A Bridging Side-on Allenylidene Dimolybdenum Complex without **Carbonyl Stabilization**

Wilfried-Solo Ojo,[†] François Y. Pétillon,*^{,†} Philippe Schollhammer,*,† Jean Talarmin,† and Kenneth W. Muir*,[‡]

UMR CNRS 6521, Chimie, Electrochimie Moléculaires et Chimie Analytique, UFR Sciences et Techniques, Université de Bretagne Occidentale, CS 93837, 29238 Brest-Cedex 3, France, and Chemistry Department, University of Glasgow, Glasgow G12 8QQ, U.K.

Received July 24, 2006

Summary: The bis(nitrile) complex $[Mo_2Cp_2(\mu\text{-}SMe)_3(NCCH_3)_2]$ - (BF_4) (1) reacts with HC=CCPh₂(OH) to give the μ -alkyne product $[Mo_2Cp_2(\mu\text{-}SMe)_3\{HC\equiv CCPh_2(OH)\}]/BF_4)$ (2). Sequential treatment with triethylamine and tetrafluoroboric acid converts 2 almost quantitatively, via the μ -alkynyl derivative 3, into $[Mo_2Cp_2(\mu\text{-}SMe)_3(\mu\text{-}\eta^1\text{-}\eta^2\text{-}C=C=CPh_2)]$ (BF₄) (4), the first example of a dinuclear μ - η ¹: η ²-allenylidene species without carbonyl ligands.

Introduction

Recent interest¹ in allenylidene complexes arises from their importance in several developing areas of organometallic chemistry. (i) They are involved in the growth of carbon chains at metal surfaces.^{1b} (ii) Their unsaturated carbon chains are possible precursors of molecular wires or polymers which have novel optical and electronic properties.^{1c,2} (iii) They can catalyze synthetically useful organic reactions: for example, nucleophilic substitution of propargylic alcohols³ and alkene metathesis.⁴ The

(2) For recent examples, see: (a) Winter, R. F.; Zális, S. Coord. Chem. Rev. 2004, 248, 1565. (b) Wong, C.-Y.; Che, C.-M.; Chan, M. C. W.; Leung, K.-H.; Philipps, D. L.; Zhu, N. J. Am. Chem. Soc. 2004, 126, 2501. (c) Buil, M. L.; Esteruelas, M. A.; López, A. M.; Oñate, E. Organometallics 2003, 22, 5274. (d) Rigaut, S.; Massue, J.; Touchard, D.; Fillaut, J.-L.; Golhen, S.; Dixneuf, P. H. Angew. Chem., Int. Ed. 2002, 41, 4513. (e) Cadierno, V.; Conejero, S.; Gamasa, M. P.; Gimeno, J. Organometallics 2001, 20, 3175. (f) Re, N.; Sgamelloti, A.; Floriani, C. Organometallics 2000, 19, 1115. (g) Dembiski, R.; Bartik, T.; Bartik, B.; Jaeger, M.; Gladysz, J. A. J. Am. Chem. Soc. 2000, 122, 810.

(3) See for example: (a) Nishibayashi, Y.; Milton, M. D.; Inada, Y.; Yoshikawa, M.; Wakiji, I.; Hidai, M.; Uemura, S. Chem. Eur. J. 2005, 11, 1433. (b) Ammal, S. C.; Yoshikai, N.; Inada, Y.; Nishibayashi, Y.; Nakamura, E. J. Am. Chem. Soc. 2005, 127, 9428. (c) Cadierno, V.; Díez, J.; García-Garrido, S. E.; Gimeno, J. Chem. Commun. 2004, 2716. (d) Nishibayashi, Y.; Onodera, G.; Inada, Y.; Hidai, M.; Uemura, S. Organometallics 2003, 22, 873. (e) Nishibayashi, Y.; Inada, Y.; Hidai, M.; Uemura, S. J. Am. Chem. Soc. 2003, 125, 6060. (f) Nishibayashi, Y.; Wakiji, I.; Ishii, Y.; Uemura, S.; Hidai, M. J. Am. Chem. Soc. 2001, 123, 3393. (g) Bustelo, E.; Jiménez-Tenario, M.; Puerta, M. C.; Valerga, P. Organometallics 2006, 25, 4019. (h) Nishibayashi, Y.; Inada, Y.; Yoshikawa, M.; Hidai, M.; Uemura, S. Angew. Chem., Int. Ed. 2003, 42, 1495. (i) Wen, T. B.; Zhou, Z. Y.; Lo, M. L.; Williams, I. D.; Jia, G. Organometallics 2003, 22, 5217. (j) Cadierno, V.; Conejero, S.; Gamasa, M. P.; Gimeno, J.; Rodriguez, M. A. Organometallics 2002, 21, 203. (k) Bruneau, C.; Dixneuf, P. H. Acc. Chem. Res. 1999, 32, 311.

