds;* Rappoport, Z., Apeloig, Y., Eds.; John Wiley & Sons: Chichester, U.K., 1998; Vol. 2, 2463–2567.
 (2) The special volume of the *Journal of Organometallic Chemistry* (685),

(2) The special volume of the Journal of Organometallic Chemistry (685), entitled "A Half Century of Polysilane Chemistry", was edited in 2003. (a) West, R. In *The Chemistry of Organic Silicon Compounds*; Patai, S., Rappoport, Z., Eds.; John Wiley & Sons: Chichester, U.K., 1989; Part 1, Chapter 19. (b) Miller, R. D.; Michl, J. *Chem. Rev.* **1989**, 89, 1359.

(a) Tamao, K.; Kawachi, A. Angew. Chem. Rev. 1989, 89, 1359.
(b) Miller, R. D.; Michl, J. Chem. Rev. 1989, 89, 1359.
(c) Tamao, K.; Kawachi, A. Angew. Chem., Int. Ed. Engl. 1995, 34, 818.
(d) (a) Tokitoh, N.; Hatano, K.; Sadahiro, T.; Okazaki, R. Chem. Lett.
1999, 931. (b) Hatano, K.; Tokitoh, N.; Takagi, N.; Nagase, S. J. Am. Chem. Soc. 2000, 122, 4829. (c) Tajima, T.; Hatano, K.; Sasaki, T.; Sasamori, T.;

Takeda, T.; Tokitoh, N.; Takagi, N.; Nagase, S. J. Organomet. Chem. 2003, 686, 118.
(5) (a) Tamao, K.; Asahara, M.; Saeki, T.; Toshimitsu, A. Angew. Chem.,

Int. Ed. **1999**, *38*, 3316. (b) Tamao, K.; Asahara, M.; Saeki, T.; Toshimitsu, A. J. Organomet. Chem. **2000**, *600*, 118.

(6) Kawachi, A.; Oishi, Y.; Kataoka, T.; Tamao, K. Organometallics 2004, 23, 2949.

(7) Molev, G.; Bravo-Zhivotovskii, D.; Karni, M.; Tumanskii, B.; Botoshansky, M.; Apeloig, Y. J. Am. Chem. Soc. **2006**, *128*, 2784.

(8) For other experimental studies on silylenoids, see: (a) Oehme, H.; Weiss, H. J. Organomet. Chem. 1987, 319, C16. (b) Boudjouk, P.; Samaraweera, U. Angew. Chem., Int. Ed. Engl. 1988, 27, 1355. (c) Tamao, K.; Kawachi, A. Organometallics 1995, 14, 3108. (d) Kawachi, A.; Doi, N.; Tamao, K. J. Am. Chem. Soc. 1997, 119, 233. (e) Wiberg, N.; Niedermayer, W. J. Organomet. Chem. 2001, 628, 57. (f) Driver, T. G.; Franz, A. K.; Woerpel, K. A. J. Am. Chem. Soc. 2002, 124, 6524. (g) Wiberg, N.; Niedermayer, W.; Fischer, G.; Nöth, H.; Suter, M. Eur. J. Inorg. Chem. 2002, 1066. (h) Tamao, K.; Kawachi, A.; Asahara, M.; Toshimitsu, A. Pure Appl. Chem. 1999, 71, 393. (i) Sekiguchi, A.; Lee, V. Y.; Nanjo, M. Coord. Chem. Rev. 2000, 210, 11. dimethyl-1,3-butadiene they behaved as halosilylenes, but in reactions with 'BuOH and MeI they behaved as nucleophiles. This indicated that they are not free silylenes but LiBr adducts with halosilylenes, *halosilylenoid species*. Ab initio/NMR calculations for the solution structure of bromosilylenoid **1** by Flock and Dransfeld supported these experimental results.¹¹

To date, most silylenoids are limited only to alkali metals such as Li, Na, and K; there are only a few reports on magnesium silylenoids inferred as reaction intermediates.⁵ Herein, we describe the synthesis and reactivity of a magnesium mesitylsilylenoid, **4**, stable up to 65 °C, synthesized through the transmetalation with MgBr₂ of lithium mesitylbromosilylenoid, **2**, at THF reflux temperature (Scheme 1). This work provides the first example of a new stable magnesium silylenoid.

