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Summary: 1,6-Bis(ferrocenyl)-1,3,5-hexatriyne (F(C)sFc)

was prepared from the reaction between 3-(dibromometh-

ylidene)-1,5-bis(ferrocenyl)penta-1,4-diyne and Bulia an
alkynyl migration in avinylidene carbenoid mechanism. Both

Among the family ofo,w-bis(ferrocenyl) polyynes (Fc
C)mFc), FCG=CFc and Fc(&C),Fc were prepared respectively
from the cross coupling (CadietChodkiewicz type) between
FcC=CH and Fcl and oxidative coupling (Glaser type) of EeC

the title compound and its precusors were thoroughly character- CH in the 19604112Subsequent study by Cowan reveale
ized, and the electronic couplings between two ferrocenyl units yajues of 130 mVifi= 1) and 100 mV = 2) and a class I

were assessed wittbltammetric techniques.

Robin—Day designation for the mixed-valent ions of both

Ferrocene is undoubtedly the most celebrated organometalliccompounds? Two extended members, namely thosenof=

compound, and its value goes far beyond sentimental. With
its robust (+1/0) couple, ferrocene is one of the most utilized
redox probes for biomoleculéand has been incorporated into
both redox-active main chain polymérand redox-active
dendrimers as either the foci or peripheral pendams. a
prochiral building block, ferrocene has also played a key role

414 and 61° were reported in recent years, and both were readily
prepared from the oxidative coupling reaction of R&C The
synthesis of am,w-bis(ferrocenyl) polyyne obdd m on the
other hand, is more challenging. In addition to FeCFc, the
titte compound was previously synthesized from two routes:
(i) Schlggl and Steyrer obtained the compound in the form of

in the development of asymmetric catalysts during the last 10 & mixture from the oxidative coupling of Fe&CH and Fc(G=

years? Of particular interest to us is its unique role in probing

C):H, but failed to isolate it® and (ii) Wakatsuki et al. prepared

charge transfer efficieny across molecular fragments (X) on the the compound in a nearly quantitative yield from the reductive-

basis of the mixed-valent nature of [FX—Fc]",6 where, in
the cases of efficient bridging (strong coupling), two Fc's are

(elimination)-coupling of 5-CsH4TMS), Ti(o-C=CFc)(-(C=
C)Fc) and reported NMR and combustion analysis data.

oxidized stepwise and the potential difference between two Reported in this communication is the preparation of Fe(C
oxidations (\E1/) can be used as a convenient gauge of coupling C)sF¢ using a method that is distinctively different from all prior
strengtH Recent years have seen intense efforts in the estimationsyntheses of Fc(€C)nFctt121417 and characterization of this

of hole transfer efficiency of metal complexes by placing a pair
of FcG=C groups in trans deposition in mononucfeand
polynuclear compoundsOther noteworthy studies of the [Fc
X—Fc] type systems include the demonstration of visible light
modulated electron transfeand revelation of an unusually large
AE;, manifested by a quadruple hydrogen-bonding mitif.
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compound and its precursors.

As depicted in Scheme 1, our approach has been inspired by
the successful preparation of polyynes from alkynyl migration
in vinylidene carbenoid&® Preparations of compoundsand?2
were slightly modified from the early literatuf@the reaction
between Fceli and 0.5 equiv of ethylformate resulted in
compoundl (1,5-bis(ferrocenyl)penta-1,4-diyn-3-ol), and sub-
sequent oxidation of compoundl with pyridinium chloro-
chromate led to compourl(1,5-bis(ferrocenyl)penta-1,4-diyn-
3-one). Both compounds gave spectroscopic data consistent with
the previously reported values, and compouhdas further
characterized by single-crystal X-ray diffracti&hAs shown
in Figure 1, the middle fragment (EXC2—C3(=0)—C4—C5)
of molecule2 is planar and the metric parameters are consistent
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Scheme 1. Synthetic Route for FcgFc?