vast majority of known allenylidene complexes are mononuclear.¹ General methods of synthesis for binuclear or polynuclear derivatives are unavailable, and consequently, there have been only a few reports of such complexes.^{5,6} Two wellestablished bridging modes have been found for allenylidenes in binuclear complexes, the μ - η ¹: η ¹ (2e) (end-on)^{5a,c,e,g-i} and μ - η ¹: η ² (4e) (side-on)^{5b,d,f} forms; however, there are also examples of dinuclear complexes containing nonbridging allenylidene ligands $(2e)$.^{3a,7} All known dinuclear and polynuclear complexes containing bridging allenylidene ligands also contain carbonyl ligands;^{5,6} the only possible exception is $[\{Cp_2ZrEt\}_2$ - $(\mu$ -C=C=CMe₂), where one Zr atom appears to interact with all three chain carbon atoms.^{5k} Accordingly, in an attempt to synthesize μ -allenylidene complexes which do not owe their stability to the presence of carbonyl ligands, we have reacted the bis(isonitrile) compound $[Mo_2Cp_2(\mu\text{-SMe})_3(NCCH_3)_2](BF_4)$ $(1)^8$ with propargylic alcohols, followed by sequential treatment with triethylamine and tetrafluoroboric acid. We now report that

(5) (a) Akita, M.; Kato, S.; Terada, M.; Masaki, Y.; Tanaka, M.; Morooka, Y. Organometallics 1997, 16, 2392. (b) Capon, J.-F.; Le Berre-Cosquer, N.; Leblanc, B.; Kergoat, R. J. Organomet. Chem. 1996, 508, 31. (c) Edwards, A. J.; Esteruelas, M. A.; Lahoz, F. J.; Modrego, J.; Oro, L. A.; Schrickel, A. J. Organometallics 1996, 15, 3556. (d) Capon, J.-F.; Le Berre-Cosquer, N.; Bernier, S.; Pichon, R.; Kergoat, R.; L'Haridon, P. J. Organomet. Chem. 1995, 487, 201. (e) Etienne, M.; Talarmin, J.; Toupet, L. Organometallics 1992, 11, 2058. (f) Froom, S. F. T.; Green, M.; Mercer, R. J.; Nagle, K. N.; Orpen, A. G., Rodrigues, R. A. J. Chem. Soc., Dalton Trans. 1991, 3171. (g) Etienne, M.; Toupet, L. J. Chem. Soc., Chem. Commun. 1989, 1110. (h) Berke, H.; Härter, P.; Huttner, G.; Zsolnai, L. Chem. Ber. 1982, 115, 695. (i) Berke, H. J. Organomet. Chem. 1980, 185, 75. (j) Berke, H.; Härter, P.; Huttner, G.; Zsolnai, L. Chem. Ber. 1984, 117, 3423. (k) Binger, P.; Langhauser, F.; Gabor, B.; Mynott, R.; Kruger, C. Chem. Commun. 1992, 505. (1) Touchard, D.; Guesni, S.; Bouchaib, M.; Haquette, P.; Daridor, A.; Dixneuf, P. H. Organometallics 1996, 15, 2579