Results and Discussion

Bromotrisylsilylenoid, **1**, was produced by the reduction of tribromotrisylsilane with 2 equiv of LiNp. To the reaction mixture of **1** at -78 °C was added 1 equiv of MesLi diluted in diethyl ether. No reaction took place at that temperature; the trapping experiment using 2-propanol yielded only the corresponding bromosilylenoid-trapping adduct, **5** (Scheme 1).¹⁰ When the reaction mixture was slowly warmed to -10 °C, the reaction of **1** with MesLi took place and was complete to give Mes(Tsi)SiLiBr, **2**, within 1 h. Species **2** was slowly decomposed at that temperature and trapped by 2-propanol to give the corresponding product, **6**, which shows the nucleophilic property of **2**. Interestingly when anhydrous MgBr₂ diluted in diethyl ether was added into the reaction mixture, the species **2** became stable up to room temperature, ¹² which appears to form a complex with magnesium bromide, **3**. Species **3** was also

(12) Fischer, R.; Zirngast, M.; Flock, M.; Baumgartner, J.; Marschner,
 C. J. Am. Chem. Soc. 2005, 127, 70.

^{*} Corresponding author. Tel: 82-33-760-2237. Fax: 82-33-760-2182. E-mail: melgg@yonsei.ac.kr.

⁽⁹⁾ For the theoretical studies on silylenoids, see: (a) Feng, S.; Feng, D. J. Mol. Struct. (THEOCHEM) 2001, 541, 171. (b) Feng, S.; Feng, D.;
Li, J. Chem. Phys. Lett. 2000, 316, 146. (c) Clark, T.; Schleyer, P. v. R. J. Organomet. Chem. 1980, 191, 347. (d) Tanaka, Y.; Hada, M.; Kawachi, A.; Tamao, K.; Nakatsuji, H. Organometallics 1998, 17, 4537. (e) Feng, S.; Zhou, Y.; Feng, D. J. Phys. Chem. A 2003, 107, 4116. (f) Feng, D.; Xie, J.; Feng, S. Chem. Phys. Lett. 2004, 396, 245. (g) Flock, M.; Marschner, C. Chem. Eur. J. 2005, 11, 4635.

^{(10) (}a) Lee, M. E.; Cho, H. M.; Lim, Y. M.; Choi, J. K.; Park, C. H.; Jeong, S. E.; Lee, U. *Chem. Eur. J.* **2004**, *10*, 377–381. (b) Lee, M. E.; Cho, H. M.; Ryu, M. S.; Kim, C. H.; Ando, W. J. Am. Chem. Soc. **2001**, *123*, 7732.

⁽¹¹⁾ Flock, M.; Dransfeld, A. Chem. Eur. J. 2003, 9, 3320.

trapped by 2-propanol to yield the same product as that of **2**. When **3** was treated with H₂O and D₂O, **9** and deuterated **9** were obtained, respectively (Scheme 2). The butylation of **3** with 1 equiv of ⁿBuLi diluted to 1.6 M in hexane yielded butylmesityltrisylsilylmagnesium bromide, **8**, which was trapped by H₂O and MeI to give the corresponding products, **10** and **11**, respectively (Scheme 2). This result shows clearly the electrophilic reactivity of **3** as well. On the basis of the results above, **3** is seen to be an amphiphilic silylenoid species.