Br: Br
. H .. O .
N 0 H (i) (iii) | @iv) e
[ —’F > x . —>F F X Fc—’ & ~ cC— — — [I¢C
c c c F
1 2 Feo 3 ¢

4

a Conditions: (i)"BuLi (1.04 equiv), ethylformate (0.52 equiv), THF°Q; yield of 1. 71%; (ii) pyridinium chlorochromate (1.5 equiv), Celite/
molecular sieves, Cil,, 12 h; yield of2: 72%; (iii) CBr4 (2.0 equiv), PPh(4.0 equiv), benzene, 12 h; yield 8f 71%,; (iv) "BuLi (1.25 equiv),
dry benzene;-15 °C, 1 h; yield of4: 82%.
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Figure 2. ORTEP plot of molecul@® at the 30% probability level.
- Hydrogen atoms were omitted for clarity. Selected bond lengths
Figure 1. ORTEP plot of molecul@ at the 30% probability level. (&) and angles (deg): GiC2, 1.207(2); C2C3, 1.427(2); C3
Hydrogen atoms were omitted for clarity. Selected bond lengths C4. 1.352(2); C4Br, 1.871(1); C2-C3—C4, 121.66(7); C2C3-
(A) and angles (deg): GiC2, 1.200(2); C2C3, 1.442(2); C3 C2, 116.7(1); C3-C4—Br, 122.57(4); B+-C4—Br', 114.87(9).
0, 1.220(2); C3-C4, 1.446(2); C4C5, 1.205(2); G-C3—C2,
123.7(2); O-C3—C4, 122.6(2); C2C3—C4, 113.7(1). 3 at all’® In addition to H and 3C NMR spectroscopic
identification, compound was also characterized by X-ray
with a localized penta-1,4-diyn-3-one designation. The unique crystallography?? and its structural plot is shown in Figure 2.
axes of two ferrocenyl groups, i.e., the vector defined by linking Molecule 3 contains a crystallographic 2-fold axis defined by
the centroid of the Cp rings and Fe center (shown as a dash inC3 and C4 centers, and the 3-(dibromomethylidene)penta-1,4-
Figure 1), are roughly orthogonal to the penta-1,4-diyn-3-one diyne fragment is planar. Interestingly, the unique axes of both
plane and pointed in opposite directions. The-Fee and ferrocenyl groups are roughly coplanar with the 3-(dibromo-
edge(Fcy-edge(Fc) distances are 9.72 and 6.69 A, respectively. methylidene)penta-1,4-diyne plane, and the f/& and edge-
The topological features df are significant since there is no  edge distances are about 10.55 and 6.62 A, respectively. There
structural characterization of compounds containing a penta-is only one literature precedent related 3p namely, 3-(di-
1,4-diyn-3-one fragment despite their significant role in the bromomethylidene)-1,5-diphenylpenta-1,4-diyne by Diedéich,
synthesis of carbon-rich compoundg! which displays metric parameters for the 3-(dibromometh-
Compound2 was further converted to 3-(dibromomethyl- ylidene)penta-1,4-diyne fragment nearly identical to those of
idene)-1,5-bis(ferrocenyl)penta-1,4-diyi3 i satisfactory yield o
via the reaction with CBrin the presence of PRK{Corey— Tyk_wmskl an_d co-workers_demonstrated re_cently that 1,5-
Fuchs dibromoolefination reactio®23 It is surprising that a substituted 3-(dibromomethylidene)penta-1,4-diynes with either

prior attempt under nearly identical conditions did not produce Silyl or aryl substituents could be converted to 1,6-substituted
1,3,5-hexatriynes via the reaction with BuLi in rigorously

. - anhydrous hydrocarbor& Hence, the reaction between com-
(20) X-ray diffraction data for crystalg—4 were collected on a Bruker . . o
SMART APEX2 CCD diffractometer using Mod<at 100 K.Crystal data pound3 and BulLi in slight excess at 15 °C afforded compound

for 2: CosHigFe0, M = 446.09, monoclinicP2i/c, a= 14.0726(8) A 4 (1,6-bis(ferrocenyl)-1,3,5-hexatriyne) in excellent yiéid.