(6) (a) Charmant, J. P. H.; Crawford, P.; King, P. J.; Quesada-Pato, P.; Sappa, E. Dalton Trans. 2000, 4390. (b) Bruce, M. I.; Skelton, B. W.; White, A. H.; Zaitseva, N. N. Dalton Trans. 2000, 881. (c) Lau, C. S.-W.; Wong, W.-T. J. Chem. Soc., Dalton Trans. 1998, 3391. (d) Berke, H.; Grössmann, U.; Huttner, G.; Zsolnai, L. Chem. Ber. 1984, 117, 3432. (e) Aime, S.; Deeming, A. J.; Hursthouse, M. B.; Backer-Dirks, J. D. J. J. Chem. Soc., Dalton Trans. 1982, 1625.

(7) (a) Cadierno, V.; Díez, J.; García-Garrido, S. E.; Gimeno, J. Organometallics 2005, 24, 3111. (b) Harlow, K. J.; Hill, A. F.; Wilton-Ely, J. D. E. T. J. Chem. Soc., Dalton Trans. 1999, 285. (c) Matsuzaka, H.; Takagi, Y.; Hidai, M. Organometallics 1994, 13, 13.

(8) Barrière, F.; Le Mest, Y.; Pétillon, F. Y.; Poder-Guillou, S.; Schollhammer, P.; Talarmin, J. J. Chem. Soc., Dalton Trans. 1996, 3967.

^{*} To whom correspondence should be addressed. E-mail: francois.petillon@univ-brest.fr (F.Y.P.); schollha@univ-brest.fr (P.S.); ken@chem.gla.ac.uk (K.W.M.).

Université de Bretagne Occidentale.

[‡] University of Glasgow.

⁽¹⁾ For recent reviews, see: (a) Gruselle, M. Chem. Rev. 1996, 96, 1077. (b) Bruce, M. I. Chem. Rev. 1998, 98, 2797. (c) Paul, F.; Lapinte, C. Coord. Chem. Rev. 1998, 178-180, 431. (d) Cadierno, V.; Gamasa, M. P.; Gimeno, J. Eur. J. Inorg. Chem. 2001, 571. (e) Selegue, J. P. Coord. Chem. Rev. 2004, 248, 1543. (f) Rigaut, S.; Touchard, D.; Dixneuf, P. H. Coord. Chem. Rev. 2004, 248, 1585. (g) Fischer, H.; Szesni, N. Coord. Chem. Rev. 2004, 248, 1659.

⁽⁴⁾ See, for example: (a) Çetinkaya, B.; Demir, S.; Özdemir, I.; Toupet, L.; Sémeril, D.; Bruneau, C.; Dixneuf, P. H. New J. Chem. 2001, 25, 519. (b) Fürstner, A.; Hill, A. F.; Liebl, M.; Wilton-Ely, J. D. E. T. Chem. Commun. 1999, 601. (c) Picquet, M.; Touchard, D.; Bruneau, C.; Dixneuf, P. H. Chem. Commun. 1999, 141. (d) Picquet, D.; Bruneau, C.; Dixneuf, P. H. Chem. Commun. 1998, 2249. (e) Schwab, P.; Grubbs, R. H.; Ziller, J. W. J. Am. Chem. Soc. 1996, 118, 100. (f) Katayama, H.; Urushima, H.; Ozawa, F. J. Organomet. Chem. 2000, 606, 16.

the ultimate product of these reactions contains the desired C_3 ligand bridging two molybdenum atoms in a μ - η ¹: η ² (4e) manner.

