# Synthesis, Structure, and Reactivity of Four-, Five-, and Six-Coordinate Ruthenium Carbyne Complexes

Stephen R. Caskey,<sup>†</sup> Michael H. Stewart,<sup>†</sup> Yi Joon Ahn,<sup>†</sup> Marc J. A. Johnson<sup>\*,<sup>†</sup></sup> Jesse L. C. Rowsell,<sup>‡</sup> and Jeff W. Kampf<sup>†</sup>

Department of Chemistry, University of Michigan, 930 N. University Avenue, Ann Arbor, Michigan 48109-1055, and Department of Chemistry & Biochemistry, Oberlin College, 119 Woodland Street, Oberlin, Ohio 44074-1097

Received December 31, 2006

Square-planar carbyne complexes of the form  $Ru(\equiv CR)(PCy_3)_2X$  (X = F, Cl, Br, I, O<sub>3</sub>SCF<sub>3</sub>) are prepared by net dehydrohalogenation of the Grubbs catalysts  $Ru(=CHR)(PCy_3)_2Cl_2$  followed by substitution of the chloride ligand (when  $X \neq Cl$ ). The dehydrohalogenation can be effected in one step (R = n-Bu, Ph,  $p-C_6H_4Me$ ) by Ge(CH[SiMe\_3]\_2)\_2 or in two steps via treatment with excess aryloxide such as NaO-p-C<sub>6</sub>H<sub>4</sub>-t-Bu followed by SnCl<sub>2</sub>. The latter route gives greater yields but is more restricted in scope. Addition of HCl (1 equiv) to  $Ru(\equiv CR)(PCy_3)_2X$  (X = Cl, Br, I) affords  $Ru(=CHR)(PCy_3)_2ClX$ ; those with mixed halide ligand sets undergo rapid halide exchange in solution. Upon treatment with the appropriate oxidant, each Ru( $\equiv$ C-*p*-C<sub>6</sub>H<sub>4</sub>Me)(PCy<sub>3</sub>)<sub>2</sub>X complex undergoes two-electron oxidation. Oxidation of Ru( $\equiv$ C-*p*- $C_6H_4Me$ )(PCy<sub>3</sub>)<sub>2</sub>X (X = F, Cl, Br, I) by XeF<sub>2</sub>,  $C_2Cl_6$ , Br<sub>2</sub>, and I<sub>2</sub>, respectively, yields either six-coordinate bis-phosphine complexes  $Ru(\equiv C_{-p-C_6}H_4Me)(PCy_3)_2X_3$  (X = F, Cl) or square-pyramidal mono-phosphine complexes  $Ru(\equiv C_{-p}-C_{6}H_{4}Me)(PCy_{3})X_{3}$  (X = Br, I) depending on the size of the halide ligands. Cationic square-pyramidal complexes of the form  $[Ru(\equiv C-p-C_6H_4Me)(PCy_3)_2X_2]^+$  (X = Cl, I) can be prepared from Ru( $\equiv$ C-*p*-C<sub>6</sub>H<sub>4</sub>Me)(PCy<sub>3</sub>)<sub>2</sub>Cl<sub>3</sub> by chloride abstraction using [Ph<sub>3</sub>C]BF<sub>4</sub> and from Ru( $\equiv$ C-*p*-C<sub>6</sub>H<sub>4</sub>-Me)(PCy<sub>3</sub>)X<sub>3</sub> by addition of PCy<sub>3</sub>. Hydride addition to Ru( $\equiv$ C-*p*-C<sub>6</sub>H<sub>4</sub>Me)(PCy<sub>3</sub>)<sub>2</sub>Cl<sub>3</sub> yields the carbene complex Ru(=CHR)(PCy<sub>3</sub>)<sub>2</sub>Cl<sub>2</sub>, whereas fluoride addition affords the carbyne complex Ru(=C-p- $C_6H_4$ -Me)(PCy<sub>3</sub>)<sub>2</sub>Cl<sub>2</sub>F, results with important implications for metathesis of vinyl fluorides. X-ray structures of Ru( $\equiv$ C-*p*-C<sub>6</sub>H<sub>4</sub>Me)(PCy<sub>3</sub>)<sub>2</sub>X<sub>2</sub>F (X = F, Cl), [Ru( $\equiv$ C-*p*-C<sub>6</sub>H<sub>4</sub>Me)(PCy<sub>3</sub>)<sub>2</sub>Cl<sub>2</sub>]BF<sub>4</sub>, and Ru( $\equiv$ C-*p*-C<sub>6</sub>H<sub>4</sub>-Me)(PCy<sub>3</sub>)I<sub>3</sub> reveal short Ru=C bonds in the 1.670(5)-1.714(3) Å range; when two PCy<sub>3</sub> ligands are present, they are mutually *trans*. The benzylidyne ligands occupy the apical sites in the two squarepyramidal complexes. Of the five- and six-coordinate complexes, only the two fluoride-containing complexes  $Ru(\equiv C-p-C_6H_4Me)(PCy_3)_2X_2F$  (X = F, Cl) display reactivity toward alkynes, serving as alkyne dimerization catalysts.

## Introduction

The number of ruthenium–carbene complexes available as a result of ongoing research into Ru-catalyzed olefin metathesis is large.<sup>1</sup> In spite of mechanistic homology between olefin metathesis and alkyne metathesis,<sup>2–7</sup> only a very few ruthenium– carbyne complexes have been reported,<sup>8–14</sup> and none of these are found to catalyze alkyne metathesis. Thus, homogeneous

- \* Corresponding author. Fax: (734) 647-4865. E-mail: mjaj@umich.edu. † University of Michigan.
- <sup>‡</sup> Oberlin Čollege.
- (1) Grubbs, R. H. Handbook of Metathesis; Wiley-VCH: Weinheim, 2003; Vols. 1–3.
- (2) Fomine, S.; Vargas, S. M.; Tlenkopatchev, M. A. Organometallics 2003, 22, 93.
- (3) Cavallo, L. J. Am. Chem. Soc. 2002, 124, 8965.
- (4) Sanford, M. S.; Love, J. A.; Grubbs, R. H. J. Am. Chem. Soc. 2001, 123, 6543.
- (5) Zhu, J.; Jia, G.; Lin, Z. Organometallics 2006, 25, 1812.
- (6) Woo, T.; Folga, E.; Ziegler, T. Organometallics 1993, 12, 1289.
- (7) Freudenberger, J. H.; Schrock, R. R.; Churchill, M. R.; Rheingold, A. L.; Ziller, J. W. Organometallics **1984**, *3*, 1563.
- (8) Gallop, M. A.; Roper, W. R. Adv. Organomet. Chem. 1986, 25, 121.
  (9) Coalter, J. N.; Bollinger, J. C.; Eisenstein, O.; Caulton, K. G. New J. Chem. 2000, 24, 925.
- (10) Sanford, M. S.; Henling, L. M.; Day, M. W.; Grubbs, R. H. Angew. Chem., Int. Ed. 2000, 39, 3451.
- (11) González-Herrero, P.; Weberndörfer, B.; Ilg, K.; Wolf, J.; Werner, H. Angew. Chem., Int. Ed. 2000, 39, 3266.

alkyne metathesis catalysis remains restricted to complexes of Mo, W, and Re.<sup>1</sup> The ruthenium—carbyne complexes that most closely resemble the Grubbs catalysts exemplified by Ru(CHPh)(L)(PCy<sub>3</sub>)Cl<sub>2</sub> (Chart 1: L = PCy<sub>3</sub> [1], H<sub>2</sub>IMes [2]; H<sub>2</sub>IMes = 4,5-dihydro-1,3-bis(mesityl)imidazolin-2-ylidene) are the cationic square-pyramidal species such as [Ru(CCH<sub>2</sub>R')(PR<sub>3</sub>)<sub>2</sub>-Cl<sub>2</sub>]<sup>+</sup> (R = Cy [**3a**, **3b**], *i*-Pr [**4a**, **4b**]; R' = Ph [**3a**, **4a**], *t*-Bu [**3b**, **4b**]), which Werner and co-workers prepared via protonation of the corresponding vinylidene complexes.<sup>12</sup> Similarly, protonation of allenylidene complexes can lead to alkenylcarbyne complexes.<sup>15–19</sup> Even these complexes, however, do not

- (12) González-Herrero, P.; Weberndörfer, B.; Ilg, K.; Wolf, J.; Werner, H. Organometallics **2001**, 20, 3672.
- (13) Amoroso, D.; Snelgrove, J. L.; Conrad, J. C.; Drouin, S. D.; Yap,
   G. P. A.; Fogg, D. E. Adv. Synth. Catal. 2002, 344, 757.
- (14) Conrad, J. C.; Amoroso, D.; Czechura, P.; Yap, G. P. A.; Fogg, D. E. *Organometallics* **2003**, *22*, 3634.
- (15) Castarlenas, R.; Vovard, C.; Fischmeister, C.; Dixneuf, P. H. J. Am. Chem. Soc. 2006, 128, 4079.
- (16) Cadierno, V.; Díez, J.; García-Garrido, S. E.; Gimeno, J. Organometallics 2005, 24, 3111.
- (17) Rigaut, S.; Touchard, D.; Dixneuf, P. H. Organometallics 2003, 22, 3980.
- (18) Bustelo, E.; Jiménez-Tenorio, M.; Mereiter, K.; Puerta, M. C.; Valerga, P. *Organometallics* **2002**, *21*, 1903.
- (19) Jung, S. F.; Brandt, C. D.; Werner, H. New J. Chem. 2001, 25, 1101.



catalyze alkyne metathesis, possibly because they are readily deprotonated to afford reactive 14-electron vinylidene complexes.<sup>12</sup>

Following Fischer's initial report in 1973, several synthetic routes to compounds that contain metal-carbon triple bonds have been developed.<sup>8,20-22</sup> Several years ago, Caulton disclosed the unexpected formation of square-planar Ru-carbyne complexes Ru(CPh)(PR<sub>3</sub>)<sub>2</sub>(OPh) (R = i-Pr, Cy) by treatment of Ru-(CHPh)(PR<sub>3</sub>)<sub>2</sub>Cl<sub>2</sub> with excess NaOPh.<sup>9</sup> Fogg similarly prepared  $Ru(CPh)(PCy_3)_2(OC_6F_5)$  from 1 by reaction with  $TlOC_6F_5$ ,<sup>14</sup> which led to the suggestion that product selectivity is driven by steric interactions at an intermediate stage and that phenoxide basicity was extraneous to the reaction,14 given that similar treatment of 1 with KOC(CX<sub>3</sub>)<sub>3</sub> (X = H, F) yields the fourcoordinate carbene complexes Ru(CHPh)(PCy<sub>3</sub>)(OC(CX<sub>3</sub>)<sub>3</sub>)<sub>2</sub> rather than the carbyne products of HOC(CX<sub>3</sub>)<sub>3</sub> elimination.<sup>9,10</sup> Likewise, an admixture of 2 equiv of TlOC<sub>6</sub>F<sub>5</sub> to a solution of  $Ru(CHPh)(IMes)(py)_2Cl_2$  (py = pyridine; IMes = N,N'-bis-(mesityl)imidazol-2-ylidene<sup>23</sup>) affords Ru(CHPh)(IMes)(py)- $(OC_6F_5)_2$  cleanly.<sup>14</sup> We decided to harness the elimination route in order to prepare a number of ruthenium benzylidyne

- (21) Engel, P. F.; Pfeffer, M. Chem. Rev. **1995**, 95, 2281.
- (22) Schrock, R. R. Chem. Rev. 2002, 102, 145.

Scheme 1. Synthesis of Square-Planar Mono-chloride Benzylidyne Complex



Ar = p-C<sub>6</sub>H<sub>4</sub>Me; GeR<sub>2</sub> = [Ge(CH[SiMe<sub>3</sub>]<sub>2</sub>)<sub>2</sub>]

complexes for structural and reactivity studies, particularly in catalytic reactions involving alkyne substrates. Some of these results have been communicated.<sup>24</sup>

### **Results and Discussion**

It is tempting to suggest that the conspicuous absence of Ru- $(CHPh)(PCy_3)_2F_2$  (5) from the family of "first-generation" Grubbs catalysts  $Ru(CHPh)(PCy_3)_2X_2$  (X = Cl, Br, I) is due to instability of 5 with respect to HF elimination and formation of Ru(CPh)(PCy<sub>3</sub>)<sub>2</sub>F. Indeed, we find that reaction of Ru(CH $p-C_6H_4Me$ )(PCy<sub>3</sub>)<sub>2</sub>Cl<sub>2</sub> (6)<sup>25</sup> with CsF in an attempt to prepare  $Ru(CH-p-C_6H_4Me)(PCy_3)_2F_2$  (7) affords a mixture of products that contains both Ru(C-p-C<sub>6</sub>H<sub>4</sub>Me)(PCy<sub>3</sub>)<sub>2</sub>Cl (8) and Ru(C-p- $C_6H_4Me$ )(PCy<sub>3</sub>)<sub>2</sub>F (9). Here we have used the *p*-tolyl substituent for convenience of monitoring by <sup>1</sup>H NMR spectroscopy compared to 1 by virtue of a simplified aryl region and diagnostic Me resonance. Use of [n-Bu<sub>4</sub>N]F·3H<sub>2</sub>O instead of CsF gives rise to a brown solution in which free PCy<sub>3</sub> is the only phosphorus-containing species observable by <sup>31</sup>P NMR spectroscopy. On the basis of these findings, we set out to examine the synthesis and reactivity of ruthenium-benzylidyne complexes, with special attention given to complexes that also contain one or more fluoride ligands.

Low-Valent Carbyne Complexes by Elimination from the **Carbene Complexes.** As previously communicated,<sup>24</sup> complex 8, which is dark blue-green in the solid state and in solution, can be prepared rationally in 41.4% isolated yield via direct reaction of 6 with  $Ge(CH[SiMe_3]_2)_2^{26}$  (10). In addition to benzylidyne complexes such as 8, the germylene 10 also affords with equal facility carbyne complexes such as Ru(C-n-Bu)-(PCy<sub>3</sub>)<sub>2</sub>Cl by dehydrochlorination of Ru(CH-*n*-Bu)(PCy<sub>3</sub>)<sub>2</sub>Cl<sub>2</sub>; however, Ru(CH<sub>2</sub>)(PCy<sub>3</sub>)<sub>2</sub>Cl<sub>2</sub><sup>25,27</sup> does not react with 10 under the conditions attempted, but instead undergoes only the slow decomposition characteristic of Ru(CH<sub>2</sub>)(PCy<sub>3</sub>)<sub>2</sub>Cl<sub>2</sub> in solution (Scheme 1). Unlike 10, the amidogermylene  $Ge(N[SiMe_3]_2)_2^{28}$ fails to convert 6 into 8 in appreciable yield. The dialkylstannylene  $Sn(CH[SiMe_3]_2)_2$  (11)<sup>26</sup> does react with 6, but several products are formed due to the fact that 8 itself reacts with 11. Accordingly, when **6** is treated with 3 equiv of **11**, free  $PCy_3$  is

(28) Gynane, M. J. S.; Harris, D. H.; Lappert, M. F.; Power, P. P.; Rivière, P.; Rivière-Baudet, M. J. Chem. Soc., Dalton Trans. 1977, 2004.

<sup>(20)</sup> Fischer, H.; Hofmann, P.; Kreissl, F. R.; Schrock, R. R.; Schubert, U.; Weiss, K. *Carbyne Complexes*; VCH Publishers: New York, 1988; p 235.

<sup>(23)</sup> Arduengo, A. J.; Dias, H. V. R.; Harlow, R. L.; Kline, M. J. Am. Chem. Soc. 1992, 114, 5530.

<sup>(24)</sup> Caskey, S. R.; Stewart, M. H.; Ahn, Y. J.; Johnson, M. J. A.; Kampf, J. W. Organometallics **2005**, *24*, 6074.

