Reactivity of $(C_5Me_5)Lu(CH_2SiMe_3)_2(THF)$ with Pyridine Ring Systems: Synthesis and Structural Characterization of an η^2 -(N,C)-Pyridyl (Mono)pentamethylcyclopentadienyl Lutetium(III) Complex

Kimberly C. Jantunen,^{†,‡} Brian L. Scott,[†] John C. Gordon,[†] and Jaqueline L. Kiplinger*,[†]

Los Alamos National Laboratory, Los Alamos, New Mexico 87545, and Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6

Received March 10, 2007

Reaction of $(C_5Me_5)Lu(CH_2SiMe_3)_2(THF)$ with pyridine results in the activation of an ortho C–H bond to form the corresponding η^2 -(N,C)-pyridyl complex with elimination of SiMe_4. This is a rare example of pyridine metalation at a lanthanide metal center in the absence of a bent metallocene framework. The η^2 -(N,C)-pyridyl coordination mode was confirmed by X-ray crystallographic analysis. The pyridyl complex adopts a distorted square-pyramid geometry with the C₅Me₅ unit residing in the apical position and the pyridyl ligand and remaining ligands residing in the basal plane. Isotopic labeling studies suggest that C–H bond activation is consistent with a σ -bond metathesis mechanism.

Introduction

Although ample precedent exists for transition metals that form η^2 -pyridyl complexes upon reaction with pyridine, reports of similar complexes for the f-elements remain scarce.¹ In 1999, Scott and co-workers reported the first structurally characterized example of an f-element η^2 -pyridyl complex obtained from the reaction of pyridine with a highly strained uranium(IV) metallacycle.² Earlier work by Watson demonstrated that reaction of pyridine with (C₅Me₅)₂Lu(CH₃) resulted in C–H bond activation of pyridine and concomitant elimination of methane to form the η^2 -pyridyl complex (C₅Me₅)₂Lu[η^2 -(N,C)-NC₅H₄].³ This complex was characterized solely by NMR spectroscopy, and to date, no structural data for this or any other lanthanide η^2 pyridyl complex have been described. These examples of f-element η^2 -pyridyl coordination occur in an environment containing either a bent metallocene or bulky ligand framework.

We recently demonstrated that reaction of pyridine N-oxide ring systems with thorium(IV) and uranium(IV) alkyl and aryl

[‡] Simon Fraser University.

complexes either mediate facile ring-opening of pyridine N-oxide (forming thorium η^2 -(O,N) oximate complexes)⁴ or activate sp² and sp³ C-H bonds of pyridine N-oxide and lutidine N-oxide, respectively (forming the corresponding cyclometalated complexes).⁵ Additionally, reaction of (C₅Me₅)₂An(CH₃)₂ (An = \hat{U} , Th) with pyridine derivatives results in C-H bond activation and formation of the corresponding η^2 -pyridyl complexes.⁶ Given these diverse and unusual modes of reactivity for 5f-element complexes, we were interested in extending our studies to include representatives of the 4f-series. Herein, we describe the reactivity of the mono(pentamethylcyclopentadienyl) lutetium(III) complex (C₅Me₅)Lu(CH₂SiMe₃)₂(THF) with pyridine ring systems. We report a synthetic method for the preparation of the pyridine adduct (C₅Me₅)Lu(NC₅H₅)₂(CH₂-SiMe₃)₂, which undergoes further reactivity to give SiMe₄ and the corresponding η^2 -(N,C)-pyridyl complex (C₅Me₅)Lu[η^2 - $(N,C)-NC_5H_4$ (CH₂SiMe₃)(NC₅H₅). Both the pyridine adduct and η^2 -(N,C)-pyridyl complexes were characterized by NMR spectroscopy and X-ray crystallography.

Results and Discussion

As illustrated in eq 1, reaction of a colorless hexanes solution of $(C_5Me_5)Lu(CH_2SiMe_3)_2(THF)$ (1)⁷ with 2 equiv of pyridine at ambient temperature instantly produced the bright yellowcolored bis(η^1 -pyridine) complex (C_5Me_5)Lu(NC₅H₅)₂(CH₂-SiMe₃)₂(THF) (2) in greater than 95% yield (based on internal standard). The molecule of THF is in a dynamic equilibrium, as indicated by ¹H NMR spectroscopy experiments.

Complex 2 is not readily isolable; removal of volatile materials using dynamic vacuum resulted in the loss of THF

^{*} To whom correspondence should be addressed. Phone: 505-665-9553. Fax: 505-667-9905. E-mail: kiplinger@lanl.gov.

[†] Los Alamos National Laboratory.