Results and Discussion

Treatment of 1 with 1 equiv of $HC = CCPh_2(OH)$ in CH_2Cl_2 gave $[Mo_2Cp_2(\mu-SMe)_3\{HC_2CPh_2(OH)\}](BF_4)$ (2) as a brownish green solid in 84% yield (Scheme 1). **2** is formulated as a dimolybdenum complex with an alkyne ligand bonded in a parallel μ -*η*¹:*η*¹ manner, since its spectra show obvious parallels with those of the related species $[Mo_2Cp_2(\mu-SPr^i)_2(\mu-S)(\mu-\eta^1)$: η ¹-C₂Ph₂)] and [Mo₂Cp₂(*µ*-SMe)₃(*µ*- η ¹: η ¹-HC₂CO₂Me)](BF₄), whose molecular structures have been confirmed by X-ray analysis.^{9,10} In particular, the low-field 13 C chemical shift of the alkyne carbon atoms (δ 243.4) is in the range (δ 272- $213)^{9,10a,11}$ observed for other dinuclear complexes of group 6 metals, in which the alkyne group lies parallel to the metalmetal bond. This chemical shift differs strongly from the values (*^δ* ⁸⁷-62) reported for related compounds where the alkyne bridges two metals in the perpendicular μ -*η*²:*η*² (4e) mode.¹²

Complex **2** was readily deprotonated in the presence of triethylamine to give a green solution from which the neutral

acetylide derivative [Mo₂Cp₂(μ-SMe)₃{μ-η¹:η²-C≡CCPh₂-(OH)}] (**3**) was isolated in moderate yield (Scheme 1). The presence of the alkynyl ligand in **3** was established from both the ¹³C{¹H} NMR spectrum and the ¹H $-$ ¹³C experiment, which indicate the presence of only one resonance corresponding to the acetylenic carbon atoms¹³ at 120.6 ppm and a singlet at 77.4 ppm due to the *CPh*₂(OH) carbon atom. ¹H NMR spectra of 2 and **3** show only one Cp signal, which indicates that both complexes are fluxional at room temperature. Addition of HBF4 to a solution of **3** in dichloromethane afforded exclusively the μ -allenylidene complex $[Mo_2Cp_2(\mu\text{-SMe})_3(\mu\text{-}\eta^1:\eta^2=C=C=$ $CPh₂$)($BF₄$) (4) (Scheme 1). Mechanistically, the allenylidenebridged derivative **4** most probably results from spontaneous dehydration of the μ - η ¹: η ²-hydroxyvinylidene intermediate **A** (Scheme 1), generated by electrophilic attack of the proton of HBF₄ at the C_β carbon atom of the alkynyl complex 3. The ¹H NMR spectrum of **4** shows a single cyclopentadienyl resonance at δ 6.00, which is integrated as 10 hydrogens. This is clearly inconsistent with the solid-state structure established for this complex (see below) and suggests that the molecule is fluxional in solution at room temperature. This is in accord with the observed line broadening of the Cp resonance when a dichloromethane-*d*² solution of **4** is cooled from 298 to 174 K. The 13C{1H} NMR spectrum contains a resonance at low field (*δ* 302.0) assignable to a carbenoid carbon atom (C_{α}) . This lowfield chemical shift is indicative of an asymmetric side-on coordination mode of the allenylidene group bridging a bimetallic core ([M]-[M]), for which a ¹³C_{α} chemical shift range of $302-282$ ppm has been observed in known μ -allenylidene (sideon) dinuclear derivatives,5b,d,f and it is in contrast with the values of 206.5-173 ppm reported for related end-on species.^{5a,c,e} In short, these spectroscopic data suggest that **4** has a highly unsymmetrical structure in solution. Single-crystal X-ray analysis confirms that the cation of **4** displays the unsymmetrical side-on coordination of the allenylidene group (Figure 1), bridging the metal-metal bond as a four-electron donor. However, a typical disorder of the *µ*-SMe groups (occupancy of minor sites 0.076(5)) affects the accuracy of the results. The length of the Mo-Mo single bond in **⁴** (2.659(9) Å) is close to the average value for $[Mo_2^{\text{III}}(\mu\text{-SR})_3]$ complexes (2.644 Å), and the μ -Mo-S distances are also unexceptional.¹⁴ The short Mo2-C4 distance (1.88(1) Å) formally represents a double bond; comparable distances are found in related neutral side-on allenylidene derivatives, such as $[Mo_2Cp_2(CO)_4(\mu-\eta^1;\eta^2-C=C=$ CMe_2] (1.912(3) Å)^{5f} and [Mo₂Cp₂(CO)₄(μ - η ¹: η ²-C=C= C_6H_{10}] (1.90(1) Å),^{5d} formally Mo(I) species, and in the cationic vinylidene derivative $[Mo_2Cp_2(\mu\text{-}SMe)_3(\mu\text{-}\eta^1:\eta^2=C=CPh_2)$]-(BF₄) (1.894(5) Å).^{10a} In comparison to μ - η ¹: η ¹ (2e) allenylidene ligands, which are linear, the C₃Ph₂ fragment in 4 is kinked, with C4-C5-C6 = 144.0(1)°. The C_α-C_β and C_β-C_γ distances of $1.31(2)$ and $1.36(1)$ Å are comparable to those observed in other side-on allenylidene complexes: i.e., 1.35(1) and 1.33(1) Å in $[Mo_2Cp_2(CO)_4(\mu-\eta^1;\eta^2-C=C=C_6H_{10})]^{5d}$ and 1.336(3) and 1.348(4) Å in $[Mo_2Cp_2(CO)_4(\mu-\eta^1;\eta^2-C=C=$ $CMe₂)$].^{5f}