<sup>(25)</sup> Schwab, P.; Grubbs, R. H.; Ziller, J. W. J. Am. Chem. Soc. 1996, 118, 100.

<sup>(26)</sup> Fjeldberg, T.; Haaland, A.; Schilling, B. E. R.; Lappert, M. F.; Thorne, A. J. J. Chem. Soc., Dalton Trans. **1986**, 1551.

<sup>(27)</sup> Pietraszuk, C.; Marciniec, B.; Fischer, H. Organometallics 2000, 19, 913.

Scheme 2. Synthesis of Monohalide and Pseudohalide



the only phosphorus-containing species observable by <sup>31</sup>P NMR spectroscopy after 40 min. Reaction of **6** with 1 equiv of **11** yields a mixture that contains **6**, **8**, and free PCy<sub>3</sub> in a 54:15:31 integration ratio after 16 h. Thus, **10** is the most convenient reagent we have found for single-step dehydrochlorination of **6** and its analogues.

Roper has reported six closely related ruthenium complexes that contain one additional ligand. In an unusual reaction, treatment of Ru(=CCl<sub>2</sub>)(CO)(PPh<sub>3</sub>)<sub>2</sub>Cl<sub>2</sub> with 2 equiv of ArLi (Ar = Ph, 4-C<sub>6</sub>H<sub>4</sub>OMe, 1-naphthyl) at low temperature in tetrahydrofuran affords the neutral complexes Ru(=CAr)(CO)-(PPh<sub>3</sub>)<sub>2</sub>Cl along with 1 equiv of ArCl. Upon reaction with CO, chloride is displaced, affording the cationic complexes [Ru(=CAr)(CO)<sub>2</sub>(PPh<sub>3</sub>)<sub>2</sub>]<sup>+</sup>.<sup>29,30</sup> The osmium analogues behave similarly.<sup>29,30</sup>

Convenient Two-Step Synthesis of 8. Although the reaction of 6 with 10 affords 8 rapidly and cleanly, for large-scale reactions we find that a two-step procedure yields 8 in greater overall yield more economically and without the need to synthesize and purify 10 (Scheme 1). Dissolution of a solid mixture of 6 and at least 3 equiv NaO-p-C<sub>6</sub>H<sub>4</sub>-t-Bu in a 4:1 (v/v) toluene-THF mixture affords a forest green analogue of Caulton's Ru(CPh)(PCy<sub>3</sub>)<sub>2</sub>(OPh), Ru(C-p-C<sub>6</sub>H<sub>4</sub>Me)(PCy<sub>3</sub>)<sub>2</sub>(Op-C<sub>6</sub>H<sub>4</sub>-t-Bu) (12), in 66% isolated yield on a multigram scale. A 4:1 solvent ratio by volume appears optimal. Some THF is required in order to obtain a reasonable reaction rate, but too much THF results in the formation of undesirable side products. We prefer to use NaO-p-C<sub>6</sub>H<sub>4</sub>-t-Bu instead of NaOPh for convenience of handling and simplification of <sup>1</sup>H NMR spectra. Additionally, as communicated previously, reaction of 1 with at least 3 equiv of NaO-p-C<sub>6</sub>H<sub>4</sub>-t-Bu affords square-planar Ru- $(CPh)(PCy_3)_2(O-p-C_6H_4-t-Bu)$  (13), which, unlike Ru(CPh)(P*i*-Pr<sub>3</sub>)<sub>2</sub>(OPh) and Ru(CPh)(PCy<sub>3</sub>)<sub>2</sub>(OC<sub>6</sub>F<sub>5</sub>), does not suffer from crystallographic disorder of the benzylidyne and aryloxide ligands, thus permitting precise determination of the Ru=C bond length (1.7178(16) Å).<sup>24</sup> Addition of **12** dissolved in THF to a THF solution of 0.6 equiv of SnCl<sub>2</sub> affords 8 cleanly in 87% yield on a multigram scale; order of addition is important in order to avoid re-formation of 6. In this way, we routinely obtain several grams of analytically pure 8 in 58% overall yield from **6** in two simple steps.

Substitution of the Chloride Ligand in 8. Complex 8 is an excellent precursor to a family of complexes of the form Ru- $(C-p-C_6H_4Me)(PCy_3)_2X$  (Scheme 2). Unsurprisingly, treatment of 8 with NaO-*p*-C<sub>6</sub>H<sub>4</sub>-*t*-Bu in 9:1 (v/v) toluene–THF regenerates 12 cleanly in 59% isolated yield. The bromo and iodo



Scheme 4. Two-Electron Oxidation of Planar Monohalide Complexes



Scheme 5. Formation of a Cationic Bisphosphine Benzylidyne Complex



Scheme 6. Formation of a Triiodide Bisphosphine Benzylidyne



complexes Ru(C-*p*-C<sub>6</sub>H<sub>4</sub>Me)(PCy<sub>3</sub>)<sub>2</sub>X (X = Br [14], I [15]) are prepared from **8** by reaction with an excess of a suitable alkali halide. Treatment of **8** with 10 equiv of LiBr in 4:1 (v/v) toluene—THF affords blue-green 14 rapidly in 71% isolated yield; addition of 10 equiv of NaI to a THF solution of **8** results in its conversion to gray-green 15, which can be isolated in 68% yield. The fluoro complex Ru(C-*p*-C<sub>6</sub>H<sub>4</sub>Me)(PCy<sub>3</sub>)<sub>2</sub>F (**9**) can be prepared in several ways. Reaction of **8** with excess anhydrous CsF in THF is slow and proceeds only to approximately 50% conversion over 2 weeks at 22 °C. Similarly, SnF<sub>2</sub> converts **12** into **9** only slowly in THF. Much more rapid is the reaction of **8** with [S(NMe<sub>2</sub>)<sub>3</sub>[SiF<sub>2</sub>Me<sub>3</sub>] (TAS-F). However, the expense of this reagent limits its utility. An excess of CsF reacts with **8** and 1.2 equiv of 18-crown-6 in 3:2 (v/v)

<sup>(29)</sup> Roper, W. R. In *Transition Metal Carbyne Complexes*, Kreissl, F. R., Ed.; Kluwer: Boston, 1993; Vol. 392, p 155.

<sup>(30)</sup> Baker, L. J.; Clark, G. R.; Rickard, C. E. F.; Roper, W. R.; Woodgate, S. D.; Wright, L. J. J. Organomet. Chem. **1998**, 551, 247.

Table 1. Crystallographic Data for Complexes 19, 22, 25, and 26

|                                          | 19                         | 22                                                 | 25                                  | 26               |
|------------------------------------------|----------------------------|----------------------------------------------------|-------------------------------------|------------------|
| formula                                  | $C_{45}H_{74}Cl_2F_3P_2Ru$ | C <sub>26</sub> H <sub>40</sub> I <sub>3</sub> PRu | $C_{93}H_{156}B_2Cl_{14}F_8P_4Ru_2$ | C46H73Cl6D4FP2Ru |
| fw                                       | 905.95                     | 865.32                                             | 2270.12                             | 1028.81          |
| cryst syst                               | monoclinic                 | orthorhombic                                       | monoclinic                          | monoclinic       |
| space group                              | $P2_1/m$                   | Pbca                                               | $P2_{1}/c$                          | $P2_1/m$         |
| a (Å)                                    | 9.5265(18)                 | 17.267(2)                                          | 11.626(4)                           | 13.721(3)        |
| b(Å)                                     | 23.609(5)                  | 17.974(2)                                          | 32.847(12)                          | 17.724(4)        |
| <i>c</i> (Å)                             | 11.124(2)                  | 18.631(3)                                          | 28.253(10)                          | 20.827(5)        |
| $\alpha$ (deg)                           | 90                         | 90                                                 | 90                                  | 90               |
| $\beta$ (deg)                            | 113.372(12)                | 90                                                 | 99.152(6)                           | 92.642(4)        |
| $\gamma$ (deg)                           | 90                         | 90                                                 | 90                                  | 90               |
| $V(Å^3)$                                 | 2296.6(8)                  | 5782.3(14)                                         | 10652(7)                            | 5059.6(19)       |
| Ζ                                        | 2                          | 8                                                  | 4                                   | 4                |
| radiation (K $\alpha$ , Å)               | 0.71073                    | 0.71073                                            | 0.71073                             | 0.71073          |
| <i>T</i> (K)                             | 123(2)                     | 123(2)                                             | 108(2)                              | 123(2)           |
| $D_{\text{calcd}}$ (Mg m <sup>-3</sup> ) | 1.310                      | 1.988                                              | 1.416                               | 1.351            |
| $\mu_{\text{calcd}} (\text{mm}^{-1})$    | 0.569                      | 3.814                                              | 0.751                               | 0.724            |
| $F_{000}$                                | 958                        | 3312                                               | 4728                                | 2152             |
| R1                                       | 0.0530                     | 0.0271                                             | 0.0590                              | 0.0402           |
| wR2                                      | 0.0969                     | 0.0807                                             | 0.1310                              | 0.0816           |
| GOF                                      | 1.030                      | 1.288                                              | 1.160                               | 1.010            |

DME-THF to effect quantitative formation of 9 over 48 h; 9 can then be isolated in 40% yield after two recrystallizations. However, 9 is most conveniently prepared by reaction of  $[n-Bu_4N]F\cdot 3H_2O$  with 8 over 3 h in THF; following this procedure 9 can be isolated in 81% yield. In THF, blue-green **9** gives rise to a doublet at  $\delta$  47.1 ( ${}^{2}J_{\text{FP}}$  = 37 Hz) in the  ${}^{31}\text{P}$ NMR spectrum due to coupling to one F nucleus, indicating that a single Ru-F bond persists on the NMR time scale. The <sup>19</sup>F NMR spectrum exhibits a triplet at  $\delta$  –189.6 with the same coupling constant, thus establishing the presence of two equivalent <sup>31</sup>P nuclei. Additionally, the *p*-methylbenzylidyne  $\alpha\text{-}C$  nucleus evinces coupling to a single  $^{19}\text{F}$  nucleus and two equivalent <sup>31</sup>P nuclei (dt at  $\delta$  247.00 in the <sup>13</sup>C{<sup>1</sup>H} NMR spectrum;  ${}^{2}J_{CF} = 134.0$  Hz,  ${}^{2}J_{CP} = 18.9$  Hz). We therefore propose that 9 adopts a square-planar geometry in solution, just as 13 does in the solid state,<sup>24</sup> a geometry that is consistent with a formal 16-electron count at Ru, ignoring any  $\pi$ -contribution from F.

Addition of 1 equiv of Me<sub>3</sub>SiOTf (Tf = CF<sub>3</sub>SO<sub>2</sub>) to a solution of **8** in C<sub>6</sub>D<sub>6</sub> causes precipitation of a blue-green powder that analyzes as Ru(C-*p*-C<sub>6</sub>H<sub>4</sub>Me)(PCy<sub>3</sub>)<sub>2</sub>OTf (**16**). This compound is unstable in solution. However, upon dissolution in THF it forms a blue-green solution that exhibits single resonances at  $\delta$ 44.0 and -77.5 in the <sup>31</sup>P and <sup>19</sup>F NMR spectra, respectively, prior to its decomposition into as-yet-uncharacterized products.

Reactions of Square-Planar Carbynes with HX. Formation of 8 from 6 is a net dehydrochlorination reaction. The reverse transformation is obtained rapidly and quantitatively by the simple expedient of treating  $\mathbf{8}$  with ethereal HCl. Even at very low temperature, no intermediate in the protonation of 8 is observed. Similar treatment of 14 with 1 equiv of HCl initially affords the expected mixed dihalide complex Ru(CH-p-C<sub>6</sub>H<sub>4</sub>-Me)(PCy<sub>3</sub>)<sub>2</sub>BrCl (17), but this complex rapidly undergoes halide exchange to give an equilibrium mixture that contains all three benzylidene complexes 17, Ru(CH-p-C<sub>6</sub>H<sub>4</sub>Me)(PCy<sub>3</sub>)<sub>2</sub>Br<sub>2</sub>, and 6 (Scheme 3). Rapid exchange of halide ligands between Ru- $(CHR)(PCy_3)_2X_2$  (X = Cl, I) to yield statistical mixtures of these complexes with the corresponding mixed dihalide species Ru-(CHR)(PCy<sub>3</sub>)<sub>2</sub>ClI has been noted.<sup>31,32</sup> Similarly rapid exchange of halide ligands in closely related catalysts was the subject of a recent report.<sup>33</sup> However, addition of HCl to 9 does not produce Ru(CH-p-C<sub>6</sub>H<sub>4</sub>Me)(PCy<sub>3</sub>)<sub>2</sub>ClF (**18**), but instead affords **6** and starting complex **9**. Likewise, treatment of **8** with Et<sub>3</sub>N· 3HF fails to yield **7** or **18**. Accordingly, we suggest that both **7** and **18** are unstable with respect to HF elimination under the conditions we have used and that this fact accounts for their conspicuous absence from the family of first-generation Grubbs catalysts.

Two-Electron Oxidation of Planar Carbynes. With the planar carbyne complexes  $Ru(C-p-C_6H_4Me)(PCy_3)_2X$  (X = F, Cl, Br, I, OTf; 9, 8, 14, 15, 16, respectively) in hand, we next examined their oxidation in order to obtain analogues of 3a and **3b** that due to a lack of  $\beta$ -H atoms are not subject to conversion into vinylidene compounds by deprotonation. As shown in Scheme 4, all the halide complexes undergo clean two-electron oxidation to trihalide complexes. With the smaller halides, sixcoordinate bis-phosphine complexes trans, mer-Ru(C-p-C<sub>6</sub>H<sub>4</sub>-Me) $(PCy_3)_2X_3$  (X = F, Cl: 19, 20, respectively) are formed preferentially. For oxidation of 9, 1.35 equiv of  $XeF_2$  in  $C_6H_6$ is most effective, producing 19 in 45% isolated yield. AgF in THF is also effective, affording 19 in 16% yield. The NMR spectra of 19 are highly characteristic. The <sup>31</sup>P{<sup>1</sup>H} NMR spectrum in CD<sub>2</sub>Cl<sub>2</sub> shows a doublet of triplets at  $\delta$  25.3 ppm  $(^{2}J_{\text{PF}} = 34 \text{ Hz}, ^{2}J_{\text{PF}} = 9.8 \text{ Hz})$  with coupling to two inequivalent fluorine environments, while the <sup>19</sup>F NMR provides two signals: a triplet of triplets at  $\delta$  -190.96 ppm ( $^{2}J_{\text{FF}} = 120$  Hz,  ${}^{2}J_{\rm PF} = 32$  Hz) for the fluoride *trans* to the carbyne unit and a broad doublet at  $\delta$  -419.50 ppm ( ${}^{2}J_{\text{FF}} = 120$  Hz) for the mutually trans fluorides; coupling to the phosphine ligands was unresolved in this resonance. Complex 20 is isolated in 52% yield following reaction of 8 with  $C_2Cl_6$ . Although 19 is stable in solution for some time, 20 undergoes relatively rapid decomposition in solution. In contrast, five-coordinate squarepyramidal compounds  $Ru(C-p-C_6H_4Me)(PCy_3)X_3$  (X = Br, I: 21, 22, respectively) are formed preferentially upon oxidation of Ru(C-p-C<sub>6</sub>H<sub>4</sub>Me)(PCy<sub>3</sub>)<sub>2</sub>X with the corresponding halogen in hydrocarbon solution. Both 21 and 22 are stable for days in solution at 28 °C. In the syntheses of 21 and 22, it was most convenient to use the appropriate halogen as the oxidant. Although 22 was isolated in 78% yield, 21 remains contaminated with [BrPCy<sub>3</sub>]Br, which we have been unable to remove completely.

<sup>(31)</sup> Wilhelm, T. E. Ph.D. Thesis, California Institute of Technology, Pasadena, CA, 1997.