When the reaction mixture of **3** was warmed to about 45 $^{\circ}$ C in order to investigate the thermal stability of **3**, the new species **4** was formed, which reacted with 2-propanol to give isopropoxymesityltrisylsilane, **7** (Scheme 1). Although the solution was

Scheme 4. Syntheses and Reactions of 2, 3, and 4 in a Reverse Way

cooled back to 0 $^{\circ}$ C, the addition of 2-propanol yielded only 7, which indicated that the formation of 4 is not reversible. The hydrolysis and butylation of 4 afforded 9, 10, and 11, respectively, the same as the reactions of 3 (Scheme 2). 4 was

Figure 1. Structures and ²⁹Si NMR chemical shifts of **2'**, **3'**, and **4'** calculated by the GIAO-B3LYP/6-31G(d)//B3LYP/6-31G(d) method. (Hydrogen atoms were omitted for clarity.)

stable at reflux temperature in THF and *n*-hexane and at room temperature in toluene (however, **4** decomposed in refluxing toluene).¹³ Note that **6** did not react with water, 2-propanol, and lithium isopropoxide (to give **7**); these facts indicate that **4** is a weak MgBr₂ complex of silylene, (Tsi)MesSi:, as shown in Scheme 1.

The ²⁹Si NMR chemical shifts¹⁴ of **2**, **3**, and **4** were 88 ppm at -70 °C, 87 ppm at -70 °C (90 ppm at 0 °C), and 140 ppm at 0 °C, respectively, very far from the negative silicon resonances of simple silicon anions.¹⁵ The ²⁹Si resonances were similar to that of bromosilylenoid (106 ppm)¹⁰ and fluorosilylenoid (107 ppm),⁷ but different from those of Ph₂Si(O'Bu)-Li³ (11 ppm) and Ph₂Si(NEt₂)Li¹⁶ (19 ppm). These downfield ²⁹Si signals imply that silylenoids **2**, **3**, and **4** might be weak LiBr and MgBr₂ adducts with mesityltrisylsilylene, respectively. The difference of ²⁹Si NMR chemical shifts between **2**, **3**, and **4** can be deduced by comparison with the chemical shifts of (Me₃Si)₃SiLi(THF)₃ (²⁹Si NMR -190.7 ppm)¹⁷ and (Me₃-Si)₃SiMgBr(THF)₂ (-168.7 ppm).¹⁸

To verify the role of MgBr₂, we carried out the reaction of bromosilylenoid **1** with 1 equiv of MesMgBr (diluted to 1.0 M in diethyl ether) instead of MesLi, which produced MgBr₂ in the reaction mixture by salt elimination. When the reaction mixture of bromosilylenoid **1** with MesMgBr was slowly warmed to -10 °C, lithium mesitylsilylenoid complexed with MgBr₂ was obtained. Lithium mesitylsilylenoid complexed with MgBr₂ showed the same reaction properties and ²⁹Si NMR chemical shifts as those of **3** (Scheme 3). When this reaction mixture was warmed to about 45 °C, a new species was formed that has the same reactivity toward 2-propanol and ²⁹Si NMR chemical shift as those of **4**.

We also carried out the reactions in a reverse way; to the reaction mixture of lithium bromosilylenoid, 1, was added MgBr₂, and then reactions with MesLi and MesMgBr were carried out as shown in Scheme 1 (Scheme 4). From these reactions we obtained exactly the same results as those shown

in Scheme 1 and the same ²⁹Si NMR data as well. The results of Schemes 1, 3, and 4 show that MgBr₂ acts as a stabilizing reagent of lithium mesitylsilylenoid **2** by a complexation as well as a transmetalating reagent of lithium mesitylsilylenoid **3** at 45 °C.

To understand the different reactivities and a very large difference in the chemical shifts of ²⁹Si NMR between **3** and **4**, some preliminary quantum chemical calculations have been carried out. The simplified molecular geometries, Tsi(H)PhSi–LiBr, **2'**, Tsi(H)PhSi–LiBrMgBr₂, **3'**, and Tsi(H)PhSi–MgBr₂, **4'** (Tsi(H) stands for (H₃Si)₃C, Ph instead of mesityl)), for **2**, **3**, and **4** are optimized at the hybrid density functional B3LYP/ 6-31+G(d) level of theory,^{19a} with no symmetry constraint, by using the Gaussian-03 program package^{19b} (Figure 1). The chemical shifts, δ^{29} Si_{calc}, of the analogues are calculated by using the GIAO-B3LYP/6-31+G(d) method at their optimized geometry considering the solvent effects using dimethyl ether instead of THF. The calculated values of the analogues (δ^{29} -Si_{calc} = 84.0, 92.0, 139.0 ppm) are close to the experimental NMR chemical shifts (δ^{29} Si_{exp} = 88, 90, 140 ppm).