In conclusion, the formation of the dinuclear μ -allenylidene complex **4** involves the four steps shown in Scheme 1. A similar

⁽⁹⁾ Adams, H.; Morris, M. J.; Mountford, P.; Patel, R.; Spey, S. E. *Dalton Trans*. **2001**, 2601.

^{(10) (}a) Schollhammer, P.; Cabon, N.; Capon, J.-F.; Pétillon, F. Y.; Talarmin, J.; Muir, K. W. *Organometallics* **2001**, *20*, 1230. (b) Ojo, W.-S.; Pétillon, F. Y.; Schollhammer, P. To be submitted for publication.

^{(11) (}a) Bott, S. G.; Clark, D. L.; Green, M. L. H.; Mountford, P. *J. Chem. Soc*., *Dalton Trans*. **1991**, 471. (b) Feng, Q.; Green, M. L. H.; Mountford, P. *J. Chem. Soc., Dalton Trans*. **1992**, 2171.

⁽¹²⁾ See for example: (a) Bailey, W. I.,, Jr.; Chisholm, M. H.; Cotton, F. A.; Rankel, L. A. *J. Am. Chem. Soc.* **1978**, *100*, 5764. (b) Capon, J. F.; Cornen, S.; Le Berre-Cosquer, N.; Pichon, R.; Kergoat, R.; L'Haridon, P. *J. Organomet. Chem.* **1994**, *470*, 137.

⁽¹³⁾ Albertin, G.; Antoniutti, S.; Bordignon, E.; Granzotto, M. *J. Organomet. Chem*. **1999**, *585*, 83.

^{(14) (}a) Pe´tillon, F. Y.; Schollhammer, P.; Talarmin, J.; Muir, K. W. *Coord. Chem. Re*V. **¹⁹⁹⁸**, *¹⁷⁸*-*180*, 203. (b) Orpen, A. G.; Brammer, L.; Allen, F. H.; Kennard, O.; Watson, D. G.; Taylor, R. *International Tables for Crystallography*; Kluwer Academic: Dordrecht, The Netherlands, 1992; Vol. \check{C} (I.U. \check{C} r.), Table 9.6.

Figure 1. View of the $[Mo_2Cp_2(\mu-SMe)_{3}(\mu-\eta^{1}:\eta^{2}-(C=C=CPh_2)]^+$ cation in crystals of 4 ^{\cdot}CH₂Cl₂. Each S atom is disordered over two sites; only the major sites with occupancy 0.924(5) are shown here. Ellipsoids at the 20% probability level are shown, except for hydrogen atoms, which are represented by spheres of arbitrary radius. Selected distances (Å) and angles (deg): Mo1-Mo2, 2.659- (9); Mo1-C4, 2.27(1); Mo1-C5, 2.44(1); Mo1-S1, 2.468(3); Mo1-S2, 2.482(3); Mo1-S3, 2.456(3); Mo2-C4, 1.88(1); Mo2- S1, 2.480(3); Mo2-S2, 2.497(3); Mo2-S3, 2.439(3); C4-C5, 1.31- (2) ; C5-C6, 1.36(1); C6-C31, 1.51(1); C6-C41, 1.50(1); Mo1-C4-Mo2, 79.0 (4); C5-C4-Mo2, 160.1(9); C5-C4-Mo1, 81.3(7); $C6-C5-C4$, 144.0(1); $C6-C5-Mo1$, 149.3(8); $C4-C5-Mo1$, 66.6(7); C31-C6-C5, 121.9(9); C31-C6-C41, 118.2(9); C41- $C6-C5$, 119.8(9).

