Preparation and Reactivity of Stannyl Complexes of Manganese and Rhenium

Gabriele Albertin,*,† Stefano Antoniutti,† Jesús Castro,‡ Soledad García-Fontán,‡ and Gianluigi Zanardo†

*Dipartimento di Chimica, Uni*V*ersita*` *Ca' Foscari di Venezia, Dorsoduro 2137, 30123 Venezia, Italy, and Departamento de Quı*´*mica Inorga*´*nica, Facultade de Quı*´*mica, Edificio de Ciencias Experimentais, Uni*V*ersidade de Vigo, 36310 Vigo (Galicia), Spain*

*Recei*V*ed March 8, 2007*

The trichlorostannyl complexes $M(SnCl_3)(CO)_nP_{5-n}$ (1–3: M = Mn, Re; P = PPh(OEt)₂ (a), P(OEt)₃ (**b**); $n = 2, 3$) were prepared by allowing chloro MCl(CO)_{*n*}P_{5-*n*} compounds to react with an excess of $SnCl₂·2H₂O$. Treatment of compounds $1-3$ with NaBH₄ in ethanol yielded the tin polyhydride derivatives $M(SnH_3)(CO)_nP_{5-n}$ (4–6). Treatment of 1–3 with MgBrMe gave the trimethylstannyl complexes $M(SnMe₃)(CO)_nP_{5-n}$ (**7-9**), and the reaction of $1-3$ with MgBr(C=CH) yielded the trialkynylstannyl derivatives M[Sn(C=CH)₃](CO)_nP_{5-n} (**10, 11**). The alkynylstannyl complexes M[Sn(C=CR)₃](CO)_nP_{5-n} (**12-14**: $R = p$ -tolyl) were also prepared by allowing M(SnCl₃)(CO)_nP_{5-n} compounds to react with $Li^{+}[C\equiv CR]$ ⁻ in thf. The complexes were characterized by spectroscopy and by X-ray crystal structure determinations of **4a**, **6b**, and **9b**. Reaction of the tin trihydride complexes $Re(SnH_3)(CO)_2P_3$ (**6**) with $CO₂$ (1 atm) led to the binuclear OH-bridging bis(formate) derivatives $[Re{Sn[OC(H)=O]}_2(\mu$ -OH)}- $(CO)_{2}P_{3}]_{2}$ (**15**). A reaction path for the formation of **15**, involving the tin hydride bis(formate) intermediate $Re[SnH{OC(H)}=O_2]$ (CO)₂P₃, is discussed. The X-ray crystal structure of **15b** is reported.

Introduction

The chemistry of transition-metal stannyl complexes has been extensively developed in recent years, $1,2$ both because there has been a variety of reactions shown and because the introduction of a tin ligand into the metal fragment often modifies the nature of noble-metal catalysts.1-³

Tin ligands may, in fact, modify the properties of complexes, both having a strong labilizing effect on their trans ligands and being quite labile themselves, and thus providing vacant coordination sites on transition metals by dissociation. In addition, the ease of oxidative addition and subsequent reductive elimination of tin(IV) compounds may strongly influence the catalytic cycle of processes involving stannyl derivatives.^{1,3}

Numerous mono- and polynuclear stannyl complexes of transition metals containing several organostannyl (SnR_3) or halogenostannyl ligands (SnX₃) have been synthesized. However, despite numerous studies, no examples of stable complexes containing the simplest of the tin ligands, the trihydride SnH3, have ever been reported. In a recent study, 4 we demonstrated that tin trihydride complexes can in fact be prepared using a osmium(II) fragment of the type $Os(Tp)L(PPh_3)$ (Tp = tris-(pyrazolyl)borate; $L =$ phosphite) to stabilize the SnH₃ ligand. Reactivity studies have also highlighted interesting properties of [Os]-SnH3 compounds, including the hydridic nature of the SnH₃ group.

These results prompted us to extend our study of hydridestannyl complexes to other transition metals, with the aim of

^{*} To whom correspondence should be addressed. Fax: +39 041 234 8917. E-mail: albertin@unive.it.

[†] Universita` Ca' Foscari.

[‡] Universidade de Vigo.