⁽¹⁾ Lanthanides in the strictest sense include the elements from lanthanum to lutetium. Some representative transition metal, Sc, and Y examples include: (a) Thompson, M. E.; Baxter, S. M.; Bulls, A. R.; Burger, B. J.; Nolan, M. C.; Santarsiero, B. D.; Schaefer, W. P.; Bercaw, J. E. J. Am. Chem. Soc. 1987, 109, 203-219. (b) den Haan, K. H.; Wielstra, Y.; Teuben, J. H. Organometallics 1987, 6, 2053-2060. (c) Jordan, R. F.; Taylor, D. F.; Baenziger, N. C. *Organometallics* **1990**, *9*, 1546–1557. (d) Deelman, B. J.; Stevels, W. M.; Teuben, J. H.; Lakin, M. T.; Spek, A. L. Organometallics 1994, 13, 3881-3891. (e) Duchateau, R.; van Wee, C. T.; Teuben, J. H. Organometallics 1996, 15, 2291-2302. (f) Scollard, J. D.; McConville, D. H.; Vittal, J. J. Organometallics 1997, 16, 4415-4420. (g) Duchateau, R.; Brussee, E. A. C.; Meetsma, A. Teuben, J. H. Organometallics 1997, 16, 5506-5516. (h) Zhu, G.; Tanski, J. M.; Churchill, D. G.; Janak, K. E.; Parkin, G. J. Am. Chem. Soc. 2002, 124, 13658-13659. (i) Bradley, C. A.; Lobkovsky, E.; Chirik, P. J. J. Am. Chem. Soc. 2003, 125, 8110–8111. (j) Ozerov, O. V.; Pink, M.; Watson, L. A.; Caulton, K. G. J. Am. Chem. Soc. 2004, 126, 2105–2113. (k) Arndt, S.; Elvidge, B. R.; Zeimentz, P. M.; Spaniol, T. P.; Okuda, J. Organometallics 2006, 25, 793-795.

⁽²⁾ Boaretto, R.; Roussel, P.; Alcock, N. W.; Kingsley, A. J.; Munslow,
I. J.; Sanders, C. J.; Scott, P. J. Organomet. Chem. 1999, 591, 174–184.
(3) Watson, P. L. Chem. Commun. 1983, 276–277.

⁽⁴⁾ Pool, J. A.; Scott, B. L.; Kiplinger, J. L. Chem. Commun. 2005, 2591–2593.

Figure 1. Molecular structure of complex **3** with thermal ellipsoids at the 25% probability level. Selected bond distances (Å) and angles (deg): Lu(1)–C₅Me_{5(cent)}, 1.997(6); Lu(1)–N(1), 2.506(8); Lu(1)–N(2), 2.505(9); Lu(1)–C(21), 2.406(11); Lu(1)–C(25), 2.398(9); N(1)–Lu(1)–N(2), 146.9(3); N(1)–Lu(1)–C(21), 84.1(3); N(1)–Lu(1)–C(25), 81.1(3); N(2)–Lu(1)–C(21), 86.8(3); N(2)–Lu(1)–C(25), 84.2(3); Lu(1)–C(21)–Si(1), 141.3(7); Lu(1)–C(25)–Si(2), 125.7(5); C(21)–Lu(1)–C(25), 137.1(4).

and formation of $(C_5Me_5)Lu(NC_5H_5)_2(CH_2SiMe_3)_2$ (**3**) as a bright yellow solid in 73% isolated yield (eq 1). Complex **3** is indefinitely stable at -35 °C; however, complete decomposition is observed within 2 days at room temperature. The aryl region of the ¹H NMR spectrum of **3** displays three multiplets at δ 8.28, 6.83, and 6.56 ppm corresponding to the ortho, para, and meta pyridyl protons, respectively. The alkyl group resonances are observed as singlets at δ 0.25 (18H, CH₂Si*Me*₃) and -0.63(4H, CH₂SiMe₃) ppm, respectively, and exhibit chemical shift values comparable to other trivalent lutetium complexes that contain a $-CH_2SiMe_3$ group.^{7,8}

Single crystals of 3 suitable for X-ray diffraction analysis were obtained overnight at -35 °C from a concentrated hexanes solution. As shown in Figure 1, the molecular structure of 3exhibits distorted square-pyramidal geometry about the metal center, with the pyridine ligands oriented in a trans configuration, and bent away from the C_5Me_5 moiety. The Lu(1)-N(1) and Lu(1)-N(2) bond distances of 2.506(8) and 2.505(9) Å, respectively, are in good agreement with Lu-N bond distances reported for other lutetium(III) complexes containing an η^{1} pyridine functionality.^{7,9} Specifically, the cationic complexes [LuI₂(py)₅][I] and [LuI(OⁱPr)(py)₅][I] have Lu-N bond distances in the range 2.443(6) - 2.54(2) Å, and the neutral complex [(C₅- Me_5 Lu(C=CPh)₂(bipy)(py)] has a distance of 2.580(8) Å. The Lu(1)-C(21) and Lu(1)-C(25) bond distances of 2.406(11) and 2.398(9) Å, respectively, also fall within the expected range for a Lu-CH₂SiMe₃ linkage.¹⁰