; 101833(7)'; §9§3-90i6r§g9)Légst:sétgég(r‘ginAén\:;tlgggé%(zgfé c33 Compound! has been characterized by all necessary techniques
=4,p=1 ) . . . . .

reflections withl = 20(1) and 325 parameters led to convergence with final 'nCIUd'n_g X-ray crystallog_raphfr? and its struc_:tural _pIOt 1S

R1 = 0.034 andwR2 = 0.075. Crystal data for3: CpgHigBroFe, M = shown in Figure 3. There is a crystallographic inversion center

?50)1£2bmonl%03lirgz(ll(23/§):, %= ngfg%((fi))%bilﬂ%(@ /i% 6=014-31537- bisecting the C3C3 bond, and the bond lengths and angles

s P = . y V= . , L=4,p =1 g cnte. ; ; . .

Least-squares refinement based on 4247 reflectionslwito(l) and 173 of the hexatrlyne_chaln confqrm to the formahsr_n of alternating

parameters led to convergence with fifRll = 0.022 anl wR2 = 0.056. Carbon‘carbo_n single and triple anag-T_he unique axes Qf

Crystal data for4: CogHigFe, M = 442.10, monoclinicP2./c, a = the two Fc units are parallel but pointed in opposite directions,

7.6034(2) A b = 10.9464(3) Ac = 11.6264(3) Ap = 101.823(1), V = as imposed by the inversion center, and the e and edge-

947.13(4) B, Z =2, p = 1.550 g cn13. Least-squares refinement based . .
on 2892 reflections with = 2¢(l) and 163 parameters led to convergence edge distances are respectively 12.02 and 9.20 A

with final R1 = 0.020 andwR2 = 0.056.
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Figure 3. ORTEP plot of moleculd at the 30% probability level.
Hydrogen atoms were omitted for clarity. Selected bond lengths
(A) and angles (deg): CGiC2, 1.211(1), C2C3, 1.362(1), C3

C3, 1.215(2), C+C2-C3, 178.9(1), C2C3—C3, 179.7(2).
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Figure 4. CVs (thin line) and DPVs of compoun@s-4 recorded
in 0.20 M"BusNPFR THF solution at 21+ 1 °C. The scan rate for

CV measurements was 100 mV/s; the step increment and pulse.

width for DPV measurements were 4 mV and 0.05 s, respectively.

The availability of compound®—4 and their structural
information provides an excellent opportunity for expanding the
electronic coupling structureproperty relationship in the,w-
bis(ferrocenyl) polyyne series. Both the cyclic and differential

Organometallics, Vol. 25, No. 22, 206215

with a ferrocene internal standard and the shape of the
voltammogramg? Prior studies of Fc&CFc and Fc(&C),Fc
revealed the stepwise one-electron oxidations that are indicative
of effective electronic couplings between two Fc centéemnd

that of Fc(G=C)sFc revealed a true two-electron oxidation and
thus the absence of electronic coupliglearly, compounds
2—4 are the intermediate of two extremes, as one might
anticipate from the length of the spacers. Although a direct
determination ofAE;s; is impossible due to the pseudo-two-
electron nature of oxidation, th&®E;, values (lower limit) for
compound®—4 can be estimated using the TautiRichardson
modef’ as 35, 30, and 60 m¥%8 respectively. It is interesting
that the electronic coupling ihis the strongest of three despite
the longest Fe-Fée (edge-edge) distance. A plausible rationale
is that although the C3 center in bdtand3 is si hybridized,

the p, orbital is polarized toward the more electronegative
oxygen/dibromomethylene group and contributes little toward
the superexchange pathway between the two Fc units.

Four decades after the synthesis of the fitst-bis-
(ferrocenyl) polyyne of oddn (FCG=CFc) by Rosenblurnkt we
succeeded in preparing FG&C)sFc via a novel alkynyl
migration in vinylidene carbenoid route. The same methodology
may be employed in the synthesis of both the next member of
odd m (Fc(C=C)sFc) and polyynes of other metal-capping
groups such as diruthenium complexes, the latter of which have
been the hallmark of our recent reseatth.
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