<sup>(32)</sup> Sanford, M. S. Ph.D. Thesis, California Institute of Technology, Pasadena, CA, 2001.

<sup>(33)</sup> Tanaka, K.; Böhm, V. P. W.; Chadwick, D.; Roeper, M.; Braddock, D. C. *Organometallics* **2006**, *25*, 5696.



Figure 1. 50% thermal ellipsoid plot of 19.



Figure 2. 50% thermal ellipsoid plot of 22.



Figure 3. 50% thermal ellipsoid plot of the cation in 25.

These oxidation reactions parallel the low-temperature oxidation of Ru( $\equiv$ CPh)(CO)(PPh<sub>3</sub>)<sub>2</sub>Cl by I<sub>2</sub> to afford six-coordinate ionic [Ru( $\equiv$ CPh)(CO)(PPh<sub>3</sub>)<sub>2</sub>ClI]I, a compound that upon heating in inert solvent loses CO and forms Ru( $\equiv$ CPh)(PPh<sub>3</sub>)<sub>2</sub>-ClI<sub>2</sub>.<sup>29,34,35</sup>

In the case of oxidation of **15** by  $I_2$ , only **22** is obtained; the putative six-coordinate bis-phosphine complex Ru(C-*p*-C<sub>6</sub>H<sub>4</sub>-Me)(PCy<sub>3</sub>)<sub>2</sub>I<sub>3</sub> is not observed. Nevertheless, addition of 1 equiv of PCy<sub>3</sub> to **22** in CD<sub>2</sub>Cl<sub>2</sub> (in which **22** is quite soluble) gives rise to a new bis-phosphine complex. However, this complex is not Ru(C-*p*-C<sub>6</sub>H<sub>4</sub>Me)(PCy<sub>3</sub>)<sub>2</sub>I<sub>3</sub>, even though addition of C<sub>6</sub>D<sub>6</sub> followed by concentration under reduced pressure results in loss of PCy<sub>3</sub> and re-formation of solid **22**. Instead, we formulate this new compound as the ionic species [Ru(C-*p*-C<sub>6</sub>H<sub>4</sub>Me)-



Figure 4. 50% thermal ellipsoid plot of 26.

 $(PCy_3)_2I_2]I$  (23-I). Addition of PCy<sub>3</sub> followed by TIOTf (Tf =  $CF_3SO_2$ ) to a solution of 22 yields soluble  $[Ru(C-p-C_6H_4Me) (PCy_3)_2I_2$ ]OTf (23-OTf) along with a precipitate of TII. Compound 23-OTf can also be prepared from 16 in 64% isolated yield by oxidation with I<sub>2</sub> (Scheme 5). Alternatively, reaction of 22 with PCy3 followed by NaBPh4 in CH2Cl2 affords [Ru-(C-p-C<sub>6</sub>H<sub>4</sub>Me)(PCy<sub>3</sub>)<sub>2</sub>I<sub>2</sub>]BPh<sub>4</sub> (**23**-BPh<sub>4</sub>) in 83% yield. Except for peaks due to BPh<sub>4</sub><sup>-</sup> in the <sup>1</sup>H NMR spectrum of **23**-BPh<sub>4</sub>, the <sup>1</sup>H and <sup>31</sup>P NMR spectra of **23-I**, **23-**OTf, and **23-**BPh<sub>4</sub> are identical, which establishes the presence of the discrete [Ru- $(C-p-C_6H_4Me)(PCy_3)_2I_2]^+$  unit in all three compounds. Accordingly, the preference for five-coordination in mono- and bistricyclohexylphosphine complexes when the halide ligands are bromide and iodide appears to be a steric effect. Werner has reported the formation of similar cationic five-coordinate carbyne complexes, including structurally characterized 4a via protonation of vinylidene complexes.<sup>11,12</sup> Protonation of allenylidene complexes similarly affords alkenylcarbyne complexes.15-19

When **22** is subjected to excess PPh<sub>3</sub> in CH<sub>2</sub>Cl<sub>2</sub>, genuine sixcoordinate Ru(C-*p*-C<sub>6</sub>H<sub>4</sub>Me)(PPh<sub>3</sub>)<sub>2</sub>I<sub>3</sub> is formed. An initial pair of doublets in the <sup>31</sup>P NMR spectrum is observed that is consistent with a mixed bis-phosphine complex such as Ru(C*p*-C<sub>6</sub>H<sub>4</sub>Me)(PCy<sub>3</sub>)(PPh<sub>3</sub>)I<sub>3</sub> or [Ru(C-*p*-C<sub>6</sub>H<sub>4</sub>Me)(PCy<sub>3</sub>)(PPh<sub>3</sub>)-I<sub>2</sub>]I, which can then disproportionate into Ru(C-*p*-C<sub>6</sub>H<sub>4</sub>Me)-(PPh<sub>3</sub>)<sub>2</sub>I<sub>3</sub> and **23**-I (Scheme 6). Compound **23**-I is also observed at short reaction times.

Although pseudo-octahedral **20** was the only Ru-containing product of oxidation of **8** by  $C_2Cl_6$ , the five-coordinate complex  $Ru(C-p-C_6H_4Me)(PCy_3)Cl_3$  (**24**) can be isolated in 63% yield upon treatment of **20** with elemental sulfur, followed by extraction with toluene to remove the S=PCy<sub>3</sub> byproduct. Unlike **20**, **24** is stable for days in  $CD_2Cl_2$  solution at 28 °C.

Treatment of **20** with [Ph<sub>3</sub>C][BF<sub>4</sub>] in CH<sub>2</sub>Cl<sub>2</sub> at 28 °C results in the abstraction of one chloride ligand to form a cationic fivecoordinate complex, [Ru(C-*p*-C<sub>6</sub>H<sub>4</sub>Me)(PCy<sub>3</sub>)<sub>2</sub>Cl<sub>2</sub>]BF<sub>4</sub> (**25**). The <sup>1</sup>H and <sup>31</sup>P NMR chemical shifts are consistent with those of **23-I**, **23-**OTf, and **23-**BPh<sub>4</sub>, and those reported for [Ru(CCH<sub>2</sub>-Ph)(PCy<sub>3</sub>)<sub>2</sub>Cl<sub>2</sub>][B(C<sub>6</sub>H<sub>3</sub>(CF<sub>3</sub>)<sub>2</sub>-3,5)<sub>4</sub>] (**3a**).<sup>12</sup> The orange powder **25** can be isolated in 89.4% yield by concentration of the solvent and washing the remaining residue with pentane and ether.

Attempts to synthesize the five-coordinate complex Ru(Cp-C<sub>6</sub>H<sub>4</sub>Me)(PCy<sub>3</sub>)F<sub>3</sub> through phosphine trapping of **19** with elemental sulfur, or ligand substitution of **24** or **22** with various fluoride sources, including AgF, [*n*-Bu<sub>4</sub>N]F·3H<sub>2</sub>O, TAS-F, and CsF, have thus far been unsuccessful. This apparent preference for six-coordination does not hinder intermetal halide exchange

 <sup>(34)</sup> Roper, W. R. J. Organomet. Chem. 1986, 300, 167.
 (35) Wright, A. H. Ph.D. Thesis, University of Auckland, Auckland, New Zealand, 1983.

Table 2. Selected Bond Lengths and Angles for Benzylidyne Complexes 19, 22, 25, and 26

|                                   | 19             | 22                 | 25                | 26                |
|-----------------------------------|----------------|--------------------|-------------------|-------------------|
|                                   |                | Bond Distances (Å) |                   |                   |
| Ru-C(1)                           | 1.703(9)       | 1.670(5)           | 1.678(3)          | 1.714(3)          |
| Ru-P(1)                           | 2.4443(14)     | 2.4142(12)         | 2.4483(12)        | 2.4600(10)        |
| Ru-P(2)                           | 2.4444(14)     |                    | 2.4321(12)        | 2.4658(11)        |
| Ru-F(1) trans to carbyne          | 2.089(4)       |                    |                   | 2.0092(19)        |
| Ru-X cis to carbyne               | F(2): 1.985(4) | I(1): 2.6905(5)    | Cl(1): 2.3527(11) | Cl(1): 2.4008(10) |
| Ru-X cis to carbyne               | F(3): 1.989(4) | I(2): 2.6515(6)    | Cl(2): 2.3359(11) | Cl(2): 2.3800(10) |
| Ru-I(3) trans to PCy <sub>3</sub> |                | 2.6992(6)          |                   |                   |
|                                   |                | Bond Angles (deg)  |                   |                   |
| Ru - C(1) - C(2)                  | 179.9(7)       | 168.8(4)           | 171.4(3)          | 169.9(3)          |
| C(1)-Ru-P(1)                      | 92.72(4)       | 97.01(16)          | 96.70(11)         | 93.96(11)         |
| C(1)-Ru-P(2)                      | 92.72(4)       |                    | 95.77(11)         | 95.20(11)         |
| C(1)-Ru-X <i>cis</i> halide       | F(2): 94.9(3)  | I(1): 93.23(16)    | Cl(1): 105.28(11) | Cl(1): 89.09(12)  |
| C(1)-Ru-X <i>cis</i> halide       | F(3): 98.2(3)  | I(2): 102.48(16)   | Cl(2): 97.80(11)  | Cl(2): 100.70(11) |
| C(1)-Ru-I(3)                      |                | 97.95(16)          |                   |                   |
| F(1)-Ru-P(1)                      | 87.27(4)       |                    |                   | 85.09(6)          |
| F(1)-Ru-P(2)                      | 87.27(4)       |                    |                   | 86.07(6)          |
| I(3) - Ru - P(1)                  |                | 164.88(3)          |                   |                   |

of **19** and **20**, which occurs rapidly in dichloromethane. Attempted comproportionation of 2 equiv of **20** and 1 equiv of **19** led to a complex mixture rapidly at RT, the major product of which was determined to be the desired compound Ru(C-p-C<sub>6</sub>H<sub>4</sub>Me)(PCy<sub>3</sub>)<sub>2</sub>Cl<sub>2</sub>F (**26**) by independent synthesis (see below).

Structures of Oxidized Carbyne Complexes. No five- or six-coordinate ruthenium-benzylidyne complexes had been structurally characterized prior to this work, although the structures of several osmium benzylidyne complexes have been determined by X-ray diffraction.<sup>30,36-40</sup> Accordingly, we obtained the single-crystal X-ray structures of **19**, **22**, and Ru(C-p-C<sub>6</sub>H<sub>4</sub>Me)(PCy<sub>3</sub>)<sub>2</sub>Cl<sub>2</sub>F (**26**) for comparison to the few known ruthenium-carbyne structures. Pale brown **26** was prepared in 74% yield by reaction of **20** with [S(NMe<sub>2</sub>)<sub>3</sub>][SiMe<sub>3</sub>F<sub>2</sub>] (TAS-F). Crystallographic data for **19**, **22**, **25**, and **26** are listed in Table 1. Thermal ellipsoid plots of **19**, **22**, **25**, and **26** are shown in Figures 1–4.

The <sup>1</sup>H and <sup>31</sup>P NMR spectra and solubility properties of **19**, **20**, and **26** are indicative of six-coordination. As is seen in Figure 1, **19** adopts a pseudo-octahedral geometry in the solid state such that the two PCy<sub>3</sub> ligands are mutually *trans*, with a meridional arrangement of the three fluoride ligands. Structurally characterized complexes of ruthenium with three fluoride ligands are very rare.<sup>41,42</sup> Complex **19** is unique among these in that its fluoride ligands are all terminal rather than bridging. In general, fluoride complexes of ruthenium are uncommon but increasingly well known.<sup>43,44</sup> Complex **26** (Figure 4) adopts a similar geometry in which the unique fluoride ligand is *trans* to the carbyne moiety. This geometry parallels that seen in a closely related complex of osmium,  $Os(C-p-C_6H_4NMe_2)(PPh_3)_2Cl_2$ -(NCS), in which the hardest ligand present, N-bonded thiocy-

- (39) Esteruelas, M. A.; González, A. I.; López, A. M.; Oñate, E. Organometallics 2003, 22, 414.
- (40) Hodges, L. M.; Sabat, M.; Harman, W. D. Inorg. Chem. 1993, 32, 371.
- (41) Becker, C.; Kieltsch, I.; Broggini, D.; Mezzetti, A. Inorg. Chem. 2003, 42, 8417.
- (42) Jasim, N. A.; Perutz, R. N.; Archibald, S. J. J. Chem. Soc., Dalton Trans. 2003, 2184.
- (43) Murphy, E. F.; Murugavel, R.; Roesky, H. W. Chem. Rev. 1997, 97, 3425.
- (44) Doherty, N. M.; Hoffman, N. W. Chem. Rev. 1991, 91, 553.

anate, occupies the position *trans* to the carbyne ligand.<sup>37</sup> In square-pyramidal **22** and **25**, the *p*-methylbenzylidyne ligand occupies the apical position (Figures 2, 3). Important bond lengths and angles for **19**, **22**, **25**, and **26** are listed in Table 2.

The Ru=C bond length of 1.670(5) Å in **22** is indicative of a triple bond. This is not significantly smaller than those found in six-coordinate carbyne complexes such as **19** (1.703(9) Å) and *trans,mer*-Ru(=CCH=CMe<sub>2</sub>)(PPh<sub>3</sub>)<sub>2</sub>Cl<sub>3</sub> (1.696(6) Å),<sup>13</sup> but is marginally less than that in **26**, which exhibits a rather long Ru=C bond, 1.714(3) Å in length, comparable to that found in square-planar **13**.<sup>24</sup>

The slightly greater length of the Ru=C bond in 22 than that in the cationic five-coordinate carbyne complex  $4a[B(C_6H_3(CF_3)_2-3,5)_4]$  (1.660(5) Å)<sup>11,12</sup> is not statistically significant, although it is worth noting that the Ru=C internuclear separation in cationic 4a is significantly shorter than those of all three sixcoordinate carbyne complexes 19, 26, and Ru(=CCH= CMe<sub>2</sub>)(PPh<sub>3</sub>)<sub>2</sub>Cl<sub>3</sub>. However, the Ru=C bond in cationic 25 is indistinguishable from those of neutral 19 and 22, and cationic 4a by the  $3\sigma$  criterion, and is significantly shorter only than the Ru=C bond in 26.

Formation of Carbene Complexes from Oxidized Carbynes. Addition of Schwartz's reagent to 20 results in quantitative formation of  $6^{25}$  and  $Cp_2ZrCl_2^{45}$  (Scheme 7). At present, the initial site of hydride attack is unclear, as 6 is the thermodynamic product. When the reaction is performed in a NMR spectrometer and monitored at low temperature, no hydride is observed at any point, but the carbene proton is seen immediately at -60 °C by <sup>1</sup>H NMR spectroscopy. The thermodynamic preference for the five-coordinate carbene complex as opposed to the isomeric six-coordinate carbynehydride complex is opposite of that found in related Os systems.<sup>46–48</sup> It is of note that addition of a hydride source to 20 results in formation of a carbene complex, whereas addition of a fluoride source to 20 results in formation of the carbyne complex 26, which raises the question of the stability of  $\alpha$ -halocarbene complexes of the type Ru(CXR)L<sub>2</sub>X<sub>2</sub> and may have implications for metathesis of vinyl halides. We have recently noted that the new monofluoromethylidene complex Ru(CHF)(H<sub>2</sub>IMes)(PCy<sub>3</sub>)Cl<sub>2</sub><sup>49</sup> forms the corresponding terminal

<sup>(36)</sup> Clark, G. R.; Marsden, K.; Roper, W. R.; Wright, L. J. J. Am. Chem. Soc. 1980, 102, 6570.

<sup>(37)</sup> Clark, G. R.; Edmonds, N. R.; Pauptit, R. A.; Roper, W. R.; Waters, J. M.; Wright, A. H. *J. Organomet. Chem.* **1983**, 244, C57.