Treating a toluene solution of **1** with 2 equiv of pyridine at room temperature resulted in C–H bond activation at the ortho

position of one of the pyridine ligands, with concomitant elimination of SiMe₄, to afford the corresponding η^2 -pyridyl complex (C₅Me₅)Lu[η^2 -(N,C)-NC₅H₄](CH₂SiMe₃)(NC₅H₅) (**4**) (eq 2). This complex was not isolated due to its instability under dynamic vacuum; however, monitoring by ¹H NMR spectroscopy revealed that complex **4** was generated in 64% yield (based on internal standard). The moderate yield is due to the presence of some unreacted starting material in the reaction mixture. Complex **4** slowly decomposes at room temperature, with total decomposition and the formation of intractable materials occurring after ~2 days. Most prominent in the ¹H NMR spectrum of **4** are four distinct multiplets at δ 8.47, 7.95, 7.16, and 6.72 ppm, corresponding to the η^2 -(N,C)-pyridyl protons. The η^1 pyridine ligand resonances are observed at δ 8.56, 6.68, and 6.95 ppm for the ortho, meta, and para protons, respectively.

This is a rare example of pyridine metalation at a neutral lanthanide metal center in the absence of a metallocene framework. It is interesting that the observed pyridine C–H activation occurs in a half-metallocene environment and in the presence of THF, which is a coordination environment quite different from the known bent metallocene $(C_5Me_5)_2Ln-R$ (R = H, alkyl) systems.^{1a,3} Additionally, in contrast to the chemistry observed with $(C_5Me_5)_2An(CH_3)_2$ (An = Th, U),^{4–6} reaction of complex **1** with 2 equiv of either 2-picoline, 2-picoline *N*-oxide, or pyridine *N*-oxide leads to intractable materials. Presumably, this difference in reactivity is a reflection of the electronically and coordinatively more unsaturated monopentamethylcyclopentadienyl lutetium metal center compared to the bent metallocene actinide systems.^{8e}

Due to the thermal sensitivity of complexes **2**–**4**, lowtemperature ¹³C{¹H} NMR studies were performed and assignment of the chemical shifts was confirmed through the use of DEPT-135 and 2D-COSY experiments. The ¹³C{¹H} NMR resonances for **4** are comparable to the η^2 -(N,C)-pyridyl ligand resonances reported for (C₅Me₅)₂Lu[η^2 -(N,C)-NC₅H₄], with the exception of a significant upfield shift for the C–H activated quaternary carbon of complex **4** observable at δ 115.66 ppm as compared to δ 234.26 ppm in (C₅Me₅)₂Lu[η^2 -(N,C)-NC₅H₄], which indicates a more electron-rich lutetium metal center in complex **4**.

The η^2 -(N,C)-pyridyl binding mode to the lutetium center in 4 was unambiguously confirmed by a single-crystal X-ray diffraction study (Figure 2). Suitable crystals of 4 were grown overnight at -35 °C from a pentane/toluene (5:3) solution of 4. Complex 4 represents a rare structurally characterized lanthanide complex supporting an η^2 -(N,C)-pyridyl linkage.^{1,3} As observed for 3, the overall geometry about the metal center is best described as distorted square pyramidal with the C₅Me₅ unit residing in the apical position and the remaining three ligands residing in the basal plane. Two pyridine ligands are

⁽⁵⁾ Pool, J. A.; Scott, B. L.; Kiplinger, J. L. J. Am. Chem. Soc. 2005, 127, 1338–1339.

⁽⁶⁾ Pool, J. A.; Scott, B. L., Kiplinger, J. L. J. Alloys Compd. 2006, 418, 178-183.

⁽⁷⁾ Cameron, T. M.; Gordon, J. C.; Scott, B. L. Organometallics 2004, 23, 2995–3002.

^{(8) (}a) Arndt, S.; Voth, P.; Spaniol, T. P.; Okuda, J. Organometallics **2000**, *19*, 4690–4700. (b) Arndt, S.; Spaniol, T. P.; Okuda, J. Organometallics **2003**, *22*, 775–781. (c) Tardif, O.; Nishiura, M.; Hou, Z. Tetrahedron **2003**, *59*, 10525–10539. (d) Nishiura, M.; Hou, Z.; Wakatsuki, Y.; Yamaki, T.; Miyamoto, T. J. Am. Chem. Soc. **2003**, *125*, 1184–1185. (e) Arndt, S.; Okuda, J. Chem. Rev. **2002**, *102*, 1953–1976.

⁽⁹⁾ Giesbrecht, G. R.; Gordon, J. C.; Clark, D. L.; Scott, B. L. Inorg. Chem. 2004, 43, 1065–1070.