^{(1) (}a) Mackay, K. M.; Nicholson, B. K. In *Comprehensive Organometallic Chemistry*; Wilkinson, G., Stone, F. G. A., Abel, E. W., Eds.; Pergamon Press: New York, 1982; Vol. 2, pp 1043–1114. (b) Holt, M.
S.: Wilson, W. L.: Nelson, J. H. *Chem. Rev.* 1989, 89, 11–49. (c) Lappert. S.; Wilson, W. L.; Nelson, J. H. *Chem. Re*V*.* **¹⁹⁸⁹**, *⁸⁹*, 11-49. (c) Lappert, M. F.; Rowe, R. S. *Coord. Chem. Re*V*.* **¹⁹⁹⁰**, *¹⁰⁰*, 267-292. (d) Davies, A. G. In *Comprehensive Organometallic Chemistry*; Stone, F. G. A., Abel, E. W., Wilkinson, G., Eds.; Pergamon Press: New York, 1995; Vol. 2, pp ²¹⁸-297. (e) Davies, A. G. *Organotin Chemistry*; Wiley-VCH: Weinheim, Germany, 2004.

^{(2) (}a) Buil, M. L.; Esteruelas, M. A.; Lahoz, F. J.; Oñate, E.; Oro, L. A. *J. Am. Chem. Soc.* **¹⁹⁹⁵**, *¹¹⁷*, 3619-3620. (b) Nakazawa, H.; Yamaguchi, Y.; Miyoshi, K. *Organometallics* **¹⁹⁹⁶**, *¹⁵*, 1337-1339. (c) Schubert, U.; Grubert, S. *Organometallics* **¹⁹⁹⁶**, *¹⁵*, 4707-4713. (d) Akita, M.; Hua, R.; Nakanishi, S.; Tanaka, M.; Moro-oka, Y. *Organometallics* 1997, 16, 5572-5584. (e) Djukic, J.-P.; Dötz, K. H.; Pfeffer, M.; De Cian, A.; Fischer, J. *Organometallics* **¹⁹⁹⁷**, *¹⁶*, 5171-5182. (f) Nakazawa, H.; Yamaguchi, Y.; Kawamura, K.; Miyoshi, K. *Organometallics* **1997**, *16*, ⁴⁶²⁶-4635. (g) Biswas, B.; Sugimoto, M.; Sakaki, S. *Organometallics* **¹⁹⁹⁹**, *¹⁸*, 4015-4026. (h) Baya, M.; Crochet, P.; Esteruelas, M. A.; Gutierrez-Puebla, E.; Ruiz, N. *Organometallics* **¹⁹⁹⁹**, *¹⁸*, 5034-5043. (i) Rickard, C. E. F.; Roper, W. R.; Woodman, T. J.; Wright, L. J. *Chem. Commun.* **¹⁹⁹⁹**, 837-838. (j) Adams, H.; Broughton, S. G.; Walters, S. J.; Winter, M. J. *Chem. Commun.* **¹⁹⁹⁹**, 1231-1232. (k) Clark, A. M.; Rickard, C. E. F.; Roper, W. R.; Woodman, T. J.; Wright, L. J. *Organometallics* **²⁰⁰⁰**, *¹⁹*, 1766-1774. (l) Hermans, S.; Johnson, B. F. G. *Chem. Commun.* 2000, 1955-1956. (m) Turki, M.; Daniel, C.; Zális, S.; Vlĉek, A., Jr.; van Slageren, J.; Stufkens, D. J. *J. Am. Chem. Soc.* **²⁰⁰¹**, *¹²³*, 11431-11440. (n) Neale, N. R.; Tilley, T. D. *J. Am. Chem. Soc.* **²⁰⁰²**, *¹²⁴*, 3802-3803. (o) Esteruelas, M. A.; Lledos, A.; Maseras, F.; Oliván, M.; Oñate, E.; Tajada, M. A.; Tomàs, J. Organometallics 2003, 22, 2087-2096. (p) Adams, R. M. A.; Tomàs, J. *Organometallics* **2003**, 22, 2087-2096. (p) Adams, R. D.; Captain, B.; Smith, J. L., Jr.; Hall, M. B.; Beddie, C. L.; Webster, C. E. *Inorg. Chem.* **²⁰⁰⁴**, *⁴³*, 7576-7578. (q) Neale, N. R.; Tilley, T. D. *J. Am. Chem. Soc.* **²⁰⁰⁵**, *¹²⁷*, 14745-14755. (r) Adams, R. D.; Captain, B.; Herber, R. H.; Johansson, M.; Nowik, I.; Smith, J. L.; Smith, M. D. *Inorg. Chem.* **²⁰⁰⁵**, *⁴⁴*, 6346-6358. (s) Sagawa, T.; Ohtsuki, K.; Ishiyama, T.; Ozawa, F. *Organometallics* **²⁰⁰⁵**, *²⁴*, 1670-1677. (t) Adams, R. D.; Captain, B.; Hollandsworth, C. B.; Johansson, M.; Smith, J. L., Jr. *Organometallics* **²⁰⁰⁶**, *²⁵*, 3848-3855.