four-stage pathway was previously proposed by Selegue15 for mononuclear transition-metal derivatives. Remarkable features of this work are that two of the three intermediates involved in the formation of **4** have been isolated and that, finally, a noncarbonyl *µ*-allenylidene dinuclear complex has been prepared and structurally characterized. Further experiments are now in progress: they extend the scope of the reactivity of these sideon allenylidene species and should give a better understanding of the factors which govern their behavior.

Experimental Section

General Procedures. All reactions were routinely carried out under a nitrogen atmosphere using standard Schlenk techniques. Solvents were distilled immediately before use under nitrogen from the appropriate drying agents. Literature methods were used for the synthesis of $[Mo_2Cp_2(\mu\text{-SMe})_3(NCCH_3)_2](BF_4)$.⁸ Other reagents were purchased from the usual commercial suppliers and used as received. Infrared spectra were recorded on a Nicolet-Nexus FT IR spectrophotometer from KBr pellets. Chemical analyses were performed by the Service de Microanalyse ICSN-CNRS, Gif sur Yvette, France. The NMR spectra $(^1H, {}^{13}C)$ were recorded at room temperature in CD_2Cl_2 , $CDCl_3$, or C_6D_6 solution with a Bruker AMX 400 spectrometer and were referenced to SiMe_4 . $^1\text{H}^{-13}$ C experiments were carried out on a Bruker DRX 500 spectrometer.

Synthesis of 2. A solution of complex **1** (200 mg, 0.32 mmol) in CH_2Cl_2 (20 mL) was stirred with 1 equiv of $HC = CCPh_2(OH)$ (66 mg) for 50 min at room temperature. The solution turned from red to green. It was then concentrated, and 30 mL of diethyl ether was added. A brownish green solid precipitated and was collected by filtration and then washed with pentane $(2 \times 15 \text{ mL})$, giving an

overall yield of 201 mg (84%) of **2**. IR (KBr, cm-1): *ν*(OH) 3402 (vs), *ν*(C=C) 1635 (m). ¹H NMR (CD₂Cl₂, 25 °C): δ 12.52 (s, 1H, RCC*H*), 6.90–7.28 (m, 10H, C(C₆H₅)₂), 6.42 (s, 10H, C₅H₅), 3.21 (s, 1H, O*H*), 2,04, 2.02, and 1.99 (s, 3H, SC*H*3). 13C{1H} NMR (CD₂Cl₂, 25 °C): δ 243.4 (HC=*C*), 136.6 (*C* ipso Ph), 130.2-127.5 (*C*6H5), 106.7 and 98.3 (*C*5H5), 78.2 (*C*OH). 30.0 and 15.4 (S*C*H3). Anal. Calcd for C28H31BF4Mo2OS3: C, 44.34; H, 4.11. Found: C, 43.95; H, 4.31.