⁽¹⁰⁾ For example, see the following: (a) $(C_5H_5)_2LuCH_2SiMe_3$ ·THF, Lu-C = 2.376(17) Å: Schumann, H.; Genthe, W.; Bruncks, N.; Pickardt, J. *Organometalllics* **1982**, *1*, 1194–1200. (b) $[Lu(\mu-Cl)\{2,6-(Me_2-NCH_2)_2C_6H_3\}(CH_2SiMe_3)]_2$, Lu-C = 2.39(3) Å: Hogerheide, M. P.; Grove, D. M.; Boersma, J.; Jastrzebski, J. T. B. H.; Kooijman, H.; Spek, A. L.; van Koten, G. *Chem. –Eur. J* **1995**, *1*, 343–350. (c) $[2-\{(2,6-Pri_2C_6H_3)N=CMe_2\}-6-\{(2,6-Pri_2C_6H_3)NCMe_2C_5H_3N-Lu(CH_2SiMe_3)_2, Lu-C = 2.329-(6), 2.349(6)$ Å: Cameron, T. M.; Gordon, J. C.; Michalczyk, R.; Scott, B. L. *Chem. Commun.* **2003**, 2282–2283.

Figure 2. Molecular structure of 4 with thermal ellipsoids at the 33% probability level. Selected bond distances (Å) and angles (deg): $Lu(1)-C_5Me_{5(cent)}$, 1.939(9); Lu(1)-N(1), 2.396(8); Lu(1)-N(2), 2.270(6); Lu(1)-C(20), 2.340(8); Lu(1)-C(21), 2.379(9); N(2)-C(20), 1.356(13); Lu(1)-C(21)-Si(1), 119.4(4), N(2)-Lu-(1)-C(20), 34.2(3); C(21)-Lu(1)-C(20), 120.0(3); C(21)-Lu(1)-N(1), 92.4(3).

bound to the lutetium center, one in a dative η^{1} -fashion and the other in an η^{2} -(N,C) coordination mode. The η^{2} -pyridyl unit has a Lu(1)–N(2) distance of 2.270(6) Å, which is significantly shorter than the η^{1} -pyridine Lu(1)–N(1) distance of 2.396(8) Å. The Lu(1)–N(1) distance in **4** is shorter than the analogous distance in **3** and in previously reported η^{1} -pyridine lutetium complexes.^{7,9} The pyridyl N(2)–C(20) bond distance of 1.356-(13) Å falls within the range (1.25–1.47 Å) of N–C distances previously reported for other structurally characterized η^{2} -(N,C)-pyridyl complexes.^{1,2,6}

The formation of 4 likely occurs through a σ -bond metathesis mechanism in a fashion similar to that observed for other electropositive early transition metal, ^{1a,b} lanthanide, and actinide complexes. That is, pyridine initially coordinates in a η^1 -fashion to the lutetium metal center in complex 1 (yielding 2), followed by intramolecular activation of the ortho C-H bond on the pyridine to give the cyclometalated η^2 -pyridyl product 4 and SiMe₄ (eq 2). Accordingly, reaction of **1** with pyridine- d_5 in toluene-d₈ initially produced the bright yellow (C₅Me₅)Lu- $(NC_5D_5)_2(CH_2SiMe_3)_2(THF)$ (2-d₁₀), as determined using ¹H NMR spectroscopy. Over the course of 7 days at ambient temperature, the reaction mixture darkened to a brownish-orange color and resonances consistent with the formation of (C5Me5)- $Lu[\eta^2-(N,C)-NC_5D_4](CH_2SiMe_3)(NC_5D_5)$ (4-d₉) were apparent in the ¹H NMR spectrum. The most diagnostic feature highlighting this conversion is a 1:1:1 triplet at $\delta - 0.02$ ppm (²J_{HD} = 2.0 Hz) corresponding to SiMe₃CH₂D as the eliminated product. The same reaction with pyridine- d_5 was performed in protio toluene and monitored using ²H NMR. After standing at room temperature for 23 h, a 1:2:1 triplet at δ 0.21 ppm (²J_{HD} = 2.0 Hz) again assignable to SiMe₃CH₂D was observed. The deuterium labeling studies are consistent with the mechanism outlined in eq 2 for the C-H activation chemistry.

Complex **4** undergoes pyridyl ligand exchange upon addition of pyridine- d_5 . As shown in eq 3, addition of 20 equiv of pyridine- d_5 to **4** resulted in the loss of pyridine and formation of **4**- d_9 and pyridine-2- d_1 (at low conversions),¹¹ implying the

intermediacy of $(C_5Me_5)Lu[\eta^2-(N,C)-NC_5H_4](CH_2SiMe_3)(NC_5D_5)$ (4-*d*₅) and suggesting that the pyridyl ligand exchange also proceeds by way of the σ -bond metathesis mechanism outlined in eq 2. Similar observations have been reported for related scandium chemistry with $(C_5Me_5)_2Sc[\eta^2-(N,C)-NC_5H_4]$ and pyridine-*d*₅, which afforded $(C_5Me_5)_2Sc[\eta^2-(N,C)-NC_5D_4]$ and pyridine-*d*₁.^{1a} Notably, no deuterium incorporation into the methyl groups of the C₅Me₅ ligand was observed in any of the labeling studies, indicating that a "tuck-in" complex, $(\eta^1, \eta^5-$ CH₂C₅Me₄)Lu(CH₂SiMe₃)(NC₅H₅)₂(THF), is not an intermediate in the formation of **4** or the pyridyl ligand exchange chemistry.¹²

Concluding Remarks

In summary, we have demonstrated that pyridine can be metalated by the mono-ring lutetium system (C₅Me₅)Lu(CH₂-SiMe₃)₂(THF) (1) to yield the corresponding η^2 -(N,C)-pyridyl complex. C–H activation chemistry at lanthanide metal centers has been conventionally supported by bis(cyclopentadienyl) ligand frameworks. However, the present work shows that the electronically unsaturated and sterically more open monopentamethylcyclopentadienyl can also serve as a useful platform for productive σ -bond metathesis chemistry and the elaboration of pyridine ring systems.