^{(3) (}a) Coupe´, J. N.; Jorda˜o, E.; Fraga, M. A.; Mendes, M. *J. Appl. Catal. A.* **2000**, *199*, 45. (b) Hermans, S.; Raja, R.; Thomas, J. M.; Johnson, B. F. G.; Sankar, G.; Gleeson, D. *Angew. Chem., Int. Ed.* **2001**, *40*, 1211. (c) Huber, G. W.; Shabaker, J. W.; Dumesic, J. A. *Science* **2003**, *300*, 2075. (d) Adams, R. D.; Captain, B.; Johansson, M.; Smith, J. L., Jr. *J. Am. Chem. Soc.* **²⁰⁰⁵**, *¹²⁷*, 488-489.

⁽⁴⁾ Albertin, G.; Antoniutti, S.; Bacchi, A.; Bortoluzzi, M.; Pelizzi, G.; Zanardo, G. *Organometallics* **²⁰⁰⁶**, *²⁵*, 4235-4237.

testing both whether tin trihydride complexes can be prepared for other metals and how the properties of the stannyl group are influenced by the metal fragment. We focused our attention on d^6 manganese(I) and rhenium(I) central metals;⁵ these are isoelectronic with Os(II), and their tin chemistry is much less developed than that of other d^6 complexes.^{1,6,7}

The results of these studies, which include the preparation and reactivity of the first tin trihydride complexes of manganese and rhenium, are reported here.

Experimental Section

General Comments. All synthetic work was carried out under an appropriate atmosphere (Ar, N_2) using standard Schlenk techniques or an inert-atmosphere drybox. Once isolated, the complexes were found to be relatively stable in air but were stored under nitrogen at -25 °C. All solvents were dried over appropriate drying agents, degassed on a vacuum line, and distilled into vacuumtight storage flasks. $Mn_2(CO)_{10}$ and $Re_2(CO)_{10}$ were Pressure Chemical Co. (USA) products, used as received. The phosphite $PPh(OEt)_2$ was prepared by the method of Rabinowitz and Pellon.⁸ The reagents MgBrMe (3 M solution in diethyl ether) and MgBr- $(C=CH)$ (2.5 M solution in diethyl ether) were Aldrich products, used as received. The lithium acetylide $Li^+C\equiv CR^{-} (R = p$ -tolyl) was prepared by reacting a slight excess of the appropriate acetylene (35 mmol) with lithium (30 mmol, 0.21 g) in 20 mL of tetrahydrofuran (thf). Other reagents were purchased from commercial sources in the highest available purity and used as received. Infrared spectra were recorded on a Nicolet Magna 750 or Perkin-Elmer Spectrum-One FT-IR spectrophotometer. NMR spectra (¹H, ³¹P, 13C, 119Sn) were obtained on an AC200 or AVANCE 300 Bruker spectrometer at temperatures between -90 and $+30$ °C, unless