<sup>(38)</sup> Clark, G. R.; Cochrane, C. M.; Marsden, K.; Roper, W. R.; Wright, L. J. J. Organomet. Chem. **1986**, *315*, 211.

<sup>(45)</sup> Gell, K. I.; Schwartz, J. J. Am. Chem. Soc. 1981, 103, 2687.
(46) Caulton, K. G. J. Organomet. Chem. 2001, 617, 56.

<sup>(47)</sup> Spivak, G. J.; Coalter, J. N.; Oliván, M.; Eisenstein, O.; Caulton, K. G. Organometallics **1998**, 17, 999.

<sup>(48)</sup> Espuelas, J.; Esteruelas, M. A.; Lahoz, F. J.; Oro, L. A.; Ruiz, N. J. Am. Chem. Soc. 1993, 115, 4683.

Scheme 7. Reactivity of 20 with Hydride and Fluoride Sources



carbide complex Ru(C)(H<sub>2</sub>IMes)(PCy<sub>3</sub>)Cl<sub>2</sub><sup>50-53</sup> cleanly and spontaneously under a number of conditions, thus accounting for the lack of successful olefin cross-metathesis reactions involving vinyl fluoride.<sup>49</sup> However, the formation of Ru(C)-(H<sub>2</sub>IMes)(PCy<sub>3</sub>)Cl<sub>2</sub> upon reaction of **2** with 1,1-disubstituted vinyl halides is unlikely, as C–C bond cleavage in an intermediate such as Ru(CXR)L<sub>2</sub>X<sub>2</sub> would be required. Instead, formation of complexes akin to **20** and **26** is a likely possibility. We are currently studying reactions of **1** and **2** with appropriately substituted vinyl halides to address this point.

Alkyne Dimerization. Dimerization of terminal alkynes to form conjugated enynes<sup>54-58</sup> is of interest due to its atomeconomy.<sup>59</sup> The envnes so formed are attractive building blocks in organic syntheses.<sup>60</sup> Many systems currently available employ a metal catalyst and a base to aid in the transformation. Singlecomponent catalysts are known but are less common.<sup>61</sup> Complex 19 was found to effectively catalyze dimerization of terminal alkynes to give enynes. Catalytic reactions were carried out with 5 mol % **19** in  $C_6D_6$  in a sealed J. Young NMR tube at 65 °C. After 28 h, dimerization of phenylacetylene gave at least 96% conversion to two envne isomers, Z-1,4-diphenyl-1-buten-3-vne and 2,4-diphenyl-1-buten-3-yne in a 4:1 ratio, respectively. Throughout the course of the reaction, 19 showed decomposition by <sup>1</sup>H and <sup>31</sup>P NMR but retained some activity at the end of the reaction. The Z-isomer, the major product here, is the opposite isomer of that obtained by Ozerov and co-workers in recent Rh-catalyzed alkyne dimerizations.<sup>61</sup> Complex 19 similarly dimerized Me<sub>3</sub>SiC=CH. While the mechanism of the transformation mediated by 19 is not known, the fluoride ligand is essential to activity. This is shown by the fact that only 19 and the monofluoride complex 26 are active, though 26 is less efficient, under these conditions. The analogous trichloride complex 20 shows no activity. Metal-vinylidenes are often implicated in alkyne dimerization and cannot be ruled out at this point.

(49) Macnaughtan, M. L.; Johnson, M. J. A.; Kampf, J. W. Organometallics 2007, 26, 780.

(50) Carlson, R. G.; Gile, M. A.; Heppert, J. A.; Mason, M. H.; Powell, D. R.; Vander Velde, D.; Vilain, J. M. J. Am. Chem. Soc. 2002, 124, 1580.

- (51) Hejl, A.; Trnka, T. M.; Day, M. W.; Grubbs, R. H. Chem. Commun. 2002, 2524.
- (52) Romero, P. E.; Piers, W. E.; McDonald, R. Angew. Chem., Int. Ed. 2004, 43, 6161.
- (53) Caskey, S. R.; Stewart, M. H.; Kivela, J. E.; Sootsman, J. R.; Johnson, M. J. A.; Kampf, J. W. J. Am. Chem. Soc. **2005**, *127*, 16750.

(54) Janiak, C. Coord. Chem. Rev. 2006, 250, 66.

- (55) Drozdzak, R.; Allaert, B.; Ledoux, N.; Dragutan, I.; Dragutan, V.; Verpoort, F. Adv. Synth. Catal. 2005, 347, 1721.
  - (56) Schäfer, M.; Wolf, J.; Werner, H. Dalton Trans. 2005, 1468.
- (57) Lee, C. C.; Lin, Y. C.; Liu, Y. H.; Wang, Y. Organometallics 2005, 24, 136.

(58) Katayama, H.; Ozawa, F. *Coord. Chem. Rev.* **2004**, *248*, 1703. (59) Trost, B. M. *Science* **1991**, *254*, 1471.

- (60) Stang, P. J.; Diederich, F., *Modern Acetylene Chemistry*; VCH: New York, 1995; p 506.
- (61) Weng, W.; Guo, C. Y.; Celenligil-Cetin, R.; Foxman, B. M.; Ozerov,
   O. V. Chem. Commun. 2006, 197.

#### Caskey et al.

### Conclusions

Dehydrochlorination of "first-generation" Grubbs catalysts can be accomplished in one step by reaction with the bulky dialkyl germylene  $Ge(CH[SiMe_3]_2)_2$  (10) or in two steps via reaction with excess phenoxide ion followed by SnCl<sub>2</sub>. Products of both processes are diamagnetic square-planar carbyne complexes of the form Ru(CR)(PCy<sub>3</sub>)<sub>2</sub>Cl. The one-step process works for both R = alkyl and R = aryl; in contrast, the twostep procedure fails at the first step when R = alkyl. The benzylidyne complex Ru(C-p-C<sub>6</sub>H<sub>4</sub>Me)(PCy<sub>3</sub>)<sub>2</sub>Cl (8) is a useful precursor to the corresponding monohalide and triflate complexes  $Ru(C-p-C_6H_4Me)(PCy_3)_2X$  (X = F, Br, I, OTf). These benzylidyne complexes react rapidly and quantitatively with ethereal HCl to afford Grubbs catalysts Ru(CH-p-C<sub>6</sub>H<sub>4</sub>Me)- $(PCy_3)_2XCl$ ; when  $X \neq Cl$ , halide exchange occurs rapidly in solution to generate a mixture of the three possible Grubbs catalysts Ru(CH-p-C<sub>6</sub>H<sub>4</sub>Me)(PCy<sub>3</sub>)<sub>2</sub>XCl, Ru(CH-p-C<sub>6</sub>H<sub>4</sub>Me)- $(PCy_3)_2Cl_2$  (6), and Ru(CH-p-C<sub>6</sub>H<sub>4</sub>Me)(PCy<sub>3</sub>)<sub>2</sub>X<sub>2</sub>. The squareplanar complexes undergo ready two-electron oxidation to the corresponding diamagnetic trihalide benzylidyne complexes, which are either square-pyramidal Ru(C-p-C<sub>6</sub>H<sub>4</sub>Me)(PCy<sub>3</sub>)X<sub>3</sub> (X = Br, I) or pseudo-octahedral Ru $(C-p-C_6H_4Me)(PCy_3)_2X_3$ (X = F, CI). Steric effects appear to be responsible for this dichotomy, as attempts to generate six-coordinate Ru(C-p-C<sub>6</sub>H<sub>4</sub>-Me)(PCy<sub>3</sub>)<sub>2</sub>I<sub>3</sub> by addition of PCy<sub>3</sub> fail, instead affording cationic [Ru(C-p-C<sub>6</sub>H<sub>4</sub>Me)(PCy<sub>3</sub>)<sub>2</sub>I<sub>2</sub>]I. However, six-coordinate Ru(Cp-C<sub>6</sub>H<sub>4</sub>Me)(PPh<sub>3</sub>)<sub>2</sub>I<sub>3</sub> can be synthesized by addition of excess PPh<sub>3</sub> to  $Ru(C-p-C_6H_4Me)(PCy_3)I_3$ . One PCy<sub>3</sub> ligand can be removed from Ru(C-p-C<sub>6</sub>H<sub>4</sub>Me)(PCy<sub>3</sub>)<sub>2</sub>X<sub>3</sub> to yield Ru(C-p- $C_6H_4Me$ )(PCy<sub>3</sub>)X<sub>3</sub> upon reaction with elemental sulfur only for X = Cl. Four structurally characterized complexes, two neutral six-coordinate bis-phosphine complexes, one neutral fivecoordinate monophosphine complex, and one cationic bisphosphine complex, reveal Ru≡C bond lengths in the range 1.67–1.71 Å, consistent with ruthenium–carbon triple bonds. The five-coordinate complexes are best described as square pyramidal; the benzylidyne ligand occupies the apical position. Of the trihalide complexes, only the fluoride-containing complexes  $Ru(C-p-C_6H_4Me)(PCy_3)_2X_2F$  (X = F, Cl) display reactivity toward alkynes, catalyzing the formation of conjugated enynes via dimerization of terminal alkynes. Hydride addition to  $Ru(C-p-C_6H_4Me)(PCy_3)_2Cl_3$  re-forms the Grubbs catalyst 6 cleanly.

#### **Experimental Section**

**General Procedures.** All reactions were carried out using standard Schlenk techniques under an atmosphere of nitrogen or in a nitrogen-filled MBraun Labmaster 130 glovebox, unless otherwise specified. <sup>1</sup>H, <sup>13</sup>C, <sup>19</sup>F, and <sup>31</sup>P NMR spectra were recorded on a Varian Inova 300 MHz or 400 MHz NMR spectrometer. <sup>1</sup>H and <sup>13</sup>C spectra were referenced to solvent signals.<sup>62</sup> <sup>19</sup>F NMR spectra were referenced to external CFCl<sub>3</sub> in CDCl<sub>3</sub> ( $\delta = 0$ ); <sup>31</sup>P NMR spectra were referenced to external 85% H<sub>3</sub>PO<sub>4</sub> ( $\delta = 0$ ).

**Materials.** [S(NMe<sub>2</sub>)<sub>3</sub>][SiF<sub>2</sub>Me<sub>3</sub>] (TAS-F), I<sub>2</sub>, 1 M and 2 M HCl in ether, Et<sub>3</sub>N•3HF, and py(HF)<sub>*n*</sub> were purchased from Aldrich. Br<sub>2</sub>, hexachloroethane, NaI, PPh<sub>3</sub>, LiBr, triethylamine, [*n*-Bu<sub>4</sub>N]F•3H<sub>2</sub>O, 18-crown-6, trityl tetrafluoroborate, phenylacetylene, and 1,3,5-trimethoxybenzene were purchased from Acros. Trimethylsily-lacetylene was purchased from GFS. NaBPh<sub>4</sub>, TIOTf, XeF<sub>2</sub>, CsF, AgF, Cp<sub>2</sub>ZrHCl (Schwartz's reagent), and Cp<sub>2</sub>ZrCl<sub>2</sub> were purchased

<sup>(62)</sup> Gottlieb, H. E.; Kotlyar, V.; Nudelman, A. J. Org. Chem. 1997, 62, 7512.

from Strem. Elemental sulfur (S<sub>8</sub>) was purchased from Mallinckrodt. All bulk solvents were obtained from VWR Scientific and dried by passage through solvent purification columns according to the method of Grubbs.<sup>63</sup> Deuterated solvents were purchased from CIL and dried over 4 Å molecular sieves. All liquid reagents were degassed and then dried over sieves or passed through activated alumina. Solid reagents were used as received. The starting compounds [Ru(C-*p*-C<sub>6</sub>H<sub>4</sub>Me)(PCy<sub>3</sub>)<sub>2</sub>Cl] (**8**),<sup>24</sup> [Ru(C-*p*-C<sub>6</sub>H<sub>4</sub>Me)-(PCy<sub>3</sub>)<sub>2</sub>Br] (**14**),<sup>24</sup> [Ru(C-*p*-C<sub>6</sub>H<sub>4</sub>Me)(PCy<sub>3</sub>)<sub>2</sub>OTf] (**16**),<sup>24</sup> and [Ru-(CH-*p*-C<sub>6</sub>H<sub>4</sub>Me)(PCy<sub>3</sub>)<sub>2</sub>Cl<sub>2</sub>] (**6**)<sup>25</sup> were synthesized according to published procedures.

[**Ru**(C-*p*-C<sub>6</sub>H<sub>4</sub>Me)(**P**C**y**<sub>3</sub>)<sub>2</sub>**F**] (9). Syntheses of this compound were reported previously.<sup>24</sup> An improved procedure is as follows. To a stirred blue-green solution of [Ru(C-*p*-C<sub>6</sub>H<sub>4</sub>Me)(PCy<sub>3</sub>)<sub>2</sub>Cl] (8) (1.001 g, 1.250 mmol) in THF (60 mL) was added [*n*-Bu<sub>4</sub>N]**F**· 3H<sub>2</sub>O (0.789 g, 2.50 mmol, 2.00 equiv) as a solid at once. The solid was washed in with THF (20 mL). The resulting green solution was stirred for 2.5 h, then concentrated to dryness. The remaining green solid was slurried in cold acetonitrile (10 mL) for 10 min, filtered, washed with cold acetonitrile (4 × 5 mL), and dried *in vacuo* for 2 h. Blue-green powder **9** (0.797 g, 1.02 mmol) was recovered pure in 81.3% yield.

[Ru(C-p-C<sub>6</sub>H<sub>4</sub>Me)(PCy<sub>3</sub>)<sub>2</sub>I] (15). To a solid mixture of bluegreen [Ru(C-p-C<sub>6</sub>H<sub>4</sub>Me)(PCy<sub>3</sub>)<sub>2</sub>Cl] (8) (2.029 g, 2.53 mmol) and excess NaI (3.769 g, 25.1 mmol, 9.92 equiv) was added THF (240 mL). The heterogeneous mixture was stirred for 1.5 h, over which time the solution turned brown. The solution was then concentrated to dryness under vacuum. The brown material was extracted into toluene (240 mL) and stirred for 1 h. The solution was filtered through a bed of Celite to remove white sodium salts. The Celite was washed with toluene (3  $\times$  50 mL) until all color was removed. The filtrate was concentrated to dryness. The brown residue was stirred in cold pentane (40 mL) for 1 h and then filtered. The precipitate was washed with cold pentane  $(2 \times 10 \text{ mL})$  and dried in vacuo 4 h. Green-gray powder 15 (1.529 g, 1.71 mmol) was recovered pure in 67.7% yield. <sup>1</sup>H NMR (400 MHz,  $C_6D_6$ ):  $\delta$ 7.83 (d,  ${}^{3}J_{HH} = 8.2$  Hz, 2H C<sub>6</sub>H<sub>4</sub>Me), 6.59 (d,  ${}^{3}J_{HH} = 7.6$  Hz, 2H, C<sub>6</sub>H<sub>4</sub>Me), 1.64 (s, 3H, CH<sub>3</sub>), 2.65, 2.36-2.33, 2.02-1.96, 1.78-1.76, 1.64–1.62, 1.27–1.17 (all m, 66H, PCy\_3).  $^{13}\mathrm{C}\{^{1}\mathrm{H}\}$  NMR (100.6 MHz, THF- $d_8$ ):  $\delta$  241.61 (t,  $J_{PC} = 17.5$  Hz, Ru=C-Ar), 141.15 and 140.58 (both s, ipso-C and p-C of C<sub>6</sub>H<sub>4</sub>Me), 129.99 and 127.82 (both s,  $C_6H_4Me$ ), 38.79 (t,  $J_{PC} = 9.2$  Hz, *ipso-C* of  $P(C_6H_{11})_3)$ , 32.06 (br s, *m*-C of  $P(C_6H_{11})_3$ ), 28.65 (t,  $J_{PC} = 5.3$  Hz, o-C of P(C<sub>6</sub>H<sub>11</sub>)<sub>3</sub>), 27.77 (s, p-C of P(C<sub>6</sub>H<sub>11</sub>)<sub>3</sub>), 22.32 (s, CH<sub>3</sub>). <sup>31</sup>P-{<sup>1</sup>H} NMR (161.9 MHz,  $C_6D_6$ ):  $\delta$  40.4 (s). Anal. Calcd for  $C_{44}H_{73}$ -IP<sub>2</sub>Ru: C, 59.25; H, 8.25. Found: C, 59.06; H, 8.51.

