Room-Temperature β -H Elimination in $(P_2P)P$ t(OR) Cations: **Convenient Synthesis of a Platinum Hydride**

Alison N. Campbell and Michel R. Gagné*

Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290

*Recei*V*ed December 5, 2006*

Summary: In situ-generated [(BINAP)(PMe3)Pt][BF4]2 reacts with benzyl alcohol at RT to yield [(BINAP)(PMe3)Pt-*H][BF4] and benzaldehyde. This reactivity contrasts similarly ligated platinum*-*alkyl species, which are stable to ^â-hydride elimination e*V*en at ele*V*ated temperatures. Protonolysis of the platinum hydride leads to a species that is readily substituted by weakly coordinating ligands (acetone, pentafluorobenzonitrile).*

Introduction

 β -Hydride elimination is a well-established reaction in P₂-PtR₂,¹ P₂Pt(OR)R,² and P₂Pt(OR)₂² complexes.³ In the case of Pt alkyls it has been possible to inhibit these reactions using bidentate ligands (e.g., dppf and dppe) $\frac{1}{a}$ that inhibit phosphine dissociation and thus block low-energy migratory deinsertion from three-coordinate intermediates.^{1a} It has been possible to similarly inhibit β -H elimination in cationic structures using tridentate ligands (e.g., triphos (PPP) or pyridyl bisphosphine), which block the *cis* positions required for low-energy migratory deinsertion.4 In fact, this strategy has been key to a number of processes where β -H elimination is undesirable,⁵ including some catalytic Pt(II) alkene activation reactions.^{4b,6,7} Our group recently reported that dicationic platinum catalysts containing

(3) Davies, J. A.; Hartley, F. R. *Chem. Re*V*.* **¹⁹⁸¹**, *⁸¹*, 79-90.

(4) (a) Cucciolito, M. E.; D'Amora, A.; Vitagliano, A. *Organometallics* **²⁰⁰⁵**, *²⁴*, 3359-3361. (b) Hahn, C.; Morvillo, P.; Herdtweck, E.; Vitagliano, A. *Organometallics* **²⁰⁰²**, *²¹*, 1807-1818. (c) Oestereich, M.; Dennison, P. R.; Kodanko, J. J.; Overman, L. E. *Angew. Chem., Int. Ed.* **2001**, *40*, ¹⁴³⁹-1442. (d) Zhang, L.; Zetterberg, K. *Organometallics* **¹⁹⁹¹**, *¹⁰*, 3806- 3816. (e) Arnek, R. Zetterberg, K. *Organometallics* **¹⁹⁸⁷**, *⁶*, 1230-1235. (f) Arai, I.; Daves, G. D. J., Jr. *J. Am. Chem. Soc.* **1981**, *103*, 7683.

(5) (a) Zhou, J.; Fu, G. C. *J. Am. Chem. Soc.* **²⁰⁰³**, *¹²⁵*, 14726-14727. (b) Fischer, C.; Fu, G. C. *J. Am. Chem. Soc.* **²⁰⁰⁵**, *¹²⁷*, 4594-4595. (c)

Arp, F. O.; Fu, G. C. *J. Am. Chem. Soc.* **²⁰⁰⁵**, *¹²⁷*, 10482-10483. (6) (a) Hahn, C.; Cucciolito, M. E.; Vitagliano, A. *J. Am. Chem. Soc.* **²⁰⁰²**, *¹²⁴*, 9038-9039. (b) Koh, J. H.; Gagne´, M. R. *Angew. Chem., Int. Ed.* **2004**, 43, 3459–3461.
(7) (a) Kerber, W. D.; Gagné, M. R. *Org. Lett.* **2005**, 7, 3379–3381. (b)

(7) (a) Kerber, W. D.; Gagné, M. R. *Org. Lett.* **2005**, 7, 3379–3381. (b) ther. W. D.: Koh. J. H.: Gagné, M. R. *Org. Lett.* **2004**. 6, 3013–3015. Kerber, W. D.; Koh, J. H.; Gagne´, M. R. *Org. Lett.* **²⁰⁰⁴**, *⁶*, 3013-3015. a bidentate/monodentate (P_2P) ligand array could similarly block migratory deinsertion and improve diene cycloisomerization reaction profiles (e.g., yield, diastereo- and enantioselectivity) compared to first-generation PPP catalysts.8