Reaction of 2 with Et₃N: Synthesis of 3. To a dark green solution of $2(201 \text{ mg}, 0.26 \text{ mmol})$ in $CH_2Cl_2(20 \text{ mL})$ was added an excess of triethylamine (2 equiv, $74 \mu L$). The solution turned readily to pale green. After the mixture was stirred for a few minutes at ambient temperature, the solvent was evaporated and **3** was extracted with diethyl ether $(2 \times 15 \text{ mL})$. The solvent was then removed in vacuo from the pooled extracts. When the residue was washed with cold pentane, **3** was obtained as a green powder (84 mg, 47% yield). IR (KBr, cm⁻¹): *ν*(OH) 3412 (vs, br), *ν*(C≡C) 1959 (m). ¹H NMR (CDCl₃, 25 °C): δ 7.82-6.98 (m, 10H, $C(C_6H_5)_{2}$, 5.16 (s, 10H, C₅H₅), 2.57 (sbr, 1H, OH), 1.64, 1.61, and 1.49 (s, 3H, SCH₃). ¹³C{¹H} NMR (C₆D₆, 25 °C): δ 147.2 (*C*) ipso Ph), 130.1-126.8 (C_6H_5), 120.6 (C=CCPh₂), 90.9 (C_5H_5), 77.4 $(C(OH)Ph₂), 17.0, 11.8, and 10.9 (SCH₃). Anal. Calcd for C₂₈H₃₀$ Mo2OS3: C, 50.15; H, 4.51. Found: C, 50.21; H, 4.50.

Synthesis of 4. One equivalent of $H[BF₄]\cdot Et₂O$ in diethyl ether (5 mL) was added with stirring to a solution of **3** (84 mg, 0.125 mmol) in dichloromethane (10 mL) at room temperature. A purple solid readily precipitated from the solution and was collected by filtration and washed with pentane $(2 \times 15 \text{ mL})$. Compound 4 was obtained as a purple powder (78 mg, 75.5% yield). Crystals of **4**, suitable for X-ray analysis, were formed by crystallization at room temperature from a CH₂Cl₂ solution layered with diethyl ether. IR (KBr, cm⁻¹): ν (C=C=C) 1653 (m). ¹H NMR (CD₂Cl₂, 25 °C): δ 7.48-7.24 (m, 10H, C(C₆H₅)₂), 6.00 (s, 10H, C₅H₅), 2.01, 1.78, and 1.46 (s, 3H, SCH₃). ¹³C{¹H} NMR (CD₂Cl₂, 25 °C): *δ* 302.0 (Mo₂C=C=CPh₂), 170.2 (Mo₂C=C=CPh₂), 140.2, 130.3, 130.2, and 129.1 (=C(C_6H_5)₂), 135.7 (Mo₂C=C=CPh₂), 98.3 (C_5H_5), 25.6, 13.1, and 9.3 (SCH₃). Anal. Calcd for $C_{28}H_{29}BF_4Mo_2S_3 \cdot CH_2Cl_2$: C, 42.20; H, 3.79. Found: C, 42.28; H, 3.92.

Crystallographic Data. X-ray crystal data for 4 ^{\cdot}CH₂Cl₂: C₂₉H₃₁- $BCl_2F_4Mo_2S_3$, fw = 825.31, monoclinic, space group $P2_1/c$, $a =$ 10.4870(7) Å, $b = 17.028(1_2)$ Å, $c = 19.060(1_6)$ Å, $\beta = 105.853$ - $(8)^\circ$, $V = 3274.1(4)$ \AA^3 , $T = 293$ K, $Z = 4$, $d(\text{calcd}) = 1.674$ g/cm³. 4888 unique, absorption-corrected intensities with θ (Mo K α) < 25.0°. $R(F) = 0.079$ for 3201 reflections with $I > 2\sigma(I)$, and R_w - $(F^2$, all data) = 0.200 after refinement of 345 parameters. $|\Delta \rho|$ < 0.59 e \AA^{-3} .

Acknowledgment. We are grateful to Dr. F. Michaud for the crystallographic measurements of **4** and to Dr. R. Pichon and N. Kervarec for recording two-dimensional NMR spectra on a Bruker DRX 500 (500 MHz) spectrometer. We thank the CNRS, the EPSCR, and the Universities of Glasgow and Brest for financial support. The Ministère de l'Enseignement Supérieur et de la Recherche du Gabon is acknowledged for providing studentships (W.-S.O.).

Supporting Information Available: For **4**, tables giving details of structure determination, non-hydrogen atomic positional parameters, all bond distances and angles, anisotropic parameters and hydrogen atomic coordinates; crystallographic data are also given as a CIF file. This material is available free of charge via the Internet at http://pubs.acs.org.