[Ru(CH-p-C<sub>6</sub>H<sub>4</sub>Me)(PCy<sub>3</sub>)<sub>2</sub>Br<sub>2</sub>]. To a stirred solution of lithium bromide (2.070 g, 23.8 mmol, 20.0 equiv) in THF (20 mL) was added [Ru(CH-p-C<sub>6</sub>H<sub>4</sub>Me)(PCy<sub>3</sub>)<sub>2</sub>Cl<sub>2</sub>] (6) (1.000 g, 1.20 mmol) as a solid. The solid was washed in with CH<sub>2</sub>Cl<sub>2</sub> (40 mL). The solution was stirred for 3.5 h, then concentrated to dryness. The remaining purple material was extracted into toluene (40 mL) and stirred for 20 min. The mixture was filtered through a bed of wetted Celite and the purple color was washed through with toluene (2  $\times$  30 mL). The filtrate was concentrated to dryness. The resulting purple solid was slurried in cold pentane (20 mL), filtered, washed with pentane (3  $\times$  5 mL), and dried in vacuo for 5 h. Purple powder material (0.945 g) was recovered as  $\sim$ 86% dibromide product by <sup>1</sup>H and <sup>31</sup>P NMR; 13% remained incompletely reacted. The purple powder was resubjected to the reaction conditions three times to provide the pure purple powder product (0.632 g, 0.682 mmol) in 57.1% yield. <sup>1</sup>H NMR (400 MHz, CD<sub>2</sub>Cl<sub>2</sub>): δ 19.83 (s, Ru=CHAr), 8.33 (d,  ${}^{3}J_{\text{HH}} = 6.9$  Hz, 2H, C<sub>6</sub>H<sub>4</sub>Me), 7.12 (d,  ${}^{3}J_{\text{HH}} = 7.6$  Hz, 2H, C<sub>6</sub>H<sub>4</sub>Me), 2.85 (br s, 6H, PCH of PCy<sub>3</sub>), 2.09 (s, 3H, CH<sub>3</sub>), 1.80-1.70, 1.43–1.38, 1.25–1.15 (all m, 60H, PCy<sub>3</sub>). <sup>13</sup>C{<sup>1</sup>H} NMR (100.6 MHz, CD<sub>2</sub>Cl<sub>2</sub>):  $\delta$  295.77 (t,  $J_{PC} = 8.8$  Hz, Ru=CHAr), 151.35 (s, *p*-C of C<sub>6</sub>H<sub>4</sub>Me), 140.78 (*ipso*-C of C<sub>6</sub>H<sub>4</sub>Me), 131.71 and 129.61 (both s, C<sub>6</sub>H<sub>4</sub>Me), 33.41 (t,  $J_{PC} = 9.2$  Hz, *ipso*-C of P(C<sub>6</sub>H<sub>11</sub>)<sub>3</sub>), 30.42 (br s, *m*-C of P(C<sub>6</sub>H<sub>11</sub>)<sub>3</sub>), 28.17 (t,  $J_{PC} = 5.4$  Hz, *o*-C of P(C<sub>6</sub>H<sub>11</sub>)<sub>3</sub>), 26.94 (s, *p*-C of P(C<sub>6</sub>H<sub>11</sub>)<sub>3</sub>), 22.34 (s, CH<sub>3</sub>). <sup>31</sup>P-{<sup>1</sup>H} NMR (161.9 MHz, CD<sub>2</sub>Cl<sub>2</sub>):  $\delta$  36.8 (s). Anal. Calcd for C<sub>44</sub>H<sub>74</sub>Br<sub>2</sub>P<sub>2</sub>Ru: C, 57.08; H, 8.06. Found: C, 57.11; H, 8.23.

 $[Ru(C-p-C_6H_4Me)(PCy_3)_2F_3]$  (19). Method A (XeF<sub>2</sub>). To a stirred green solution of [Ru(C-p-C<sub>6</sub>H<sub>4</sub>Me)(PCy<sub>3</sub>)<sub>2</sub>F] (9) (0.199 g, 0.254 mmol) in benzene (25 mL) was added XeF<sub>2</sub> (0.058 g, 0.34 mmol, 1.4 equiv) as a white crystalline solid at once. The reaction mixture was stirred for 45 min, over which time it turned from green to brown. The mixture was then concentrated to dryness. The remaining brown residue was slurried in cold hexanes (6 mL) for 15 min, filtered, and washed with hexanes  $(3 \times 3 \text{ mL})$ . The remaining solid was dried in vacuo 3 h. Pink-gray powder (0.148 g) was recovered containing a small amount of an unknown purple impurity, which is recognizable in the <sup>1</sup>H NMR spectrum as two broad peaks centered at  $\delta$  12.7 and 11.9 ppm in CD<sub>2</sub>Cl<sub>2</sub>. This impurity also tends to broaden the 19F and 31P NMR shifts of the product 19, such that the coupling constants cannot be determined. To remove this impurity, the pink-gray powder was stirred in CH<sub>2</sub>Cl<sub>2</sub> (10 mL). To the stirred brown solution was added triethylamine (25.0  $\mu$ L, 0.180 mmol). The mixture was stirred for 30 min and then concentrated to dryness. The remaining residue was slurried in cold acetonitrile (6 mL) for 15 min, filtered, washed with acetonitrile  $(3 \times 3 \text{ mL})$ , and dried in vacuo 2 h. Pale pinkishgray powder (0.111 g) was recovered with a minor amount of the above-mentioned impurity still present. The triethylamine treatment was repeated once. In this way, gray powder 19 (0.095 g, 0.12 mmol) was recovered in pure form in 45% overall yield. <sup>1</sup>H NMR (400 MHz, CD<sub>2</sub>Cl<sub>2</sub>):  $\delta$  8.13 (d, <sup>3</sup>*J*<sub>HH</sub> = 8.2 Hz, 2H, C<sub>6</sub>H<sub>4</sub>Me), 6.70 (d,  ${}^{3}J_{\text{HH}} = 8.0$  Hz, 2H, C<sub>6</sub>H<sub>4</sub>Me), 2.54 (br s, 6H, PCH of PCy<sub>3</sub>), 1.67 (s, 3H, CH<sub>3</sub>), 2.32-2.28, 1.89-1.53, 1.27-1.14 (all m, 60H, PCy<sub>3</sub>). <sup>13</sup>C{<sup>1</sup>H} NMR (100.6 MHz, CD<sub>2</sub>Cl<sub>2</sub>): δ 147.25 (s, p-C of  $C_6H_4Me$ ), 141.95 (d,  $J_{FC} = 11.6$  Hz, *ipso*-C of  $C_6H_4Me$ ), 132.34 and 130.27 (both s,  $C_6H_4Me$ ), 34.48 (t,  $J_{PC} = 9.5$  Hz, *ipso-C* of  $P(C_6H_{11})_3$ , 29.03 (br s, *m*-C of  $P(C_6H_{11})_3$ ), 28.23 (t,  $J_{PC} = 5.5$  Hz, o-C of P(C<sub>6</sub>H<sub>11</sub>)<sub>3</sub>), 26.99 (s, p-C of P(C<sub>6</sub>H<sub>11</sub>)<sub>3</sub>), 23.15 (s, CH<sub>3</sub>). <sup>19</sup>F-{<sup>1</sup>H} NMR (376.29 MHz, CD<sub>2</sub>Cl<sub>2</sub>):  $\delta$  -190.96 (tt, <sup>2</sup>J<sub>FF</sub> = 120 Hz,  ${}^{2}J_{PF} = 32$  Hz, RuF-*trans* to carbyne), -419.50 (br d,  ${}^{2}J_{FF} =$ 120 Hz, RuF<sub>2</sub>-cis to carbyne).  ${}^{31}P{}^{1}H{}$  NMR (121.5 MHz, CD<sub>2</sub>-Cl<sub>2</sub>):  $\delta$  25.3 (dt, <sup>2</sup>J<sub>PF</sub> = 34 Hz, <sup>2</sup>J<sub>PF</sub> = 10 Hz). Anal. Calcd for C44H73F3P2Ru: C, 64.29; H, 8.95. Found: C, 64.34; H, 9.84.

**Method B (AgF).** To a stirred green solution of  $[\text{Ru}(\text{C}-p-\text{C}_6\text{H}_4-\text{Me})(\text{PCy}_{3}_2\text{F}]$  (9) (0.069 g, 0.088 mmol) in THF (7 mL) was added silver(I) fluoride (0.028 g, 0.22 mmol, 2.5 equiv) as a solid at once. The reaction vial was wrapped in aluminum foil to protect the reaction from light. The heterogeneous mixture was stirred for 48 h, over which time the solution turned from green to brown. The reaction mixture was then filtered through a bed of wetted Celite and the brown color washed through with THF (2 × 3 mL). The filtrate was concentrated to dryness. The remaining solid was slurried in cold acetone (4 mL) for 10 min, filtered, washed with cold acetone (3 × 2 mL), and dried *in vacuo*. Gray powder **19** (0.011 g, 0.014 mmol) was recovered in 16% yield.

[**Ru**(*C*-*p*-*C*<sub>6</sub>**H**<sub>4</sub>**Me**)(**PCy**<sub>3</sub>)<sub>2</sub>**Cl**<sub>3</sub>] (20). A blue-green solution of [Ru(*C*-*p*-*C*<sub>6</sub>**H**<sub>4</sub>**Me**)(**PCy**<sub>3</sub>)<sub>2</sub>**Cl**] (8) (0.253 g, 0.316 mmol) in toluene (20 mL) and a solution of hexachloroethane (0.078 g, 0.33 mmol, 1.0 equiv) in toluene (10 mL) were frozen with liquid N<sub>2</sub>. The hexachloroethane solution was thawed until it was completely liquid and added all at once to the ruthenium solution as it just thawed enough to begin stirring. The reaction mixture was stirred and allowed to warm to glovebox temperature (30 °C) for 1 h, over which time the solution turned brown and a precipitate formed. The reaction mixture was concentrated under vacuum to dryness. The tan solid was slurried in cold pentane (10 mL) and stirred for

<sup>(63)</sup> Pangborn, A. B.; Giardello, M. A.; Grubbs, R. H.; Rosen, R. K.; Timmers, F. J. Organometallics 1996, 15, 1518.

10 min. The mixture was filtered. The solid was washed with cold acetonitrile (3 × 6 mL) and cold pentane (3 × 6 mL) and dried *in vacuo* 6 h. Tan powder **20** (0.145 g, 0.166 mmol) was recovered pure in 52.5% yield. <sup>1</sup>H NMR (400 MHz, CD<sub>2</sub>Cl<sub>2</sub>):  $\delta$  8.16 (d, <sup>3</sup>J<sub>HH</sub> = 8.5 Hz, 2H, C<sub>6</sub>H<sub>4</sub>Me), 7.29 (d, <sup>3</sup>J<sub>HH</sub> = 8.5 Hz, 2H, C<sub>6</sub>H<sub>4</sub>Me), 2.68 (m, 6H, PCH of PCy<sub>3</sub>), 2.42 (s, 3H, CH<sub>3</sub>), 2.14–2.11, 1.87–1.62, 1.30–1.11 (all m, 60H, PCy<sub>3</sub>). <sup>31</sup>P{<sup>1</sup>H} NMR (121.5 MHz, CD<sub>2</sub>Cl<sub>2</sub>):  $\delta$  18.2 (s). Anal. Calcd for C<sub>44</sub>H<sub>73</sub>Cl<sub>3</sub>P<sub>2</sub>Ru: C, 60.64; H, 8.44. Found: C, 60.72; H, 8.31. Attempts to obtain a <sup>13</sup>C{<sup>1</sup>H} NMR spectrum of this compound have failed due to low solubility and decomposition at elevated concentration.

[Ru(C-p-C<sub>6</sub>H<sub>4</sub>Me)(PCy<sub>3</sub>)Br<sub>3</sub>] (21). To a 20 mL scintillation vial was added a blue-green solution of [Ru(C-p-C<sub>6</sub>H<sub>4</sub>Me)(PCy<sub>3</sub>)<sub>2</sub>Br] (14) (0.102 g, 0.121 mmol) in dry benzene (10 mL) and a stirbar. The vial was sealed with a septum and secured with copper wire. The sealed solution was removed from the glovebox. To the stirred solution was added by syringe bromine (0.306 mL, 0.119 mmol, 0.986 equiv) in the form of a freshly prepared stock solution (0.389 M) in dry benzene. The reaction mixture was stirred for 1 h, over which time the solution turned brown and an orange-brown precipitate formed. The vial was returned to the glovebox. The reaction mixture was concentrated to  $\sim$ 2 mL of solution and filtered. The remaining solid was dried in vacuo 4 h. The tan powder (0.095 g) was recovered. Integration of the <sup>31</sup>P NMR signals indicates 63% 21 and 37% [BrPCy<sub>3</sub>]Br and, therefore, an 80% yield of 21. [BrPCy<sub>3</sub>]Br and 21 could not be separated due to similar solubilities. Note: By reaction with Br<sub>2</sub>, trace water or use of toluene as solvent can each generate HBr in solution, which reacts rapidly with Ru(C-p-C<sub>6</sub>H<sub>4</sub>Me)(PCy<sub>3</sub>)<sub>2</sub>Br (14) to form Ru(CH-p- $C_6H_4Me$ )(PCy<sub>3</sub>)<sub>2</sub>Br<sub>2</sub>. <sup>1</sup>H NMR (400 MHz, CD<sub>2</sub>Cl<sub>2</sub>):  $\delta$  8.03 (d, <sup>3</sup>J<sub>HH</sub> = 8.2 Hz, 2H,  $C_6H_4Me$ ), 7.30 (d,  ${}^{3}J_{HH}$  = 7.9 Hz, 2H,  $C_6H_4Me$ ), 3.07-2.98 (m resembles q, 3H, PCH of PCy<sub>3</sub>), 2.41 (s, 3H, CH<sub>3</sub>), 2.14-1.96, 1.84-1.48, 1.39-1.22 (all m, [BrPCy<sub>3</sub>]Br and 21-PCy<sub>3</sub>). <sup>31</sup>P{<sup>1</sup>H} NMR (161.9 MHz, CD<sub>2</sub>Cl<sub>2</sub>):  $\delta$  101.69 (s, [BrPCy<sub>3</sub>]Br), 69.57 (s, 21). NMR spectra for the mixture of 21 and [BrPCy<sub>3</sub>]Br are reproduced in the Supporting Information.