Results and Discussion

A particularly useful experiment for probing the mechanism of the original (PPP) Pt^{+2} -catalyzed cycloisomerization reaction was to include *in situ* traps (benzyl alcohol) for putative carbocation intermediates (eq 1). Similar trapping experiments on second-generation P2P cyclopropanation catalysts unexpectedly diverged, and no Pt alkyl species were observed. Instead, a new (BINAP)(PMe₃)Pt species was generated with a $J_{\text{Pt-P}}$ of 2200 Hz (31P NMR) for the phosphorus *trans* to the new ligand (eq 2). When the alcohol was changed to either phenol or methanol, the same species was observed. Particularly informative was the 1H NMR, which showed a diagnostic platinum hydride resonance at -5.2 ppm, suggesting [(BINAP)(PMe₃)- $Pt-H][BF₄]$ ₂, **1**, as the structure (Figure 1).

To determine the source of the hydride, [(BINAP)(PMe₃)-PtI][I] (2) was taken with 2.5 equiv of AgBF₄ and 20 equiv of benzyl alcohol in nitromethane. The reaction cleanly generated **1** and benzaldehyde, indicating that benzyl alcohol likely served as the hydride source; ethanol and 2-propanol similarly afforded

^{*} Corresponding author. E-mail: mgagne@unc.edu.

^{(1) (}a) Whitesides, G. M.; Gaasch, J. F.; Stedronsky, E. R. *J. Am. Chem. Soc.* **¹⁹⁷²**, *⁹⁴*, 5258-5270. (b) Foley, P.; DiCosimo, R.; Whitesides, G. M. *J. Am. Chem. Soc.* **¹⁹⁸⁰**, *¹⁰²*, 6713-6725. (c) Whitesides, G. M. *Pure Appl. Chem.* **¹⁹⁸¹**, *⁵³*, 287-292. (d) McCarthy, T. J.; Nuzzo, R. G.; Whitesides, G. M. *J. Am. Chem. Soc.* **¹⁹⁸¹**, *¹⁰³*, 3396-3403. (e) Nuzzo, R. G.; McCarthy, T. J.; Whitesides, G. M. *J. Am. Chem. Soc.* **1981**, *103*, ³⁴⁰⁴-3410. (f) Komiya, S.; Morimoto, Y.; Yamamoto, A.; Yamamoto, T. *Organometallics* **¹⁹⁸²**, *¹*, 1528-1536.

^{(2) (}a) Bryndza, H. E.; Kretchmar, S. A.; Tulip, T. H. *J. Chem. Soc., Chem. Commun.* **¹⁹⁸⁵**, 977-978. (b) Bryndza, H. E. *J. Chem. Soc., Chem. Commun.* **¹⁹⁸⁵**, 1696-1698. (c) Bryndza, H. E.; Joseph, C. C.; Marsi, M.; Roe, D. C.; Tam, W.; Bercaw, J. E. *J. Am. Chem. Soc.* **¹⁹⁸⁶**, *¹⁰⁸*, 4805- 4813.

⁽⁸⁾ Feducia, J. A.; Campbell, A. N.; Doherty, M. O.; Gagné, M. R. *J. Am. Chem. Soc.* **²⁰⁰⁶**, *¹²⁸*, 13290-13297.

Figure 1. ¹H NMR spectrum of **1** in the hydride region ($\delta = -5.2$) ppm).

Figure 2. Chem3D representation of 1. BF_4 ⁻ counterion is not shown. Selected bond lengths (\AA): Pt-H = 1.682, Pt-P₁ = 2.2944-(12), Pt-P₂ = 2.3472(12), Pt-P₃ = 2.2966(12). Selected bond angles (deg): $P_1-Pt-P_2 = 92.17$, $P_2-Pt-P_3 = 101.45$.