These results are not sufficient yet to be solid evidence for the identity of the three real molecules, but the consistency shown in the comparison between the calculated and experimental NMR chemical shifts is a noticeable one. On the basis of these calculations, one can suggest that in the case of the lithium derivatives 2' and 3' their solution structures indeed correspond to the silvlenoids 2 and 3, respectively, but in the case of the magnesium derivative 4' the real structure would be better described as a weak MgBr₂ complex of Tsi(Mes)Si: silvlene, 4. The silvlene contribution to the structure 4 is more important, which gives rise to the significant deshielding of the central Si nucleus compared to that in 3. This would also explain the strikingly different reactivity of both 3 and 4 toward 2-propanol; 3 reacts as a typical silvlenoid, whereas the reactivity of 4 corresponds to that of silylene (or a silylene complex) like an insertion reaction.

Interestingly, the ¹H and ¹³C NMR spectra of **7**, **9**, **10**, and **11** showed three signals of equal intensity due to the methyl groups of Tsi. This implies that the bulky Tsi group prevents free rotation about the Si (center)–C (in Tsi) bonds even at room temperature in a condensed phase. When the solution of **11** and CDCl₃ in the NMR tube was warmed to 65 °C, the two resonances of the *ortho*-methyl of the mesityl group were collapsed, but three resonances of the methyl groups of Tsi were still distinguishable.²⁰

⁽¹³⁾ Several attempts to recrystallize **4** through solvent exchange have failed.

⁽¹⁴⁾ Using a 5 mm (i.d.) NMR tube containing about 0.10 M (4.0 mmol/ 40 mL of THF) of silylenoid **2**, **3**, and **4**, respectively, which was dipped into the solution of acetone- d_6 in a 10 mm (o.d.) NMR tube, ²⁹Si NMR experiments were carried out.

^{(15) (}a) Tamao, K.; Kawachi, A. Adv. Organomet. Chem. 1995, 38, 1.
(b) Kawachi, A.; Tamao, K. J. Am. Chem. Soc. 2000, 122, 1919. (c) Auer, D.; Kaupp, M.; Strohmann, C. Organometallics 2004, 23, 3647.

⁽¹⁶⁾ Tamao, K.; Kawachi, A.; Ito, Y. *J. Am. Chem. Soc.* **1992**, *114*, 3989. The ²⁹Si NMR data of Ph₂Si(NEt₂)Li have been corrected by reinvestigation (1994).

^{(17) (}a) Nanjo, M.; Sekiguchi, A.; Sakurai, H. Bull. Chem. Soc. Jpn. 1988, 71, 741. (b) Heine, A.; Herbst-Irmer, R.; Sheldrick, G. M.; Stalke, D. Inorg. Chem. 1993, 32, 2694.

⁽¹⁸⁾ Farwell, J. D.; Lappert, M. F.; Marschner, C.; Strissel, C.; Tilley, T. D. J. Organomet. Chem. 2000, 630, 185.

^{(19) (}a) Becke, A. D. *J. Chem. Phys.* **1993**, *98*, 5648. (b) Pople. J. A.; et al. *Gaussian 03*, Revision B.04; Gaussian, Inc.: Pittsburgh, PA, 2003 (see Supporting Information for program's authors).

The reactions of **1** with 1 equiv of MeLi and MeMgBr diluted in diethyl ether were also carried out, respectively, by a method similar to that used for the synthesis of **2**. When both of the reaction mixtures were treated with 2-propanol at room temperature, dimethyltrisylsilane, **13**,²¹ and **1**-trapping product, **5** (ratio of **13** and **5**, 1:1), were obtained. On using 2 equiv of MeLi and MeMgBr, dimethyltrisylsilane was formed quantitatively. These results strongly suggest that dimethyltrisylsilane might be produced via the double methylation of **1** and then the reaction of dimethyltrisylsilyllithium with 2-propanol. The smaller sized methyl group was not enough to stabilize the corresponding methyltrisylsilylenoid so that a double methylation took place.