[Ru(C-p-C<sub>6</sub>H<sub>4</sub>Me)(PCy<sub>3</sub>)I<sub>3</sub>] (22). To a stirred gray solution of [Ru(C-p-C<sub>6</sub>H<sub>4</sub>Me)(PCy<sub>3</sub>)<sub>2</sub>I] (15) (0.200 g, 0.224 mmol) in 25 mL of benzene was added dropwise a solution of iodine (0.059 g, 0.23 mmol, 1.0 equiv) in 8 mL of benzene. The solution was stirred for 1 h, over which time the solution turned brown and a precipitate formed. The reaction mixture was concentrated under vacuum to one-quarter of the initial volume. The precipitate was filtered from the solution, washed with benzene  $(3 \times 2 \text{ mL})$ , and dried in vacuo 3 h. Brown powder 22 (0.152 g, 0.175 mmol) was recovered purely in 78.2% yield. <sup>1</sup>H NMR (400 MHz, CD<sub>2</sub>Cl<sub>2</sub>):  $\delta$  8.06 (d, <sup>3</sup>J<sub>HH</sub> = 8.2 Hz, 2H, C<sub>6</sub>H<sub>4</sub>Me), 7.22 (d,  ${}^{3}J_{HH} = 8.2$  Hz, 2H, C<sub>6</sub>H<sub>4</sub>Me), 3.30 (m resembles q, 3H, PCH of PCy<sub>3</sub>), 2.38 (s, 3H, CH<sub>3</sub>), 2.04-1.92, 1.84–1.72, 1.61–1.52, 1.38–1.19 (all m, 30H, PCy<sub>3</sub>). <sup>13</sup>C{<sup>1</sup>H} NMR (100.6 MHz, CD<sub>2</sub>Cl<sub>2</sub>):  $\delta$  287.24 (d,  $J_{PC} = 10.7$  Hz, Ru= C-Ar), 149.80 (s, ipso-C of C<sub>6</sub>H<sub>4</sub>Me), 134.46 (s, p-C of C<sub>6</sub>H<sub>4</sub>-Me), 131.86 and 131.07 (both s,  $C_6H_4Me$ ), 37.82 (d,  $J_{PC} = 21.9$ Hz, *ipso*-C of  $P(C_6H_{11})_3$ ), 31.47 (d,  $J_{PC} = 2.1$  Hz, *m*-C of  $P(C_6H_{11})_3$ ), 28.14 (d,  $J_{PC} = 11.2$  Hz, o-C of P(C<sub>6</sub>H<sub>11</sub>)<sub>3</sub>), 26.58 (s, p-C of P(C<sub>6</sub>H<sub>11</sub>)<sub>3</sub>), 23.27 (s, CH<sub>3</sub>). <sup>31</sup>P{<sup>1</sup>H} NMR (161.9 MHz, CD<sub>2</sub>Cl<sub>2</sub>):  $\delta$  66.5 (s). Anal. Calcd for C<sub>26</sub>H<sub>40</sub>I<sub>3</sub>PRu: C, 36.09; H, 4.66. Found: C, 36.10; H, 4.42.

**Formation of [Ru(C**-*p*-C<sub>6</sub>H<sub>4</sub>Me)(PCy<sub>3</sub>)<sub>2</sub>I<sub>2</sub>JI (23-I). To a solid sample of PCy<sub>3</sub> (0.004 g, 0.01 mmol, 1 equiv) was added a redbrown solution of [Ru(C-*p*-C<sub>6</sub>H<sub>4</sub>Me)(PCy<sub>3</sub>)I<sub>3</sub>] (22) (0.012 g, 0.013 mmol) in CD<sub>2</sub>Cl<sub>2</sub> (ca. 0.75 mL). The solution was mixed well by pipet, and the solution darkened slightly. After 20 min the <sup>1</sup>H and <sup>31</sup>P NMR spectra were obtained, and the only observable species was identified as [Ru(C-*p*-C<sub>6</sub>H<sub>4</sub>Me)(PCy<sub>3</sub>)<sub>2</sub>I<sub>2</sub>]I (23-I). Note: Attempts at isolation of 23-I generally led to mixtures of 22 and 23-I. <sup>1</sup>H NMR (400 MHz, CD<sub>2</sub>Cl<sub>2</sub>):  $\delta$  7.88 (d, <sup>3</sup>J<sub>HH</sub> = 8.4 Hz, 2H, C<sub>6</sub>H<sub>4</sub>Me), 7.27 (d, <sup>3</sup>J<sub>HH</sub> = 8.0 Hz, 2H, C<sub>6</sub>H<sub>4</sub>Me), 3.46 (br s, 6H,

PCH of PCy<sub>3</sub>), 2.48 (s, 3H, CH<sub>3</sub>), 1.89–1.75, 1.47–1.17 (all m, 60H, PCy<sub>3</sub>). <sup>31</sup>P{<sup>1</sup>H} NMR (161.9 MHz, CD<sub>2</sub>Cl<sub>2</sub>):  $\delta$  51.1 (s). NMR spectra for the mixture of **23-I** are reproduced in the Supporting Information.

[Ru(C-*p*-C<sub>6</sub>H<sub>4</sub>Me)(PCy<sub>3</sub>)<sub>2</sub>I<sub>2</sub>]OTf (23-OTf). Method A. To a stirred green-blue solution of [Ru(C-*p*-C<sub>6</sub>H<sub>4</sub>Me)(PCy<sub>3</sub>)<sub>2</sub>OTf] (16) (0.063 g, 0.069 mmol) in 10 mL of THF was added rapidly a solution of iodine (0.018 g, 0.071 mmol, 1.0 equiv) in 2 mL of THF. The solution was stirred for 1 h, over which time the solution turned brown and a green precipitate formed. The reaction mixture was concentrated to dryness under vacuum. The remaining solid was slurried in pentane (8 mL) and stirred for 10 min. The mixture was filtered, washed with benzene (3 × 3 mL) and pentane (3 × 3 mL), and dried *in vacuo* 3 h. Bright green powder 23-OTf (0.052 g, 0.044 mmol) was recovered in 64.2% yield.

Method B. To a stirred red-brown solution of [Ru(C-p-C<sub>6</sub>H<sub>4</sub>-Me)(PCy<sub>3</sub>)I<sub>3</sub>] (22) (0.152 g, 0.176 mmol) in 10 mL of CH<sub>2</sub>Cl<sub>2</sub> was added a solution of PCy<sub>3</sub> (0.054 g, 0.19 mmol, 1.1 equiv) in 5 mL of CH<sub>2</sub>Cl<sub>2</sub>. The solution was stirred for 5 min, over which time the red-brown solution darkened slightly. Solid thallium(I) triflate (0.067 g, 0.19 mmol, 1.1 equiv) was added and washed in with CH<sub>2</sub>Cl<sub>2</sub> (2 mL). A yellow precipitate formed immediately and the solution turned green-brown. The heterogeneous mixture was stirred for 1 h, filtered through a bed of wetted Celite, and washed through with  $CH_2Cl_2$  (3 × 5 mL). The filtrate was concentrated to dryness under vacuum. The remaining solid was slurried in pentane (8 mL) and stirred for 10 min. The mixture was filtered, washed in with benzene  $(3 \times 5 \text{ mL})$  and pentane  $(3 \times 5 \text{ mL})$ , and dried in vacuo 4 h. Bright green powder 23-OTf (0.186 g, 0.159 mmol) was recovered pure in 90.4% yield. <sup>1</sup>H NMR (400 MHz, CD<sub>2</sub>Cl<sub>2</sub>):  $\delta$ 7.88 (d,  ${}^{3}J_{\text{HH}} = 8.4$  Hz, 2H, C<sub>6</sub>H<sub>4</sub>Me), 7.25 (d,  ${}^{3}J_{\text{HH}} = 8.0$  Hz, 2H, C<sub>6</sub>H<sub>4</sub>Me), 3.45 (br s, 6H, PCH of PCy<sub>3</sub>), 2.46 (s, 3H, CH<sub>3</sub>), 1.92– 1.75, 1.49-1.19 (all m, 60H, PCy<sub>3</sub>). <sup>13</sup>C{<sup>1</sup>H} NMR (100.6 MHz,  $CD_2Cl_2$ , -20 °C):  $\delta$  293.24 (br s, Ru=C-Ar), 152.07 (s, p-C of  $C_6H_4Me$ ), 131.94 (*ipso*-C of  $C_6H_4Me$ ), 130.94 and 130.76 (both s, C<sub>6</sub>H<sub>4</sub>Me), 38.02 (br s, *ipso*-C of P(C<sub>6</sub>H<sub>11</sub>)<sub>3</sub>), 31.57 (br s, *m*-C of  $P(C_6H_{11})_3)$ , 27.62 (t,  $J_{PC} = 5.0$  Hz, o-C of  $P(C_6H_{11})_3$ ), 26.16 (s, p-C of P(C<sub>6</sub>H<sub>11</sub>)<sub>3</sub>), 23.32 (s, CH<sub>3</sub>). <sup>19</sup>F{<sup>1</sup>H} NMR (376.3 MHz, CD<sub>2</sub>-Cl<sub>2</sub>): δ -79.36 (s, OTf). <sup>31</sup>P{<sup>1</sup>H} NMR (161.9 MHz, CD<sub>2</sub>Cl<sub>2</sub>): δ 51.1 (s). Anal. Calcd for C<sub>45</sub>H<sub>73</sub>F<sub>3</sub>I<sub>2</sub>O<sub>3</sub>P<sub>2</sub>RuS: C, 46.28; H, 6.30. Found: C, 46.31; H, 6.50.

[Ru(C-p-C<sub>6</sub>H<sub>4</sub>Me)I<sub>2</sub>(PCy<sub>3</sub>)<sub>2</sub>]BPh<sub>4</sub> (23-BPh<sub>4</sub>). To a stirred redbrown solution of [Ru(C-p-C<sub>6</sub>H<sub>4</sub>Me)(PCy<sub>3</sub>)I<sub>3</sub>] (22) (0.142 g, 0.165 mmol) in 6 mL of CH<sub>2</sub>Cl<sub>2</sub> was added a solution of PCy<sub>3</sub> (0.046 g, 0.16 mmol, 1.0 equiv) in 2 mL of CH<sub>2</sub>Cl<sub>2</sub>. The solution was stirred for 5 min, over which time the red-brown solution darkened slightly. Solid NaBPh<sub>4</sub> (0.084 g, 0.25 mmol, 1.5 equiv) was added and washed in with CH<sub>2</sub>Cl<sub>2</sub> (2 mL). A white precipitate formed and the solution turned green-brown. The heterogeneous mixture was stirred for 1 h, filtered through a bed of CH<sub>2</sub>Cl<sub>2</sub>-wetted Celite, and washed through with  $CH_2Cl_2$  (3 × 15 mL). The filtrate was concentrated to dryness under vacuum. The remaining solid was slurried in pentane (8 mL) and stirred for 30 min. The mixture was filtered, washed with pentane  $(3 \times 5 \text{ mL})$ , and dried in vacuo 6 h. Bright green powder 23-BPh<sub>4</sub> (0.183 g, 0.137 mmol) was recovered pure in 83.0% yield. <sup>1</sup>H NMR (400 MHz, CD<sub>2</sub>Cl<sub>2</sub>):  $\delta$ 7.89 (d,  ${}^{3}J_{\text{HH}} = 8.2 \text{ Hz}$ , 2H, C<sub>6</sub>H<sub>4</sub>Me), 7.32 (br s, 8H, *o*-H of BPh<sub>4</sub>), 7.22 (d,  ${}^{3}J_{HH} = 8.2$  Hz, 2H, C<sub>6</sub>H<sub>4</sub>Me), 7.03 (apparent t, 8H, *m*-H of BPh<sub>4</sub>), 6.88 (t,  ${}^{3}J_{HH} = 7.3$  Hz, 4H, *p*-*H* of BPh<sub>4</sub>) 3.47 (br s, 6H, PCH of PCy<sub>3</sub>), 2.43 (s, 3H, CH<sub>3</sub>), 1.93-1.75, 1.51-1.16 (all m, 60H, PCy<sub>3</sub>).  ${}^{31}P{}^{1}H$  NMR (161.9 MHz, CD<sub>2</sub>Cl<sub>2</sub>):  $\delta$  51.1 (s). Anal. Calcd for C<sub>68</sub>H<sub>93</sub>BI<sub>2</sub>P<sub>2</sub>Ru: C, 61.04; H, 7.01. Found: C, 61.50; H, 7.57.

 $[\mathbf{Ru}(\mathbf{C}$ -p- $\mathbf{C}_{6}\mathbf{H}_{4}\mathbf{Me})(\mathbf{PPh}_{3})_{2}\mathbf{I}_{3}]$ . To a solid mixture of brown [Ru-(C-p- $\mathbf{C}_{6}\mathbf{H}_{4}\mathbf{Me})(\mathbf{PCy}_{3})\mathbf{I}_{3}]$  (22) (0.152 g, 0.176 mmol) and triphenylphosphine (0.235 g, 0.896 mmol, 5.10 equiv) was added CH<sub>2</sub>Cl<sub>2</sub> (15 mL). The reaction mixture was stirred for 1 h. The solution was concentrated to dryness. The remaining brown residue was slurried in cold pentane (8 mL) for 10 min, filtered, and washed with acetonitrile (3 × 5 mL) and pentane (3 × 3 mL). The remaining solid was dried *in vacuo* overnight. The impure orange powder (0.141 g) thus recovered was resubjected to the reaction conditions to eliminate some PCy<sub>3</sub>-containing products. Orange powder product (0.071 g, 0.064 mmol) was then recovered pure in 36% yield. <sup>1</sup>H NMR (400 MHz, CD<sub>2</sub>Cl<sub>2</sub>):  $\delta$  8.09–8.02 (m, 12H, PPh<sub>3</sub>), 7.44 (d, <sup>3</sup>*J*<sub>HH</sub> = 8.4 Hz, 2H, C<sub>6</sub>H<sub>4</sub>Me), 7.49–7.35 (m, 18H, PPh<sub>3</sub>), 6.58 (d, <sup>3</sup>*J*<sub>HH</sub> = 8.0 Hz, 2H, C<sub>6</sub>H<sub>4</sub>Me), 2.25 (s, 3H, CH<sub>3</sub>). <sup>31</sup>P{<sup>1</sup>H} NMR (161.9 MHz, CD<sub>2</sub>Cl<sub>2</sub>):  $\delta$  –1.4 (s). Anal. Calcd for C<sub>44</sub>H<sub>37</sub>I<sub>3</sub>P<sub>2</sub>Ru: C, 47.63; H, 3.36. Found: C, 47.67; H, 3.52. Attempts to obtain a <sup>13</sup>C{<sup>1</sup>H} NMR spectrum of this compound have failed due to low solubility and decomposition at elevated concentration.

[Ru(C-p-C<sub>6</sub>H<sub>4</sub>Me)(PCv<sub>3</sub>)Cl<sub>3</sub>] (24). To a stirred tan solution of  $[Ru(C-p-C_6H_4Me)(PCy_3)_2Cl_3]$  (20) (0.157 g, 0.180 mmol) in 10 mL of CH<sub>2</sub>Cl<sub>2</sub> was added solid yellow S<sub>8</sub> (0.007 g, 0.03 mmol, 0.2 equiv). The sulfur was washed in with CH<sub>2</sub>Cl<sub>2</sub> (2 mL). The solution was stirred for 30 min, over which time the solution turned redbrown. The reaction mixture was filtered and the filtrate concentrated to dryness under vacuum. The remaining residue was slurried in cold toluene (2 mL) and stirred for 10 min. The mixture was filtered, washed with cold toluene (2  $\times$  2 mL) and cold pentane  $(3 \times 3 \text{ mL})$ , and dried in vacuo 6 h. Orange-brown powder 24 (0.067 g, 0.11 mmol) was recovered purely in 63% yield. <sup>1</sup>H NMR (400 MHz, CD<sub>2</sub>Cl<sub>2</sub>):  $\delta$  7.98 (d,  ${}^{3}J_{\text{HH}} = 8.2$  Hz, 2H, C<sub>6</sub>H<sub>4</sub>Me), 7.35 (d,  ${}^{3}J_{HH} = 8.2$  Hz, 2H, C<sub>6</sub>H<sub>4</sub>Me), 2.85 (m resembles q, 3H, PCH of PCy<sub>3</sub>), 2.43 (s, 3H, CH<sub>3</sub>), 2.00-1.57, 1.36-1.15 (all m, 30H, PCy<sub>3</sub>). <sup>13</sup>C{<sup>1</sup>H} NMR (100.6 MHz, CD<sub>2</sub>Cl<sub>2</sub>):  $\delta$  302.47 (d, J<sub>PC</sub> = 13.8 Hz, Ru=C-Ar), 150.32 (s, *ipso*-C of  $C_6H_4Me$ ), 140.25 (s, p-C of C<sub>6</sub>H<sub>4</sub>Me), 131.56 and 130.94 (both s, C<sub>6</sub>H<sub>4</sub>Me), 34.98 (d,  $J_{PC} = 23.0$  Hz, *ipso*-C of P(C<sub>6</sub>H<sub>11</sub>)<sub>3</sub>), 30.64 (d,  $J_{PC} = 1.5$  Hz, *m*-C of P(C<sub>6</sub>H<sub>11</sub>)<sub>3</sub>), 28.02 (d,  $J_{PC} = 11.5$  Hz, o-C of P(C<sub>6</sub>H<sub>11</sub>)<sub>3</sub>), 26.42 (s, *p*-C of P(C<sub>6</sub>H<sub>11</sub>)<sub>3</sub>), 23.34 (s, CH<sub>3</sub>). <sup>31</sup>P{<sup>1</sup>H} NMR (161.9 MHz, CD<sub>2</sub>Cl<sub>2</sub>): δ 72.2 (s). Anal. Calcd for C<sub>26</sub>H<sub>40</sub>Cl<sub>3</sub>PRu: C, 52.84; H, 6.82. Found: C, 53.13; H, 7.11.