(6) For manganese tin complexes, see: (a) Thompson, J. A. J.; Graham, W. A. G. *Inorg. Chem.* **¹⁹⁶⁷**, *¹⁰*, 1875-1879. (b) Clark, H. C.; Hunter, B. K. *J. Organomet. Chem.* **¹⁹⁷¹**, *³¹*, 227-232. (c) Collman, J. P.; Hoyano, J. K.; Murphy, D. W. *J. Am. Chem. Soc.* **¹⁹⁷³**, *⁹⁵*, 3424-3425. (d) Spek, A. L.; Bos, K. D.; Bulten, E. J.; Noltes, J. G. *Inorg. Chem.* **¹⁹⁷⁶**, *¹⁵*, 339- 345. (e) Chipperfield, J. R.; Hayter, A. C.; Webster, D. E. *J. Chem. Soc., Dalton Trans.* **¹⁹⁷⁷**, 485-490. (f) McCullen, S. B.; Brown, T. L. *J. Am. Chem. Soc.* **¹⁹⁸²**, *¹⁰⁴*, 7496-7500. (g) Foster, S. P.; Mackay, K. M. *J. Organomet. Chem.* **¹⁹⁸³**, *²⁴⁷*, 21-26. (h) Bullock, J. P.; Palazzotto, M. C.; Mann, K. R. *Inorg. Chem.* **¹⁹⁹⁰**, *²⁹*, 4413-4421. (i) Sullivan, R. J.; Brown, T. L. *J. Am. Chem. Soc.* **¹⁹⁹¹**, *¹¹³*, 9155-9161. (j) Utz, T. L.; Leach, P. A.; Geib, S. J.; Cooper, N. J. *Chem. Commun.* **¹⁹⁹⁷**, 847-848. (k) Chen, Y.-S.; Ellis, J. E. *Inorg. Chim. Acta* **²⁰⁰⁰**, *³⁰⁰*-*302*, 675-682. (l) Christendat, D.; Wharf, I.; Lebuis, A.-M.; Butler, I. S.; Gilson, D. F. G. *Inorg. Chim. Acta* **²⁰⁰²**, *³²⁹*, 36-44.

(7) For rhenium tin complexes see: (a) Preut, H.; Haupt, H.-J.; Florke, U. *Acta. Crystallogr., Sect. C* **1984**, *40*, 600. (b) Haupt, H.-J.; Balsaa, P.; Schwab, B.; Florke, U.; Preut, H. Z*. Anorg. Allg. Chem.* **1984**, *22*, 513. (c) Narayanan, B. A.; Kochi, J. K. *Inorg. Chim. Acta* **¹⁹⁸⁶**, *¹²²*, 85-90. (d) Westerberg, D. E.; Sutherland, B. E.; Huffman, J. C.; Caulton, K. G. *J. Am. Chem. Soc.* **¹⁹⁸⁸**, *¹¹⁰*, 1642-1643. (e) Warnock, G. F. P.; Moodie, L. C.; Ellis, J. E. *J. Am. Chem. Soc.* **¹⁹⁸⁹**, *¹¹¹*, 2131-2141. (f) Luong, J. C.; Faltynek, R. A.; Wrighton, M. S. *J. Am. Chem. Soc.* **¹⁹⁸⁰**, *¹⁰²*, 7892- 7900. (g) Huie, B. T.; Kirtley, S. W.; Knobler, C. B.; Kaesz, H. D. *J. Organomet. Chem.* **¹⁹⁸¹**, *²¹³*, 45-62. (h) Loza, M. L.; Crabtree, R. H. *Inorg. Chim. Acta* **¹⁹⁹⁵**, *²³⁶*, 63-66.

(8) Rabinowitz, R.; Pellon, J. *J. Org. Chem.* **¹⁹⁶¹**, *²⁶*, 4623-4626.

otherwise noted. 1H and 13C spectra are referred to internal tetramethylsilane; 31P{1H} chemical shifts are reported with respect to 85% H_3PO_4 and those of ¹¹⁹Sn with respect to Sn(CH₃)₄, and in both cases downfield shifts are considered positive. COSY, HMQC, and HMBC NMR experiments were performed with standard programs. The SwaN-MR and iNMR software packages⁹ were used to treat NMR data. The conductivities of 10^{-3} mol dm⁻³ solutions of the complexes in $CH₃NO₂$ at 25 °C were measured on a Radiometer CDM 83 instrument. Elemental analyses were determined by the Microanalytical Laboratory of the Dipartimento di Scienze Farmaceutiche, University of Padova, Padova, Italy.