Conclusions

In summary, the reaction of **1** with MesLi at -10 °C followed by addition of MgBr₂ gave lithium mesitylsilylenoid as a complex with magnesium bromide that was transmetalated by MgBr₂ at 45 °C in THF to give magnesium silylenoid as a weak MgBr₂ complex of trisylmesitylsilylene. A new magnesium mesitylsilylenoid species was stable at reflux temperature in THF and *n*-hexane and showed amphiphilic properties in the reaction with 2-propanol, water, and ⁿBuLi, respectively. This is the first stable magnesium silylenoid and methodologically the first case of the formation of a metallosilylenoid from a metallosilylenoid through a transmetalation reaction.¹⁸

These reactions of **1** with two kinds of aryl- and alkyllithium (or Grignard) reagents, MesLi (or MesMgBr) and MeLi (or MeMgBr), demonstrated one of the important synthetic applications of a halosilylenoid.

Experimental Section

In all reactions where air-sensitive chemicals were used, the reagents and solvents were dried prior to use. THF was distilled from Na/Ph2CO. Other starting materials were purchased in reagent grade and used without further purification. Glassware was flamedried under nitrogen or argon flushing prior to use. Experiments were performed under nitrogen or argon atmosphere. 1H, 13C, and ²⁹Si NMR spectra were recorded on a Bruker AMX 500 NMR or DPX 400 NMR spectrometer. The chemical shifts were referenced to internal CDCl₃ (¹H and ¹³C) or external Me₄Si (²⁹Si). Analyses of product mixtures were accomplished using a HP 5890 II with FID (HP-1, 15 m column) with dried decane as an internal standard. Mass spectra were recorded on a low-resolution Shimadzu GCMS QP-2000A mass spectrometer and a high-resolution VG Analiticla 70-VSEQ mass spectrometer. Preparative gel permeation chromatography (GPLC) was performed by LC-10 with JAI gel AJ1H +2H columns with chloroform as solvent. The preparation of bromosilylenoid **1** was reported in a previous paper.¹⁰

Synthesis of 2–7 and 9. Naphthalene (1.28 g, 10 mmol) dissolved in THF (40 mL) was added to Li (0.08 g, 12 mmol) at room temperature. After the mixture had been stirred for 3 h, LiNp was obtained as dark blue solution. LiNp in THF was added slowly to TsiSiBr₃ (2.0 g, 4.0 mmol) in THF (20 mL) at -78 °C. The

solution was stirred for 12 h at that temperature. MesLi was prepared by the reaction of 2-bromomesitylene (0.6 mL, 4.0 mmol) with ⁿBuLi (3.2 mL, 8.0 mmol) in diethyl ether (50 mL). The reaction mixture was stirred for about 12 h at room temperature. The precipitated MesLi was washed with *n*-hexane by filtration. After the precipitated MesLi diluted to 20 mL in diethyl ether was added rapidly to the reaction mixture at -78 °C, the solution was stirred for 1 h at that temperature. When the reaction mixture of 1 with MesLi was slowly warmed to -10 °C, silylenoid 2 was formed. The solution was allowed to reach -10 °C, and then an excess of 2-propanol was added. After addition of n-hexane at room temperature, precipitated compounds were removed by filtration, and the resulting mixture was washed with water and volatiles were distilled under vacuum. The crude product was purified by GPLC with recycling to afford **6** as a white powder (mp = 114-115 °C) in 84% yield (1.54 g). In a manner similar to that described above, we obtained 9 as a colorless oil in 58% yield (0.92 g) using an excess of water.