[Ru(C-p-C<sub>6</sub>H<sub>4</sub>Me)(PCy<sub>3</sub>)<sub>2</sub>Cl<sub>2</sub>]BF<sub>4</sub> (25). To a stirred golden solution of [Ru(C-p-C<sub>6</sub>H<sub>4</sub>Me)(PCy<sub>3</sub>)<sub>2</sub>Cl<sub>3</sub>] (20) (0.101 g, 0.116 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (8 mL) was added a bright yellow solution of trityl tetrafluoroborate (0.040 g, 0.12 mmol, 1.1 equiv) in CH<sub>2</sub>Cl<sub>2</sub> (4 mL). The trityl solution was washed in with CH<sub>2</sub>Cl<sub>2</sub> (2 mL). The reaction mixture turned orange rapidly. The solution was stirred for 1.5 h, then concentrated to dryness under vacuum. The remaining solid was slurried in pentane (5 mL) and stirred for 10 min. The mixture was filtered, washed with pentane  $(3 \times 3 \text{ mL})$ and ether  $(3 \times 3 \text{ mL})$ , and dried in vacuo 5 h. Orange powder 25 (0.096 g, 0.10 mmol) was recovered purely in 89% yield. <sup>1</sup>H NMR (400 MHz, CD<sub>2</sub>Cl<sub>2</sub>):  $\delta$  7.78 (d, <sup>3</sup>J<sub>HH</sub> = 8.2 Hz, 2H, C<sub>6</sub>H<sub>4</sub>Me), 7.37 (d,  ${}^{3}J_{\text{HH}} = 8.0$  Hz, 2H, C<sub>6</sub>H<sub>4</sub>Me), 2.89 (br s, 6H, PCH of PCy<sub>3</sub>), 2.47 (s, 3H, CH<sub>3</sub>), 1.93–1.73, 1.52–1.15 (all m, 60H, PCy<sub>3</sub>). <sup>13</sup>C-{<sup>1</sup>H} NMR (100.6 MHz, CD<sub>2</sub>Cl<sub>2</sub>):  $\delta$  299.69 (br s, Ru=C-Ar), 152.70 (s, p-C of C<sub>6</sub>H<sub>4</sub>Me), 137.50 (ipso-C of C<sub>6</sub>H<sub>4</sub>Me), 131.89 and 131.34 (both s, C<sub>6</sub>H<sub>4</sub>Me), 34.98 (t,  $J_{PC} = 9.6$  Hz, *ipso*-C of  $P(C_6H_{11})_3$ , 30.64 (br s, *m*-C of  $P(C_6H_{11})_3$ ), 27.98 (t,  $J_{PC} = 5.6$  Hz, o-C of P(C<sub>6</sub>H<sub>11</sub>)<sub>3</sub>), 26.50 (s, p-C of P(C<sub>6</sub>H<sub>11</sub>)<sub>3</sub>), 23.56 (s, CH<sub>3</sub>). <sup>19</sup>F-{<sup>1</sup>H} NMR (376.3 MHz, CD<sub>2</sub>Cl<sub>2</sub>):  $\delta$  -153.31 (s, BF<sub>4</sub>). <sup>31</sup>P{<sup>1</sup>H} NMR (161.9 MHz, CD<sub>2</sub>Cl<sub>2</sub>):  $\delta$  49.9 (s). Anal. Calcd for C<sub>44</sub>H<sub>73</sub>-BCl<sub>2</sub>F<sub>4</sub>P<sub>2</sub>Ru: C, 57.27; H, 7.97. Found: C, 57.26; H, 8.16.

[**Ru**(C-*p*-C<sub>6</sub>H<sub>4</sub>Me)(**P**Cy<sub>3</sub>)<sub>2</sub>Cl<sub>2</sub>F] (26). To a solid mixture of tan [Ru(C-*p*-C<sub>6</sub>H<sub>4</sub>Me)(**P**Cy<sub>3</sub>)<sub>2</sub>Cl<sub>3</sub>] (20) (0.075 g, 0.086 mmol) and tris-(dimethylamino)sulfonium difluorotrimethylsilicate (TAS-F) (0.026 g, 0.094 mmol, 1.1 equiv) was added CH<sub>2</sub>Cl<sub>2</sub> (10 mL). The reaction mixture was stirred for 3 h, over which time it turned from tan to purple to brown. The solution was concentrated to dryness. The remaining brown residue was extracted into toluene (8 mL), filtered, and washed with toluene (3 × 3 mL). The filtrate was evaporated to dryness *in vacuo*. The remaining brown residue was slurried in cold pentane (8 mL) for 20 min, filtered, and washed with pentane  $(3 \times 3 \text{ mL})$ . The remaining solid was dried in vacuo 3 h. Tan powder 26 (0.055 g, 0.64 mmol) was recovered pure in 74% yield. <sup>1</sup>H NMR (400 MHz, CD<sub>2</sub>Cl<sub>2</sub>):  $\delta$  7.96 (d, <sup>3</sup>J<sub>HH</sub> = 8.4 Hz, 2H, C<sub>6</sub>H<sub>4</sub>Me), 7.19 (d,  ${}^{3}J_{HH} = 8.0$  Hz, 2H, C<sub>6</sub>H<sub>4</sub>Me), 2.67 (br s, 6H, PCH of PCy<sub>3</sub>), 2.35 (s, 3H, CH<sub>3</sub>), 2.08-2.02, 1.72-1.61, 1.40-1.07 (all m, 60H, PCy<sub>3</sub>). <sup>13</sup>C{<sup>1</sup>H} NMR (100.6 MHz, CD<sub>2</sub>-Cl<sub>2</sub>):  $\delta$  293.93 (d,  $J_{FC}$  = 150.7 Hz, Ru≡C−Ar), 146.23 (s, *p*-C of  $C_6H_4Me$ ), 143.85 (d,  $J_{FC} = 11.4$  Hz, *ipso*-C of  $C_6H_4Me$ ), 131.36 and 129.38 (both s,  $C_6H_4Me$ ), 34.38 (t,  $J_{PC} = 8.9$  Hz, *ipso-C* of  $P(C_6H_{11})_3)$ , 29.25 (br s, *m*-C of  $P(C_6H_{11})_3$ ), 28.17 (t,  $J_{PC} = 5.0$  Hz, o-C of P(C<sub>6</sub>H<sub>11</sub>)<sub>3</sub>), 26.80 (s, p-C of P(C<sub>6</sub>H<sub>11</sub>)<sub>3</sub>), 22.77 (s, CH<sub>3</sub>). <sup>19</sup>F-{<sup>1</sup>H} NMR (376.3 MHz, CD<sub>2</sub>Cl<sub>2</sub>):  $\delta$  -219.4 (t, <sup>2</sup>J<sub>PF</sub> = 41 Hz). <sup>31</sup>P{<sup>1</sup>H} NMR (161.9 MHz, CD<sub>2</sub>Cl<sub>2</sub>):  $\delta$  28.5 (d, <sup>2</sup>*J*<sub>PF</sub> = 41 Hz). Anal. Calcd for C44H73FCl2P2Ru: C, 61.81; H, 8.61. Found: C, 62.11; H, 8.50.

Attempts to Synthesize  $[Ru(CH-p-C_6H_4Me)(PCy_3)_2F_2]$  (7) by Ligand Substitution. Method A. A purple solution of [Ru(CHp-C<sub>6</sub>H<sub>4</sub>Me)(PCy<sub>3</sub>)<sub>2</sub>Cl<sub>2</sub>] (6) (0.010 g, 0.012 mmol) and 18-crown-6 (0.005 g, 0.02 mmol, 1 equiv) in THF (ca. 0.5 mL) was added to white powder CsF (0.033 g, 0.22 mmol, 18 equiv). The heterogeneous mixture was transferred to an NMR tube by pipet and washed in with DME (ca. 0.5 mL). The reaction was monitored by <sup>19</sup>F and <sup>31</sup>P NMR spectroscopy. After 4 h, the <sup>31</sup>P NMR spectrum showed the following. <sup>31</sup>P{<sup>1</sup>H} NMR (161.9 MHz, THF–DME):  $\delta$  36.6 (6, 83.3%) and 11.0 (free PCy<sub>3</sub>, 16.7%). After 22 h, the solution was green-brown and the <sup>31</sup>P NMR spectrum showed the following. <sup>31</sup>P{<sup>1</sup>H} NMR (161.9 MHz, THF–DME):  $\delta$  47.1 (d, <sup>2</sup>J<sub>FP</sub> = 36 Hz, 9, 25.4%), 42.6 (8, 3.5%), 36.6 (6, 30.3%), and 11.0 (40.8%). After 48 h, the <sup>31</sup>P NMR spectrum showed the following. <sup>31</sup>P{<sup>1</sup>H} NMR (161.9 MHz, THF-DME):  $\delta$  47.1 (d,  ${}^{2}J_{\text{FP}}$  = 36 Hz, 9, 30.1%), 42.6 (8, 3.8%), 36.6 (6, 7.1%), and 11.0 (59.0%). The <sup>19</sup>F NMR was consistent with the formation of 9.

**Method B.** A purple solution of  $[Ru(CH-p-C_6H_4Me)(PCy_3)_2Cl_2]$ (6) (0.010 g, 0.012 mmol) in  $C_6D_6$  (ca. 0.75 mL) was added to white crystalline  $[n-Bu_4N]F\cdot 3H_2O$  (0.009 g, 0.03 mmol, 2.5 equiv). The sample was mixed well and transferred to an NMR tube by pipet. The solution turned brown rapidly. The reaction progress was monitored by <sup>1</sup>H, <sup>19</sup>F, and <sup>31</sup>P NMR spectroscopies. After 25 min, the <sup>31</sup>P NMR spectrum showed the following. <sup>31</sup>P{<sup>1</sup>H} NMR (121.5 MHz, C\_6D\_6):  $\delta$  36.4 (6, (SM), 45.5%) and 10.5 (free PCy<sub>3</sub>, 54.5%). After 24 h, the <sup>31</sup>P NMR spectrum showed the following. <sup>31</sup>P{<sup>1</sup>H} NMR (161.9 MHz, C\_6D\_6):  $\delta$  55.8 (10.4%), 54.5 (6.6%), 50.6 (10.4%), 36.4 (6, (SM), 34.4%), and 10.5 (free PCy<sub>3</sub>, 59.0%). Similar results were obtained when the reaction was repeated with THF as the solvent.

Reaction of 14 with HCl in Ether. To a blue NMR solution of  $[Ru(C-p-C_6H_4Me)(PCy_3)_2Br]$  (14) (0.009 g, 0.01 mmol) in  $C_6D_6$ (ca. 0.75 mL) was added 2 M HCl in ether (5.1  $\mu$ L, 0.010 mmol, 1.0 equiv). The NMR tube was then rapidly sealed and inverted three times to mix. Upon mixing, the solution immediately turned red-purple. The reaction progress was monitored by <sup>1</sup>H and <sup>31</sup>P NMR spectroscopy. After 15 min, the <sup>31</sup>P NMR spectrum showed the following.  ${}^{31}P{}^{1}H$  NMR (161.9 MHz, C<sub>6</sub>D<sub>6</sub>):  $\delta$  37.1 ([Ru- $(CH-p-C_6H_4Me)(PCy_3)_2Br_2$ , 21.1%), 36.8 ([Ru(CH-p-C\_6H\_4Me)-(PCy<sub>3</sub>)<sub>2</sub>BrCl] (17), 55.1%), and 36.4 ([Ru(CH-*p*-C<sub>6</sub>H<sub>4</sub>Me)(PCy<sub>3</sub>)<sub>2</sub>- $Cl_2$  (6), 23.7%). The <sup>1</sup>H NMR spectrum showed three carbene peaks consistent with this mixture, two of which are associated with  $[Ru(CH-p-C_6H_4Me)(PCy_3)_2Br_2]$  and 6, and the third attributed to [Ru(CH-p-C<sub>6</sub>H<sub>4</sub>Me)(PCy<sub>3</sub>)<sub>2</sub>BrCl] (17). <sup>1</sup>H NMR (400 MHz,  $C_6D_6$ ):  $\delta$  20.50 (s). The reaction mixture remained unchanged overnight.

**Reaction of 9 with HCl in Ether.** To a green NMR solution of  $[\text{Ru}(\text{C-}p\text{-}\text{C}_6\text{H}_4\text{Me})(\text{PCy}_3)_2\text{F}]$  (9) (0.001 g, 0.01 mmol) in C<sub>6</sub>D<sub>6</sub> (ca. 0.75 mL) was added 1 M HCl in ether (12.2  $\mu$ L, 0.0122 mmol, 1.00 equiv). The NMR tube was then rapidly sealed and inverted three times to mix. The solution turned brown slowly. The reaction

progress was monitored by <sup>1</sup>H and <sup>31</sup>P NMR spectroscopies. After 30 min, the <sup>31</sup>P NMR spectrum showed the following. <sup>31</sup>P{<sup>1</sup>H} NMR (161.9 MHz, C<sub>6</sub>D<sub>6</sub>):  $\delta$  46.2 (br s, **9**, (SM), 23.4%) and 44.6 (br d, *J* = 26.9 Hz, 3.3%), and 36.4 ([Ru(CH-*p*-C<sub>6</sub>H<sub>4</sub>Me)(PCy<sub>3</sub>)<sub>2</sub>-Cl<sub>2</sub>] (**6**), 73.3%). After 16 h, the <sup>31</sup>P NMR spectrum showed the following. <sup>31</sup>P{<sup>1</sup>H} NMR (161.9 MHz, C<sub>6</sub>D<sub>6</sub>):  $\delta$  46.2 (br s, **9** (SM), 20.5%), 36.4 ([Ru(CH-*p*-C<sub>6</sub>H<sub>4</sub>Me)(PCy<sub>3</sub>)<sub>2</sub>Cl<sub>2</sub>] (**6**), 72.8%), and 10.5 (free PCy<sub>3</sub>, 6.7%). The <sup>1</sup>H NMR spectrum showed only one carbene peak associated with [Ru(CH-*p*-C<sub>6</sub>H<sub>4</sub>Me)(PCy<sub>3</sub>)<sub>2</sub>Cl<sub>2</sub>] (**6**).