Experimental Section

Methods and Materials. Reactions and manipulations were performed at 21 °C in a recirculating MBraun 150 B-G atmosphere drybox (N₂) or using standard Schlenk techniques. Glassware was dried at 150 °C before use. NMR spectra were obtained using a Bruker Avance 300 MHz spectrometer. Chemical shifts were referenced to the protio solvent impurity in benzene- d_6 at δ 7.15 ppm or toluene- d_8 at δ 2.09 ppm (¹H NMR) and 20.4 ppm (¹³C-{¹H} NMR). ¹H and ¹³C NMR assignments were confirmed through the use of DEPT-135 and two-dimensional ¹³C{¹H}-¹H NMR experiments. All ²H NMR spectra were referenced to external toluene- d_8 at δ 2.09 (¹H).

Unless otherwise noted, reagents were purchased from commercial suppliers and used without further purification. Celite (Aldrich) and alumina (Brockman I, Aldrich) were dried under dynamic vacuum at 250 °C for 48 h prior to use. Anhydrous toluene (Aldrich), hexanes (Aldrich), tetrahydrofuran (Aldrich), pyridine (Aldrich), pyridine- d_1 (CDN Isotopes), pyridine- d_5 (Aldrich), benzene- d_6 (Aldrich), and toluene- d_8 (Cambridge Isotope Laboratories) were passed through a column of activated alumina under nitrogen and stored over 4 Å activated molecular sieves prior to use. Ferrocene (Acros) was purified by recrystallization from toluene at -35 °C. Lu(CH₂SiMe₃)₃(THF)₂¹³ and (C₅Me₅)Lu(CH₂-SiMe₃)₂(THF) (1) were prepared according to literature procedures.

⁽¹¹⁾ Pyridine-2- d_1 : ¹H NMR (toluene- d_8 , 298 K, 300 MHz) δ 8.50 (m, 1H, ortho *H*), 7.07 (m, 1H, para *H*), 6.74 (m, 2H, meta *H*); ²H NMR (toluene, 298 K, 300 MHz) δ 8.69 (br s).

⁽¹²⁾ For example: (a) Bruno, J. W.; Smith, G. M.; Marks, T. J.; Fair, C. K.; Schultz, A. J.; Williams, J. M. J. Am. Chem. Soc. 1986, 108, 40–56. (b) Fandos, R.; Meetsma, A.; Teuben, J, H. Organometallics 1991, 10, 2665–2671. (c) Horton, A. D. Organometallics 1992, 11, 3271–3275. (d) Huber, S. R.; Baldwin, T. C.; Wigley, D. E. Organometallics 1993, 12, 91–97. (e) Blake, R. E.; Antonelli, D. M.; Henling, L. M.; Schaefer, W. P.; Hardcastle, K. I.; Bercaw, J. E. Organometallics 1998, 17, 718–725. (f) Peters, R. G.; Warner, B. P.; Scott, B. L.; Burns, C. J. Organometallics 1999, 18, 2587–2589. (g) Riley, P. N.; Parker, J. R.; Fanwick, P. E.; Rothwell, I. P. Organometallics 1999, 18, 3579–3583.

⁽¹³⁾ Arndt, S.; Voth, P.; Spaniol, T. P.; Okuda, J. Organometallics 2000, 19, 4690-4700.