The reaction of 1,2-dibromoethane (0.34 mL, 4.0 mmol) with Mg turnings (0.1 g, 4.0 mmol) in diethyl ether (50 mL) gave magnesium bromide. The volatiles were distilled off under vacuum to get MgBr₂ as white powder. After MgBr₂ diluted in diethyl ether (20 mL) was added to the reaction mixture of **2** at -78 °C, the solution was warmed to room temperature and then an excess of 2-propanol was added to get **6** in 82% yields. When the solution was warmed up to 45 °C, **4** began to form giving **7** as trapping product by 2-propanol. After stirring for 2 h at 45 °C, the reaction was completed to yield **7** as colorless oil in 75% yield (1.31 g).

Spectral data for 6: ¹H NMR (CDCl₃, 500 MHz): δ 0.32 (s, 27H, SiMe₃), 2.27 (s, 3H, CH₃ in mesityl), 2.56 (s, 3H, CH₃ in mesityl), 2.63 (s, 3H, CH₃ in mesityl), 5.85 (s, 1H, Si-H), 6.81 (s, 1H, aryl-H), 6.86 (s, 1H, aryl-H). ¹³C NMR (CDCl₃, 125 MHz): 5.54 (C(SiCH₃)₃), 21.04, 25.24, 27.54 (CH₃ in mesityl), 129.13, 130.09, 131.68, 140.536, 143.89, 144.22 (aryl). MS: m/z (relative intensity): 443 (M⁺ – 15, 100), 371 (64.6), 291 (83.3), 187 (75.0), 120 (18.1), 73 (97.7). HRMS: C₁₈H₃₆BrSi₄ 443.1077 (M⁺ – 15 calcd), 443.1072 (found). Anal. Calcd for C₁₉H₃₉BrSi₄: C, 49.64; H, 8.55. Found: C, 49.60; H, 8.51.

Spectral data for 7: ¹H NMR (CDCl₃, 500 MHz): δ -0.07 (s, 9H, SiMe₃), 0.21 (s, 9H, SiMe₃), 0.23 (s, 9H, SiMe₃), 1.09, 1.22 (d, *J* = 6.0 Hz, 6H, OCH(*CH*₃)₂), 2.24 (s, 3H, CH₃ in mesityl), 2.48 (s, 6H, CH₃ in mesityl), 4.08 (m, 1H, O*CH*(CH₃)₂), 6.74 (s, 2H, aryl-H); the Si-H proton was not identified. ¹³C NMR (CDCl₃, 125 MHz): 1.22, 3.27, 4.12 (C(Si*C*H₃)₃), 20.92, 25.29 (CH₃ in mesityl), 25.47, 26.23 (OCH(*C*H₃)₂), 66.69 (O*C*H(CH₃)₂), 129.95, 131.70, 135.68, 138.54, 143.39 (aryl). MS: *m/z* (relative intensity) 423 (M⁺ - 15, 2.1), 365 (36.2), 323 (29.4), 307 (6.9), 261 (10.4), 203 (100), 73 (16.7). HRMS: C₂₁H₄₃OSi₄ 423.2391 (M⁺ - 15 calcd), 423.2391 (found). Anal. Calcd for C₂₂H₄₆OSi₄: C, 60.20; H, 10.56. Found: C, 60.05; H, 10.51.

Spectral data for 9: ¹H NMR (CDCl₃, 500 MHz): δ –0.75 (s, 9H, SiMe₃), -0.46 (s, 9H, SiMe₃), 0.18 (s, 9H, SiMe₃), 2.25 (s, 3H, CH₃ in mesityl), 2.48 (s, 6H, CH₃ in mesityl), 5.45 (d, *J* = 6.6 Hz, 1H, Si-H), 6.75 (s, 2H, aryl-H); the Si-OH proton was not identified. ¹³C NMR (CDCl₃, 125 MHz): 5.71 (C(SiCH₃)₃), 21.06, 23.50 (CH₃ in mesityl), 128.76, 129.88, 138.91, 143.106, 144.46, 145.63 (aryl). MS: *m/z* (relative intensity) 381 (M⁺ – 15, 100), 276 (37.5), 261 (59.6), 203 (33.3), 177 (43.8), 73 (34.2). HRMS: C₁₈H₃₇OSi₄ 381.1921 (M⁺ – 15 calcd), 381.1912 (found). Anal. Calcd for C₁₉H₄₀OSi₄: C, 57.50; H, 10.16; O, 4.03. Found: C, 57.51; H, 10.08; O,4.02. Spectral data for TsiMesSi(OD)D: MS: *m/z* (relative intensity) 383 (M⁺ – 15, 100), 278 (33.8), 263 (41.9), 204 (20.8), 177 (43.8), 73 (33.3).