Scheme 1. Proposed Mechanism for Hydride Formation from BnOH

the hydride. A generic mechanism for hydride formation is shown in Scheme 1, with the key step being *â*-hydride elimination from an alkoxide (or an alcohol) intermediate.⁹

In contrast to the *in situ* carbocyclization trapping experiments in eq 2, direct reactions of phenol and methanol with $(P_2P)Pt^{2+}$ did not yield **1**. The source of the hydride in the former cases was separately traced to the amine base ($Ph₂NMe$), which, in the absence of alcohol, generates **1** on reacting with the dication. In this case a β -H elimination to generate the *N*,*N*^{\prime}-diphenylimminium ion is envisioned¹⁰ (Scheme 2); switching to $Ph₂NH$ completely suppresses hydride formation (no *â*-H's).

An X-ray structure of **1** was obtained (Figure 2) by slow vapor diffusion of pentane to an acetone solution. Chlorinated solvents were not suitable for crystallization because **1** was readily converted to the platinum chloride. Pt-H and Pt-P bond lengths are similar to related platinum hydride structures.¹¹ The $Pt-P$ bond *trans* to the hydride is about 0.1 Å longer than the Pt-^P bond *trans* to the chloride in the analogous chloride structure.¹²

Interestingly, this route to the hydrides seems to be limited to compounds containing biaryl-linked diphosphine ligands. Platinum complexes containing BINAP/PMe3, xyl-BINAP/

Scheme 2. Proposed Mechanism for Hydride Formation from Ph₂NMe

Table 1. Selected *^J***^P**-**Pt Coupling Constants for the Phosphine** *trans* **to X/L**

 a In CD₃NO₂ unless otherwise noted; the counterion is BF_4^- . *b* Externally referenced to 85% H₃PO₄. ^{*c*}In CDCl₃. ^{*d*}Tentative assignment based on *J*_{P-Pt}.

PMe₃, and SEGPHOS/PMe₃ ligand arrays all successfully generated the respective platinum hydrides on reacting with benzyl alcohol, while dppm/PMe₃, dppe/PMe₃, and triphos did not. Phosphorus-platinum coupling constants suggest that these species weakly coordinate the alcohol¹³ but do not facilitate the subsequent β -elimination. Table 1 collects the diagnostic J_{P-Pt} for the phosphine *trans* to the variable site; the PMe₃ chemical shift was sensitive to the charge on the fourth ligand and is also included.

The utility of 1 to function as a convenient $(Ag^+$ -free) precursor to highly reactive $(P_2P)Pt^{2+}$ catalysts was investigated. $HBF₄$ and $HNTf₂$ were each able to protonolyze off the hydride in the presence of a suitable trapping ligand (acetone or pentafluorobenzonitrile) (Scheme 3), though similar protonolysis experiments on $(P_2P)Pt^+ - CH_3$ were very sluggish under these conditions.¹⁴ [Ph₂NH₂][BF₄] (p $K_a = 0.8$)¹⁵ was not acidic enough to initiate similar reactivity.

(14) Feducia, J. A.; Campbell, A. N.; Anthis, J. W.; Gagné, M. R. *Organometallics* **²⁰⁰⁶**, *²⁵*, 3114-3117.

⁽⁹⁾ We are unable, as of yet, to distinguish between these two possibilities, as the reaction is fast both with and without the added weak base ($Ph₂$ -NH). We favor the alkoxide route simply because hydride migration from a coordinated alcohol would generate aldehyde bound to both an electrophilic Pt Lewis acid and H+. A counterpoint to this notion is the observation that dicationic P_2Pt^{2+} Lewis acids can function with a Brønsted co-catalyst in certain electrophilic activation reactions on aldehydes; see: Mullen, C. A.; Gagné, M. R. *Org. Lett.* **2006**, 8, 665-668. Regardless, the discussion explicitly assumes a key alkoxide intermediate.

⁽¹⁰⁾ The imminium ion was not observed.