Synthesis of (C₅Me₅)Lu(NC₅H₅)₂(CH₂SiMe₃)₂(THF) (2). This compound was not isolable, as loss of the THF occurred upon removal of the solvent under reduced pressure. Complex 2 was generated by charging a 20 mL scintillation vial with 1 (0.024 g, 0.043 mmol), toluene- d_8 (0.4 mL), and pyridine (7.1 mg, 7.3 μ L, 0.98 g/mL, 0.091 mmol). The reaction mixture immediately turned bright yellow in color upon addition of pyridine. After 1 min of standing at ambient temperature, a toluene- d_8 solution (0.4 mL) of ferrocene (0.008 g, 0.043 mmol) was added as an internal standard and the resulting reaction mixture was loaded into a NMR tube. A ¹H NMR spectrum was collected 12 min after addition of pyridine to 1, and the yield of 2 was determined as >95%. The following NMR data are reported without added ferrocene. ¹H NMR (toluene d_{8} , 298 K): δ 8.50 (m, 4H, ortho H), 7.03 (m, 2H, para H), 6.74 (m, 4H, meta H), 3.55 (m, 4H, α THF H), 1.88 (s, 15H, C₅Me₅), 1.48 (m, 4H, β THF H), 0.14 (s, 18H, CH₂SiMe₃), -0.75 (s, 4H, CH₂SiMe₃). ¹H NMR (toluene- d_8 , 243 K): δ 8.75 (m, 4H, ortho H), 6.88 (m, 2H, para H), 6.64 (m, 4H, meta H), 3.56 (m, 4H, α THF H), 1.81 (s, 15H, C₅Me₅), 1.42 (m, 4H, β THF H), 0.21 (s, 18H, CH₂SiMe₃), -0.71 (s, 4H, CH₂SiMe₃). ¹³C{¹H} NMR (toluene- d_8 , 243 K): δ 150.46 (s, ortho C), 137.54 (s, para C), 123.70 (s, meta C), 115.83 (s, C₅Me₅), 67.73 (s, α THF C), 36.57 (s, CH_2SiMe_3), 25.63 (s, β THF C), 11.70 (s, C_5Me_5), 5.03 (s, CH_2 - $SiMe_3$).

Synthesis of (C5Me5)Lu(NC5H5)2(CH2SiMe3)2 (3). A 50 mL sidearm flask equipped with a stir bar was charged with 1 (0.394 g, 0.71 mmol) and hexanes (20 mL). To the clear, colorless solution was added dropwise pyridine (0.12 g, 0.12 mL, 0.98 g/mL, 1.49 mmol) with stirring. The reaction mixture immediately turned bright yellow in color and was stirred at ambient temperature for 1 min. The volatiles were removed under reduced pressure to give 3 as a pale yellow powder (0.334 g, 0.52mmol, 73%). Crystals suitable for X-ray diffraction analysis were obtained overnight from a concentrated hexanes solution at -35 °C. ¹H NMR (benzene-d₆, 298 K): δ 8.28 (m, 4H, ortho *H*), 6.83 (m, 2H, para *H*), 6.56 (m, 4H, meta H), 1.96 (s, 15H, C₅Me₅), 0.25 (s, 18H, CH₂SiMe₃), -0.63 (s, 4H, CH₂SiMe₃). ¹H NMR (toluene-d₈, 298 K): δ 8.24 (m, 4H, ortho H), 6.85 (m, 2H, para H), 6.58 (m, 4H, meta H), 1.96 (s, 15H, C₅Me₅), 0.22 (s, 18H, CH₂SiMe₃), -0.67 (s, 4H, CH₂SiMe₃). ¹H NMR (toluene- d_8 , 248 K): δ 8.38 (m, 4H, ortho H), 6.77 (m, 2H, para H), 6.51 (m, 4H, meta H), 1.92 (s, 15H, C₅Me₅), 0.26 (s, 18H, CH₂SiMe₃), -0.65 (s, 4H, CH₂SiMe₃). ¹³C{¹H} NMR (toluene-d₈, 248 K): δ 148.82 (s, ortho C), 138.82 (s, para C), 124.32 (s, meta C), 116.52 (s, C₅Me₅), 38.70 (s, CH₂SiMe₃), 11.46 (s, C₅Me₅), 4.79 (s, CH₂SiMe₃).

Synthesis of (C₅Me₅)Lu[η^2 -(N,C)-NC₅H₄](CH₂SiMe₃)(NC₅H₅) (4). This compound was not isolable, as decomposition occurred upon removal of the solvent under reduced pressure. Complex 4 was generated by charging a 20 mL scintillation vial with 1 (0.036 g, 0.065 mmol) and toluene- d_8 (0.4 mL). To the clear, colorless solution was added pyridine (11 mg, 11 µL, 0.98 g/mL, 0.14 mmol) by syringe. The reaction mixture immediately turned bright yellow in color. After 1 min of standing at ambient temperature, a toluened₈ solution (0.4 mL) of ferrocene (0.012 g, 0.065 mmol) was added as an internal standard, and the resulting reaction mixture was loaded into an NMR tube. Over a period of 21 h, the reaction mixture turned dark orange in color and the yield of 4 was determined as 64%. The following NMR data are reported without added ferrocene. ¹H NMR (toluene- d_8 , 298 K): δ 8.56 (br s, 2H, ortho H), 8.47 (dt, 1H, 5.2 Hz, 1.4 Hz, Ar H), 7.95 (dt, 1H, 7.4 Hz, 1.4 Hz, Ar H), 7.16 (td, 1H, 7.4 Hz, 1.4 Hz, Ar H), 6.95 (br m, 1H, para H), 6.72 (ddd, 1H, 7.4 Hz, 5.2 Hz, 1.4 Hz, Ar H), 6.68 (br m, 2H, meta H), 1.92 (s, 15H, C₅Me₅), -0.07 (s, 9H, CH₂- $SiMe_3$), -0.69 (s, 2H, CH₂SiMe₃). ¹H NMR (toluene- d_8 , 248 K): δ 8.56 (m, 2H, ortho H), 8.45 (m, 1H, Ar H), 8.01 (m, 1H, Ar H), 7.16 (m, 1H, Ar H), 6.84 (m, 1H, para H), 6.69 (m, 1H, Ar H), 6.59 (m, 2H, meta H), 1.95 (s, 15H, C₅Me₅), 0.02 (s, 9H, CH₂- Si Me_3), -0.72 (s, 2H, C H_2 Si Me_3). ¹³C{¹H} NMR (toluene- d_8 , 248 K): δ 149.88 (s, ortho C), 145.26 (s, Ar H), 137.72 (s, para C), 132.96 (s, Ar C), 131.62 (s, Ar C), 123.81 (s, meta C), 121.39 (s, Ar C), 115.66 (s, quat Ar C), 114.98 (s, C_5 Me₅), 36.62 (s, C H_2 -Si Me_3), 11.22 (s, C_5Me_5), 4.14 (C H_2 Si Me_3).