Synthesis of 8, 10, and 11. ⁿBuLi (2.5 mL) diluted to 1.6 M in hexane was added to the reaction mixture of 3 in THF (60 mL) at

⁽²⁰⁾ To the best of our knowledge, there was no example in which the ¹H and ¹³C NMR of the three methyl groups of Tsi were separated at room temperature. Lickiss and co-workers found that the ¹H and ¹³C NMR spectra of (Tsi)SiCl₃ and the ¹H NMR spectrum of (Tsi)SiBr₃ showed three signals for the Tsi group only at low temperature (ca. 206 K). Avent, A. G.; Bott, S. G.; Ladd, J. A.; Lickiss, P. D.; Pidcock, A. J. Organomet. Chem. **1992**, *427*, 9. Sakurai and co-workers reported that the ¹H NMR spectrum of (Tsi)-(Mes)FSiOEt showed a singlet resonance due to the Tsi group. Nakadaira, Y.; Oharu, K.; Sakurai, H. J. Organomet. Chem. **1986**, *309*, 247.

⁽²¹⁾ Eaborn, C.; Kowalewska, A.; Smith, J. D.; Stañczyk, W. A. J. Organomet. Chem. 2001, 640, 29.

-78 °C. After the mixture had been stirred for 2 h, the reaction mixture of **3** with "BuLi was slowly warmed to 0 °C, and **8** was formed. The solution was treated with an excess of water to give **10** (64%, GC yield), which was separated by column chlomatography as a colorless oil. In a manner similar to that described above, the reaction mixture of **3** with "BuLi (2.5 mL) was warmed to 0 °C, and **8** was formed. The solution was allowed to warm to room temperature, and then an excess of MeI was added. After addition of *n*-hexane at room temperature, precipitated compounds were removed by filtration, the resulting mixture was washed with water, and volatiles were distilled under vacuum. The crude product was purified by GPLC with recycling to afford **11** as a colorless oil in 58% yield (1.0 g).

Spectral data for 10: ¹H NMR (CDCl₃, 400 MHz): δ -0.10 (s, 9H, SiMe₃), 0.12 (s, 9H, SiMe₃), 0.19 (s, 9H, SiMe₃), 0.90–0.94 (m, 3H, CH₃ in *n*-butyl), 1.35–1.46 (m, 6H, CH₂ in *n*-butyl), 2.23 (s, 3H, CH₃ in mesityl), 2.42 (s, 6H, CH₃ in mesityl), 6.74 (s, 2H, aryl-H); the Si-H proton was not identified. ¹³C NMR (CDCl₃, 100 MHz): 1.03, 3.00, 3.42 (C(SiCH₃)₃), 2.03 (*C*(SiMe₃)₃), 13.30, 20.36, 22.02, 26.87 (*n*-butyl), 25.23 (*o*-CH₃ in mesityl), 28.63 (*p*-CH₃ in mesityl), 128.87, 134.47, 136.35, 142.78 (aryl). MS: *m/z* (relative intensity) 421 (M⁺ – 15, 7.9), 363 (93.8), 307 (100), 291 (14.6), 173 (12.5), 73 (23.3). HRMS: C₂₂H₄₅Si₄ 421.2598 (M⁺ – 15 calcd), 421.2598 (found). Anal. Calcd for C₂₃H₄₈Si₄: C, 63.22; H, 11.07. Found: C, 63.20; H, 11.02.