⁽¹¹⁾ Selected, similar platinum hydride structures: (a) Clark, H. C.; Dymarski, M. J.; Oliver, J. D. *J. Organomet. Chem.* **¹⁹⁷⁸**, *¹⁵⁴*, C40-C42. (b) Manojlovic-Muir, L.; Jobe, I. R.; Ling, S. S. M.; McLennan, A. J.; Puddephatt, R. J. *J. Chem. Soc., Chem. Commun.* **¹⁹⁸⁵**, 1725-1726. (c) Alonso, E.; Fornies, J.; Fortuno, C.; Martin, A.; Orpen, A. G. *Organometallics* **²⁰⁰¹**, *²⁰*, 850-859. (d) Jaska, C. A.; Lough, A. J.; Manners, I. *Dalton Trans.* **²⁰⁰⁵**, 326-331. (e) Packett, D. L.; Syed, A.; Trogler, W. C. *Organometallics* **¹⁹⁸⁸**, *⁷*, 159-166.

⁽¹²⁾ See supporting information for details on the $[(BINAP)(PMe₃)PtCl]$ -[BF4] X-ray structure.

^{(13) (}a) Alcock, N. W.; Platt, A. W. G.; Pringle, P. G. *J. Chem. Soc., Dalton Trans.* **¹⁹⁸⁹**, 139-143. (b) Alcock, N. W.; Platt, A. W. G.; Pringle, P. *J. Chem. Soc., Dalton Trans.* **¹⁹⁸⁷**, 2273-2280. (c) Alcock, W. N.; Platt, A. W. G.; Pringle, P. G. *Inorg. Chim. Acta* **¹⁹⁸⁷**, *¹²⁸*, 215-216.

⁽¹⁵⁾ Measured in aqueous HCl. See: (a) Dolman, D.; Stewart, R. *Can. J. Chem.* **¹⁹⁶⁷**, *⁴⁵*, 903-910. (b) Stewart, R.; Dolman, D. *Can. J. Chem.* **¹⁹⁶⁷**, *⁴⁵*, 925-928.

The rapid β -hydride elimination of the described platinumalkoxides significantly contrasts with comparably ligated platinum-alkyl compounds, which do not *^â*-eliminate up to 70 °C.6a,7 Bercaw and Bryndza have previously noted the polarizing influence of electronegative substituents on β -H elimination from 16-electron neutral P_2PtX_2 complexes: (dppe) $Pt(OMe)_2$ $(25 \text{ °C}) \gg (dppe)Pt(OMe)Et (100 \text{ °C}) \ge (dppe)PtEt_2 (160 \text{ °C}).^{2c}$ Mechanistic studies implicated a pre-equilibrium *â*-H elimination to an 18-electron, five-coordinate (dppe) $Pt(H)OMe(H₂C=$ O) intermediate, which reacted by competitive loss of MeOH or formaldehyde. Similarly, Strukul has shown that *â*-H elimination is rapid at RT in $(dppe)(CF₃)Pt(OR)$ complexes, which act as efficient oxidation catalysts in the presence of H₂O₂.¹⁶ The electron-deficient CF₃ ligand presumably increased the metal's electrophilicity, which increased the rate of *â*-H elimination (cf. (dppe)Pt(OMe)Et, which does react until 100 °C). We hypothesize, on the basis of these studies and our own, that the combination of a cationic metal and an alkoxide ligand generates a sufficiently electrophilic complex to enable rapid β -H eliminate and provide 1 at RT. The analogous alkyl complexes lacking such an electronegative substituent do not readily *â*-eliminate. The situation may be more complex than this, since not all $(P_2P)Pt^{2+}$ complexes generated the hydride. The complexes known to *â*-hydride eliminate at RT are collected in Chart 1.

In summary, we report a convenient method for the synthesis of chiral $(P_2P)Pt-H$ cations and additionally extend the compound types known to β -H eliminate at RT to several cationic triphosphine structures.

Experimental Section

General Methods. Synthetic procedures were performed in a dinitrogen-filled MBraun Labmaster 100 glovebox. CH₂Cl₂ was sparged with dry argon and passed through a column of activated alumina. Acetone was distilled from $CaSO₄$ and freeze-pump-