X-ray quality crystals of **4** were obtained by charging a 20 mL scintillation vial equipped with a stir bar with **1** (0.214 g, 0.42 mmol), pentane (5 mL), and toluene (3 mL). To the clear, colorless solution was added pyridine (0.07 g, 0.07 mL, 0.98 g/mL, 0.88 mmol) by syringe. The reaction mixture immediately turned bright yellow in color and was stirred at ambient temperature for 5 min and then allowed to stand for 21 h. After this time the reaction vial was placed in a -35 °C freezer, and orange block-shaped crystals of **4** suitable for X-ray analysis were grown overnight.

Reaction of Complex 1 with Pyridine-d₅ in Toluene-d₈. An NMR tube was charged with 1 (0.019 g, 0.034 mmol), pyridine- d_5 $(6.0 \text{ mg}, 5.7 \mu\text{L}, 1.1 \text{ g/mL}, 0.072 \text{ mmol})$, and toluene- d_8 (0.5 mL). The reaction mixture immediately turned bright yellow in color. After 30 min at ambient temperature, the ¹H NMR spectrum was recorded and displayed resonances consistent with the formation of the pyridine complex (C₅Me₅)Lu(CH₂SiMe₃)₂(NC₅D₅)₂(THF) (2 d_{10}). ¹H NMR (298 K): δ 3.55 (m, 4H, α THF H), 1.94 (s, 15H, C_5Me_5), 1.45 (m, 4H, β THF H), 0.21 (s, 18H, CH₂SiMe₃), -0.69 (s, 4H, CH₂SiMe₃). Upon standing at ambient temperature, the reaction mixture darkened to a brownish-orange color and resonances consistent with the formation of SiMe₃CH₂D were apparent after 1 day. ¹H NMR (298 K): δ 0.00 (s, SiMe₃CH₂D), -0.02 (t, 2.0 Hz, SiMe₃CH₂D). Complete conversion to the η^2 -pyridyl complex (C₅Me₅)Lu[η^2 -(N,C)-NC₅D₄](CH₂SiMe₃)(NC₅D₅) (4-d₉) was not observed even after 11 days at ambient temperature, due to the instability of 4-d₉. ¹H NMR of 4-d₉ (toluene-d₈, 298 K): δ 1.90 (s, 15H, C₅Me₅), -0.07 (s, 9H, CH₂SiMe₃), -0.71 (s, 2H, CH₂SiMe₃).

Reaction of Complex 1 with Pyridine- d_5 in Toluene. An NMR tube was charged with 1 (0.019 g, 0.034 mmol), pyridine- d_5 (6.0 mg, 5.7 μ L, 1.1 g/mL, 0.072 mmol), and toluene (0.5 mL). The reaction mixture immediately turned bright yellow in color. Upon standing at ambient temperature, the reaction mixture darkened to a brownish-orange color and ²H NMR resonances consistent with the formation of SiMe₃CH₂D were apparent after 1 day. ²H NMR (298 K): δ 0.21 (t, 1D, 2.0 Hz, SiMe₃CH₂D).

Reaction of Complex 4 with Pyridine- d_5 in Toluene- d_8 . An NMR tube was charged with 1 (0.020 g, 0.036 mmol), pyridine (5.9 mg, 6 μ L, 0.98 g/mL, 0.075 mmol), and toluene- d_8 (0.5 mL). The reaction mixture was allowed to stand at ambient temperature for 21 h to generate complex 4, and then pyridine- d_5 (61 mg, 58 μ L, 1.1 g/mL, 0.72 mmol) was added by syringe. Approximately 10 min after the addition of pyridine- d_5 , resonances consistent with the formation of pyridine-2- d_1 , pyridine, and (C₅Me₅)Lu[η^2 -(N,C)-NC₅D₅](CH₂SiMe₃)(NC₅D₅) (4- d_9) were evident. ¹H NMR of 4- d_9 (toluene- d_8 , 298 K): δ 1.90 (s, 15H, C₅Me₅), -0.07 (s, 9H, CH₂-SiMe₃), -0.71 (s, 2H, CH₂SiMe₃).