Spectral data for 11: ¹H NMR (CDCl₃, 500 MHz): δ -0.11 (s, 9H, SiMe₃), 0.17 (s, 9H, SiMe₃), 0.20 (s, 9H, SiMe₃), 0.87–1.00 (m, 3H, CH₃ in *n*-butyl) 1.16–1.37 (m, 6H, CH₂ in *n*-butyl), 1.48 (s, 3H, CH₃), 2.28 (s, 3H, CH₃ in mesityl), 2.49 (s, 3H, CH₃ in mesityl) 2.53 (s, 3H, CH₃ in mesityl) 6.84 (s, 2H, aryl-H); the Si-H proton was not identified. ¹³C NMR (CDCl₃, 125 MHz): 2.37, 3.21, 4.12 (C(SiCH₃)₃), 4.76 (*C*(SiMe₃)₃), 14.04, 17.74, 20.72, 21.23 (*n*-butyl), 25.16 (SiCH₃), 27.51 (*o*-CH₃ in mesityl), 28.59 (*p*-CH₃ in mesityl), 128.87, 130.18, 134.27, 138.06, 145.19, 145.56 (aryl). MS: *m*/*z* (relative intensity) 435 (M⁺ – 15, 2.2), 377 (100), 321 (27.4), 177 (32.1), 73 (32.1). HRMS: C₂₃H₄₇Si₄ 435.2755 (M⁺ – 15 calcd), 435.2755 (found). Anal. Calcd for C₂₄H₅₀Si₄: C, 63.92; H, 11.17. Found: C, 63.88; H, 11.16.

Reaction of Bromosilylenoid 1 with MesMgBr. After MesMg-Br (4.0 mL) diluted to 1.0 M in diethyl ether was added rapidly to the reaction mixture of **1** at -78 °C, the solution was stirred for 2 h at that temperature. When the reaction mixture of 1 with MesMgBr was slowly warmed to -10 °C, silylenoid 3 was formed. The reaction of silylenoid 3 with 2-propanol gave compound 6 in 75% yield. When the reaction mixture of 3 was warmed to 45 °C, 4 began to form. After stirring for 2 h at 45 °C, the reaction was complete. In the reaction of 4 with 2-propanol, compound 7 was obtained in 72% yield.

Syntheses and Reactions of 2, 3, and 4 in a Reverse Way. To the reaction mixture of 1, the newly prepared MgBr₂ (4.0 mmol) diluted to 20 mL was added at -78 °C. When the solution was stirred for 0.5 h at that temperature, compound 12 was formed. The reaction mixture of 12 was treated with MesLi (4.0 mmol) diluted to 20 mL for 1 h at -78 °C. The solution was slowly warmed to -10 °C, and silylenoid 3 was formed. After 2 h, the reaction of silylenoid 3 with 2-propanol gave compound 6 in 58% yield. When the reaction mixture of 3 was warmed to 45 °C, 4 began to form. After stirring for 2 h at 45 °C, the reaction was complete. In the reaction of 4 with 2 propanol, compound 7 was obtained in 56% yield. In a manner similar to that described above, MesMgBr was used instead of MesLi. In this reaction, 6 and 7 was obtained in 48% and 43% yields, respectively.

Reaction of Bromosilylenoid with MeLi (or MeMgBr). One equivalent of MeLi (2.7 mL) diluted to 1.5 M in diethyl ether or 1 equiv of MeMgBr (1.3 mL) diluted to 3.0 M in diethyl ether was added rapidly to the reaction mixture of 1 at -78 °C. The resulting solution was slowly warmed to room temperature. The solution was stirred for 1 h at that temperature and then trapped by 2-propanol to give dimethyltrisylsilane 13 and 5 (1-trapping product) (1:1 mixture). On using 2 equiv of MeLi or MeMgBr, compound 13 was formed quantitatively.

Acknowledgment. This work was supported by a Korea Research Foundation Grant (KRF-2003-041-C20150). We thank Prof. Robert West for his helpful comments on the manuscript.

Supporting Information Available: ²⁹Si NMR spectrum of **2**, **3**, **4**, and **12**, calculated structures of **2'**, **3'**, and **4'**, and full list of authors of ref 19b. These materials are available free of charge via the Internet at http://pubs.acs.org.

OM060589W