**Reaction of 9 with Et<sub>3</sub>N·3HF.** To a green NMR solution of  $[Ru(C-p-C_6H_4Me)(PCy_3)_2F]$  (9) (0.009 g, 0.01 mmol) in  $C_6D_6$  (ca. 0.75 mL) was added Et<sub>3</sub>N·3HF (2.0  $\mu$ L, 0.012 mmol, 1.0 equiv). The NMR tube was then rapidly sealed and inverted three times to mix. The solution color remained unchanged. The reaction progress was monitored by <sup>1</sup>H and <sup>31</sup>P NMR spectroscopies. After 20 min, the <sup>31</sup>P NMR spectrum showed the following. <sup>31</sup>P{<sup>1</sup>H} NMR (161.9 MHz, C\_6D\_6):  $\delta$  46.2 (br s, **9**, (SM), 76.9%) and 44.6 (br d, J = 26.9 Hz, 23.1%). After 16 h, the <sup>31</sup>P NMR spectrum showed the following. <sup>31</sup>P{<sup>1</sup>H} NMR (161.9 MHz, C\_6D\_6):  $\delta$  46.0 (br s, **9** (SM)) and minor 10.3 (free PCy<sub>3</sub>). No carbene peaks were ever visible in the <sup>1</sup>H NMR.

Reaction of 22 with PCy<sub>3</sub> and Reprecipitation with Benzene. To a solid sample of PCy<sub>3</sub> (0.004 g, 0.01 mmol, 1 equiv) was added a red-brown solution of  $[Ru(C-p-C_6H_4Me)(PCy_3)I_3]$  (22) (0.010 g, 0.012 mmol) in CD<sub>2</sub>Cl<sub>2</sub> (ca. 0.75 mL). The solution was mixed well by pipet and the solution darkened slightly. After 20 min the <sup>1</sup>H and <sup>31</sup>P NMR spectra were obtained. The <sup>31</sup>P NMR spectrum indicated the presence of only  $[Ru(C-p-C_6H_4Me)(PCy_3)_2I_2]I$  (23-I)  $({}^{31}P{}^{1}H{} NMR (161.9 \text{ MHz, } CD_2Cl_2): \delta 51.1 (s))$ . The sample was transferred to a small vial, and C<sub>6</sub>D<sub>6</sub> (ca. 0.75 mL) was added. The sample was concentrated slowly under vacuum to remove approximately half the volume. A precipitate formed. The heterogeneous sample was transferred to an NMR tube. The <sup>31</sup>P NMR spectrum indicated the presence of only broadened  $PCy_3$  (<sup>31</sup>P{<sup>1</sup>H} NMR (161.9 MHz,  $CD_2Cl_2$ ):  $\delta$  11.5 (br s)). The sample was filtered through a pipet filter and washed with minimal C<sub>6</sub>D<sub>6</sub>. The brown solid precipitate was dissolved in  $CD_2Cl_2$  (ca. 0.75 mL). The <sup>31</sup>P NMR spectrum indicated the presence of only 22 ( ${}^{31}P{}^{1}H{}$  NMR (161.9 MHz,  $CD_2Cl_2$ ):  $\delta$  66.2 (br s)).

Halide Exchange between 19 and 20. To a tan solution of [Ru-(C-*p*-C<sub>6</sub>H<sub>4</sub>Me)(PCy<sub>3</sub>)<sub>2</sub>Cl<sub>3</sub>] (20) (0.011 g, 0.013 mmol) in CD<sub>2</sub>Cl<sub>2</sub> (ca. 0.5 mL) was added a gray-brown solution of [Ru(C-*p*-C<sub>6</sub>H<sub>4</sub>-Me)(PCy<sub>3</sub>)<sub>2</sub>F<sub>3</sub>] (19) (0.006 g, 0.007 mmol, 0.5 equiv) in CD<sub>2</sub>Cl<sub>2</sub> (ca. 0.5 mL). The resulting orange-red solution was mixed well and transferred to an NMR tube by pipet. The reaction progress was monitored by <sup>1</sup>H, <sup>19</sup>F, and <sup>31</sup>P NMR spectroscopies. After 20 min, the <sup>31</sup>P NMR spectrum showed the following. <sup>31</sup>P{<sup>1</sup>H} NMR (161.9 MHz, CD<sub>2</sub>Cl<sub>2</sub>):  $\delta$  50.0 (s, 6.6%), 36.3 (s, 6, 8.6%), 28.5 (d, J = 41 Hz, 26, 41.7%), 24.6 (s, 26.5%), and 18.2 (s, 20, 16.6%). After 16 h, the <sup>31</sup>P NMR spectrum was essentially unchanged.

**Reaction of 20 with Schwartz's Reagent (Cp<sub>2</sub>ZrHCl).** To a solid sample of Schwartz's reagent, Cp<sub>2</sub>ZrHCl (0.003 g, 0.01 mmol, 1 equiv), was added a tan solution of  $[Ru(C-p-C_6H_4Me)(PCy_3)_2-Cl_3]$  (20) (0.009 g, 0.01 mmol) in CD<sub>2</sub>Cl<sub>2</sub> (ca. 0.75 mL). The solution was mixed well by pipet and turned from tan to red rapidly. After 20 min the <sup>1</sup>H and <sup>31</sup>P NMR spectra were obtained. Integration of the <sup>31</sup>P NMR spectrum indicated  $[Ru(CH-p-C_6H_4Me)(PCy_3)_2-Cl_2]$  (6) (91%) and minor free PCy<sub>3</sub> (9%). <sup>1</sup>H NMR spectroscopy indicated the presence of  $[Ru(CH-p-C_6H_4Me)(PCy_3)_2Cl_2]$  (6) and Cp<sub>2</sub>ZrCl<sub>2</sub> as the only Zr compound. The <sup>1</sup>H and <sup>31</sup>P NMR spectra were compared to literature values and independently synthesized samples ( $[Ru(CH-p-C_6H_4Me)(PCy_3)_2Cl_2]$ , (6))<sup>25</sup> or commercial compounds (PCy<sub>3</sub> and Cp<sub>2</sub>ZrCl<sub>2</sub>).

**Reaction of 20 with Schwartz's Reagent (Cp<sub>2</sub>ZrHCl) at Low Temperature.** To a J. Young NMR tube was added a golden solution of  $[Ru(C-p-C_6H_4Me)(PCy_3)_2Cl_3]$  (**20**) (0.010 g, 0.012 mmol) in CD<sub>2</sub>Cl<sub>2</sub> (ca. 0.50 mL). The solution was frozen with liquid N<sub>2</sub>. A clear solution of Cp<sub>2</sub>ZrHCl (0.004 g, 0.01 mmol, 1 equiv) in CD<sub>2</sub>Cl<sub>2</sub> (ca. 0.5 mL) was added on top of the frozen Ru sample. The Zr solution was frozen with liquid N<sub>2</sub>. The tube was sealed, and the overlying atmosphere was evacuated. The NMR probe was cooled to -60 °C. The NMR sample was allowed to thaw slightly outside the NMR to ensure the tube would not explode in the NMR probe. The tube was then inserted into the NMR probe and allowed to equilibrate for 3 min, and the reaction progress was monitored by <sup>1</sup>H NMR spectroscopy. The characteristic carbene peak of [Ru-(CH-*p*-C<sub>6</sub>H<sub>4</sub>Me)(PCy<sub>3</sub>)<sub>2</sub>Cl<sub>2</sub>] (**6**) was observed immediately. No other carbene peaks or hydrides were ever observed by <sup>1</sup>H NMR spectroscopy.

**Catalytic Alkyne Dimerization Reactions.** To a 0.015 mM  $C_6D_6$  solution of brown [Ru(C-*p*-C<sub>6</sub>H<sub>4</sub>Me)(PCy<sub>3</sub>)<sub>2</sub>F<sub>3</sub>] (**19**) in a J. Young NMR tube was added a terminal alkyne (20 equiv) and an internal standard, 1,3,5-trimethoxybenzene (1 equiv). The tube was sealed and the solution frozen with liquid N<sub>2</sub>. The overlying atmosphere was evacuated. The tube was heated in an oil bath at 65 °C. The reaction progress was monitored by NMR spectroscopy.

**Dimerization of Phenylacetylene.** After 28 h, integration of the <sup>1</sup>H NMR spectrum showed, relative to the internal standard, at least 96% conversion to two enyne isomers, (*Z*)-1,4-diphenyl-1-buten-3-yne and 2,4-diphenyl-1-buten-3-yne in a 4:1 ratio, respectively.

**Dimerization of Trimethylsilylacetylene.** After 28 h, integration of the <sup>1</sup>H NMR spectrum showed, relative to the internal standard, 64.0% conversion to two enyne isomers, (*Z*)-1,4-bis(trimethylsilyl)-1-buten-3-yne and 2,4-bis(trimethylsilyl)-1-buten-3-yne in a 2:1 ratio, respectively.

Crystal Structure Determinations. Complex 19. Gray plates of 19 were grown by vapor diffusion of pentane into a dichloromethane solution at -35 °C. A crystal of dimensions 0.10 ×  $0.06 \times 0.06$  mm was mounted on a standard Bruker SMART 1K CCD-based X-ray diffractometer equipped with a LT-2 lowtemperature device and normal focus Mo-target X-ray tube ( $\lambda =$ 0.71073 A) operated at 2000 W power (50 kV, 40 mA). The X-ray intensities were measured at 123(2) K; the detector was placed at a distance 4.969 cm from the crystal. A total of 2480 frames were collected with a scan width of  $0.5^{\circ}$  in  $\omega$  and  $\phi$  with an exposure time of 60 s/frame. The integration of the data yielded a total of 28 679 reflections to a maximum  $2\theta$  value of 45.28° of which 3141 were independent and 2171 were greater than  $2\sigma(I)$ . The final cell constants were based on the xyz centroids of 3923 reflections above  $10\sigma(I)$ . Analysis of the data showed negligible decay during data collection; the data were processed with SADABS and corrected for absorption. The structure was solved and refined with the Bruker SHELXTL (version 6.12) software package, using the space group P2(1)/m with Z = 2 for the formula  $C_{44}H_{72}P_2F_3Ru \cdot (CH_2Cl_2)$ . All non-hydrogen atoms were refined anisotropically with the hydrogen atoms placed in idealized positions. The complex lies on a crystallographic mirror plane. Full matrix least-squares refinement based on  $F^2$  converged at R1 = 0.0530 and wR2 = 0.0969 [based on  $I > 2\sigma(I)$ ], R1 = 0.0953 and wR2 = 0.1109 for all data. Additional details are presented in the Supporting Information.

**Complex 22.** Brown needles of **22** were grown from a dichloromethane- $d_2$  solution at -35 °C. A crystal of dimensions  $0.50 \times 0.33 \times 0.33$  mm was cut from a larger crystal and mounted on a standard Bruker SMART 1K CCD-based X-ray diffractometer equipped with a LT-2 low-temperature device and normal focus Mo-target X-ray tube ( $\lambda = 0.71073$  A) operated at 2000 W power (50 kV, 40 mA). The X-ray intensities were measured at 123(2) K; the detector was placed at a distance 4.980 cm from the crystal. A total of 3692 frames were collected with a scan width of 0.2° in  $\omega$  and  $\phi$  with an exposure time of 15 s/frame. The integration of the data yielded a total of 64 836 reflections to a maximum  $2\theta$ value of 56.58° of which 7155 were independent and 6344 were greater than  $2\sigma(I)$ . The final cell constants (Table 1) were based on the *xyz* centroids of 8129 reflections above  $10\sigma(I)$ . Analysis of the data showed negligible decay during data collection; the data were processed with SADABS and corrected for absorption. The structure was solved and refined with the Bruker SHELXTL (version 6.12) software package, using the space group *Pbca* with Z = 8 for the formula  $C_{26}H_{40}PI_3Ru$ . All non-hydrogen atoms were refined anisotropically with the hydrogen atoms placed in idealized positions. Full matrix least-squares refinement based on  $F^2$  converged at R1 = 0.0271 and wR2 = 0.0807 [based on  $I > 2\sigma(I)$ ], R1 = 0.0328 and wR2 = 0.0828 for all data. Additional details are presented in the Supporting Information.

Complex 25. Orange blocks of 25 were grown by vapor diffusion of pentane into a dichloromethane solution at -35 °C. A crystal of dimensions  $0.44 \times 0.40 \times 0.28$  mm was mounted on a standard Bruker SMART 1K CCD-based X-ray diffractometer equipped with a LT-2 low-temperature device and normal focus Mo-target X-ray tube ( $\lambda = 0.71073$  A) operated at 2000 W power (50 kV, 40 mA). The X-ray intensities were measured at 108(2) K; the detector was placed at a distance 4.969 cm from the crystal. A total of 2645 frames were collected with a scan width of  $0.5^{\circ}$  in  $\omega$  and  $\phi$  with an exposure time of 25 s/frame. The integration of the data yielded a total of 229 661 reflections to a maximum  $2\theta$  value of 59.18° of which 29 746 were independent and 22 201 were greater than  $2\sigma$ -(I). The final cell constants were based on the xyz centroids of 2048 reflections above  $10\sigma(I)$ . Analysis of the data showed negligible decay during data collection; the data were processed with SADABS and corrected for absorption. The structure was solved and refined with the Bruker SHELXTL (version 6.12) software package, using the space group P2(1)/c with Z = 4 for the formula  $2(C_{44}H_{73}P_{2}-$ Cl<sub>2</sub>Ru), 5(CH<sub>2</sub>Cl<sub>2</sub>), 2(BF<sub>4</sub>). All non-hydrogen atoms were refined anisotropically with the hydrogen atoms placed in idealized positions. Full matrix least-squares refinement based on  $F^2$  converged at R1 = 0.0590 and wR2 = 0.1310 [based on  $I > 2\sigma(I)$ ], R1 = 0.0853 and wR2 = 0.1431 for all data. Additional details are provided in the Supporting Information.

**Complex 26.** Orange needles of **26** were crystallized from a deuterated dichloromethane solution at -35 °C. A crystal of dimensions  $0.40 \times 0.22 \times 0.10$  mm was mounted on a standard

Bruker SMART CCD-based X-ray diffractometer equipped with a LT-2 low-temperature device and normal focus Mo-target X-ray tube ( $\lambda = 0.71073$  A) operated at 2000 W power (50 kV, 40 mA). The X-ray intensities were measured at 123(2) K; the detector was placed at a distance 4.980 cm from the crystal. A total of 2635 frames were collected with a scan width of  $0.5^{\circ}$  in  $\omega$  and  $\phi$  with an exposure time of 30 s/frame. The integration of the data yielded a total of 87 016 reflections to a maximum  $2\theta$  value of 51.18° of which 9496 were independent and 6468 were greater than  $2\sigma(I)$ . The final cell constants were based on the xvz centroids of 5578 reflections above  $10\sigma(I)$ . Analysis of the data showed negligible decay during data collection; the data were processed with SADABS and corrected for absorption. The structure was solved and refined with the Bruker SHELXTL (version 6.12) software package, using the space group P2(1)/c with Z = 4 for the formula  $C_{44}H_{73}F_2P_2$ -Cl<sub>2</sub>Ru•(CD<sub>2</sub>Cl<sub>2</sub>)<sub>2</sub>. All non-hydrogen atoms were refined anisotropically with the hydrogen atoms placed in idealized positions. Full matrix least-squares refinement based on  $F^2$  converged at R1 = 0.0402 and wR2 = 0.0816 [based on  $I > 2\sigma(I)$ ], R1 = 0.0828 and wR2 = 0.0950 for all data. Additional details are provided in the Supporting Information.

Acknowledgment. S.R.C. is grateful to the University of Michigan Chemistry Department for Margaret and Herman Sokol and Robert W. Parry Inorganic Chemistry Graduate Fellowships. This material is based upon work supported by the National Science Foundation under Grant No. CHE-0449459 and by an award from Research Corporation. We also thank the University of Michigan and the Camille and Henry Dreyfus Foundation for support.

**Supporting Information Available:** Spectral data for **21** and **23-I** and full crystallographic details for **19**, **22**, **25**, and **26** in pdf and cif formats. This material is available free of charge via the Internet at http://pubs.acs.org.

OM061192V