Crystallographic Details for (C_5Me_5)**Lu**(NC₅H₅)₂(CH₂SiMe₃)₂ (3). A yellow crystal of 3 was mounted from Paratone N oil (Hampton Research) onto a glass fiber under argon gas flow and placed on a Bruker P4/CCD diffractometer, equipped with a Bruker LT-2 temperature device. A hemisphere of data was collected using φ scans, with 30 s frame exposures, and 0.3° frame widths. Data collection and initial indexing and cell refinement were handled using SMART software.¹⁴ Frame integration and final cell parameter calculations were carried out using SAINT software.¹⁵ The data were corrected for absorption using the SADABS program.¹⁶ Decay of reflection data was monitored by analysis of redundant frames.

⁽¹⁴⁾ SMART-NT 4; Bruker AXS, Inc.: Madison, WI 53719, 1996.

 ⁽¹⁵⁾ SAINT-NT 5.050; Bruker AXS, Inc.: Madison, WI 53719, 1998.
 (16) Sheldrick, G. SADABS, first release; University of Göttingen: Germany.

The structure was solved using direct methods, completed by subsequent difference Fourier techniques, and refined by full-matrix least-squares procedures. One of the C5Me5 ligands, C29 to C38, was disordered and subsequently refined as two half-occupancy C₅Me₅ groups (C29 to C38 and C29' to C38'). Each C₅Me₅ was constrained to be rigid with fixed C-C bond distances. In addition, several methyl groups and one pyridine carbon atom were disordered and refined anisotropically as two half-occupancy positions (C24/C24', C26/C26', C27/C27', C46/C46', and C54/ C54'). The anisotropic temperature factors were constrained to be equivalent on corresponding disordered atoms. Hydrogen atom positions were not included on any of the disordered positions. The absorption coefficient was 3.214 mm⁻¹. The least-squares refinement converged normally with residuals of R1 = 0.0705 (I > 2(I)), wR2 = 0.1598, and GOF = 1.033 (F^2); C₂₈H₄₇N₂LuSi₂ (642.82 g/mol), space group $P2_1/n$, monoclinic a = 16.225(3) Å, b =11.999(3) Å, c = 32.866(6) Å, $\beta = 97.654(4)^\circ$, V = 6342(2) Å³, Z = 8, F(000) = 2888, $\rho_{calcd} = 1.491$ g cm⁻³. Structure solution, refinement, and creation of publication materials were performed using SHELXTL.17

Crystallographic Details for $(C_5Me_5)Lu[\eta^2-(N,C)-NC_5H_5]-(CH_2SiMe_3)(NC_5H_5)$ (4). A dark orange crystal of 4 was mounted from Paratone N oil (Hampton Research) onto a glass fiber under argon gas flow and placed on a Bruker P4/CCD diffractometer, equipped with a Bruker LT-2 temperature device. A hemisphere of data was collected using φ scans, with 30 s frame exposures, and 0.3° frame widths. Data collection and initial indexing and cell refinement were handled using SMART software.¹⁴ Frame integra-

(17) SHELXTL Version 5.10; Bruker AXS, Inc.: Madison, WI 53719, 1997.

tion and final cell parameter calculations were carried out using SAINT software.¹⁵ The data were corrected for absorption using the SADABS program.¹⁶ Decay of reflection data was monitored by analysis of redundant frames. The structure was solved using Patterson techniques, completed by subsequent difference Fourier techniques, and refined by full-matrix least-squares procedures. All non-hydrogen atoms were refined anisotropically, and hydrogen atoms were treated as idealized contributions. The absorption coefficient was 3.994 mm⁻¹. The least-squares refinement converged normally with residuals of R1 = 0.0413 (I > 2(I)), wR2 = 0.0957, and GOF = 1.034 (F^2); C₂₄H₃₅N₂LuSi (554.60 g/mol), space group *P*2₁, monoclinic *a* = 10.734(3) Å, *b* = 7.955(2) Å, *c* = 15.068(5) Å, β = 102.850(4)°, *V* = 1254.4(6) Å³, *Z* = 2, *F*(000) = 556, ρ_{calcd} = 1.468 g cm⁻³. Structure solution, refinement, and creation of publication materials were performed using SHELXTL.¹⁷

Acknowledgment. For financial support of this work, we acknowledge the LANL G. T. Seaborg Institute for Transactinium Science (fellowship to K.C.J.), the Division of Chemical Sciences, Office of Basic Energy Sciences, Heavy Element Chemistry program, and the LANL Laboratory Directed Research and Development Program. K.C.J. thanks Dr. Jeffrey L. Cross for technical assistance with the NMR studies and Drs. Felicia L. Taw, Eric J. Schelter, and Jeffery T. Golden (LANL) for helpful discussions.

Supporting Information Available: ¹H NMR spectra of compounds **2**, **3**, and **4** and X-ray crystallographic data for **3** and **4** (PDF, CIF). This material is available free of charge via the Internet at http://pubs.acs.org.

OM0702330