thaw degassed. MeNO_2 was purified according to literature procedures, which removes trace propionitrile from the commercial material.¹⁷ CD_3NO_2 and Ph_2NMe were distilled from CaH_2 and freeze-pump-thaw degassed prior to use. $HNTf₂$ and phenol were sublimed under vacuum. Anhydrous benzyl alcohol, methanol, ethanol, and 2-propanol were used as received from Aldrich. P₂- $PtI₂$ was prepared by stirring equimolar quantities of the bidentate phosphine with (COD)PtI₂ (COD = 1,5-cyclooctadiene) in CH₂- $Cl₂$ and then precipitating with pentane. $[(R)-BINAP(PMe₃)PtI][I]$ was prepared by adding 1 equiv of $PMe₃$ to $((R)-BINAP)PtI₂$ in MeNO_2 as previously reported.⁸ NMR spectra were recorded on either a Bruker 400 MHz DRX or a Bruker 300 MHz AMX spectrometer; chemical shifts are given in ppm and are referenced to residual solvent resonances (${}^{1}H$, ${}^{13}C$) or an external 85% $H_{3}PO_{4}$ standard (^{31}P) . Elemental analysis was performed by Robertson Microlit Labs.

 $[(R)$ -BINAP)(PMe₃)PtH][BF₄] (1). To a solution of 70 mg of $[(R)$ -BINAP)(PMe₃)PtI][I] (61 μ mol) in 0.5 mL of MeNO₂ was added 126 μ L of benzyl alcohol (1.22 mmol) and 30 mg of AgBF₄ (152 μ mol). The mixture was stirred for 15 min at 23 °C, diluted with CH_2Cl_2 , and filtered through a 0.45 μ m PTFE syringe filter. The solution was then washed three times with distilled water. The organic fraction was dried over Na₂SO₄, filtered, and concentrated *in vacuo*. The crude material was dissolved in CH_2Cl_2 and precipitated with *n*-pentane five times until no benzyl alcohol remained by 1H NMR. The purified solid was dried under vacuum to yield 45 mg (64%) of a white solid: ¹H NMR (400 MHz, CDCl₃) δ 7.97–6.49 (m, 32H), 1.33 (m, 9H); ³¹P NMR (161 MHz, CDCl₃) δ 28.56 (dd, 1P, $J_{\rm P-P} = 21$, 352 Hz, $^{1}J_{\rm P-Pt} = 2616$ Hz), 17.46 (dd, $1P, J_{P-P} = 20, 21 \text{ Hz}, \frac{1}{P-Pt} = 2020 \text{ Hz}, -17.65 \text{ (dd, 1P, } J_{P-P} =$ 20, 352 Hz, $^{1}J_{P-Pt} = 2464$ Hz). Anal. Calcd for C₄₇H₄₂BF₄P₃Pt: C, 57.51; H, 4.31. Found: C, 57.23; H, 4.12.

 $[((rac)$ -BINAP $)(PMe_3)$ PtCl $[EF_4]$ (2). Slow vapor diffusion of n -pentane to a solution of **1** in CDCl₃ yielded X-ray quality crystals of [((*rac*)-BINAP)(PMe3)PtCl][BF4].18

Platinum-**Hydride Cleavage Reactions.** In a typical reaction, to 15 mg of $[(R)$ -BINAP)(PMe₃)PtH][BF₄] (15.3 μ mol) in CD₃- $NO₂$ was added 1 equiv of acid (HNTf₂, HBF₄, [Ph₂NH₂][BF₄], or $[Ph_3C][BF_4]$) and 5 equiv of NCC₆F₅ or acetone. Disappearance of the hydride resonance was monitored by 1H NMR, and the appearance of a new platinum species (either the nitrile or acetone adduct) was observed by 31P NMR.

Acknowledgment. The National Institute of General Medicine (GM-60578) is gratefully acknowledged for support.

Supporting Information Available: X-ray data and tables and NMR spectra. This material is available free of charge via the Internet at http://pubs.acs.org.

OM061105Z

⁽¹⁶⁾ Zennaro, R.; Pinna, F.; Strukul, G. *J. Mol. Catal.* **¹⁹⁹¹**, *⁷⁰*, 269- 275.

⁽¹⁷⁾ Parrett. F. W.; Sun, M. S. *J. Chem. Educ.* **¹⁹⁷⁷**, *⁵⁴*, 448-449.

⁽¹⁸⁾ During crystallization attempts of **1**, the presence of chlorinated solvents (particularly chloroform and dichloromethane) led to the formation of **2**, which selectively crystallized.