Synthesis of Complexes. The pentacarbonyl complexes MnX- (CO) ₅ and ReX (CO) ₅ $(X = Cl, Br)$ and hydride complexes $ReH(CO)_nP_{5-n}$ ($n = 2, 3; P = PPh(OEt)₂$, $P(OEt)₃$) were prepared following previously reported methods.^{5c,10}

 $\text{MnX(CO)}_3[\text{PPh}(\text{OE}t)_2]_2$ (X = Cl, Br). An excess of PPh(OEt)₂ (14.6 mmol, 2.9 mL) was added to a solution of the appropriate $MnX(CO)$ ₅ complex (5.82 mmol) in toluene (X = Cl) or benzene $(X = Br)$, and the reaction mixture was refluxed for 2 h. The solvent was removed under reduced pressure to give a brown oil, which was triturated with ethanol (5 mL). A yellow $(X = Cl)$ or orange $(X = Br)$ solid slowly separated out from the resulting solution, which was isolated by filtration and crystallized from $CH₂Cl₂$ and ethanol; yield $\geq 90\%$.

MnCl(CO)₃[PPh(OEt)₂]₂. IR (KBr; cm⁻¹): v_{CO} 2045 (w), 1981, 1910 (s). ¹H NMR (CD₂Cl₂, 25 °C; δ): 7.70, 7.43 (m, 10 H, Ph), 4.20, 3.98 (m, 8 H, CH₂), 1.33 (t, 12 H, CH₃). ³¹P{¹H} NMR (CD₂-Cl₂, 25 °C; δ): 183.1 (s, br). Anal. Calcd for C₂₃H₃₀ClMnO₇P₂: C, 48.40; H, 5.30; Cl, 6.21. Found: C, 48.52; H, 5.25; Cl, 6.43.

MnBr(CO)₃[PPh(OEt)₂]₂. IR (KBr; cm⁻¹): *ν*_{CO} 2051 (w), 1976, 1906 (s). ¹H NMR (CD₂Cl₂, 25 °C; δ): 7.70, 7.46 (m, 10 H, Ph), 4.19, 3.95 (m, 8 H, CH2), 1.34 (t, 12 H, CH3). 31P{1H} NMR (CD2- Cl₂, -70 °C; δ): A₂, 185.2 (s). Anal. Calcd for C₂₃H₃₀BrMnO₇P₂: C, 44.90; H, 4.91; Br, 12.99. Found: C, 44.77; H, 4.93; Br, 12.80.

 $ReX(CO)_{3}[PPh(OEt)_{2}]_{2}$ ($X = Cl$, Br). These complexes were prepared like the related $MnX(CO)_{3}[PPh(OEt)_{2}]_{2}$ complexes, using a reaction time of 2.5 h; yield $\geq 80\%$.

ReCl(CO)₃[PPh(OEt)₂]₂. IR (KBr; cm⁻¹): *ν*_{CO} 2030 (m), 1974, 1895 (s). ¹H NMR (CD₂Cl₂, 25 °C; δ): 7.70, 7.46 (m, 10 H, Ph), 4.15, 3.95 (m, 8 H, CH2), 1.35 (t, 12 H, CH3). 31P{1H} NMR (CD2- Cl₂, 25 °C; δ): A₂, 130.0 (s). Anal. Calcd for C₂₃H₃₀ClO₇P₂Re: C, 39.35; H, 4.31; Cl, 5.05. Found: C, 39.26; H, 4.39; Cl, 4.88.

ReBr(CO)₃[PPh(OEt)₂]₂. IR (KBr; cm⁻¹): *ν*_{CO} 2025 (w), 1978, 1893 (s). ¹H NMR (CD₂Cl₂, 25 °C; δ): 7.70, 7.48 (m, 10 H, Ph), 4.12, 3.88 (m, 8 H, CH₂), 1.33, 1.31 (t, 12 H, CH₃). ³¹P{¹H} NMR $(C_6D_6, 25 \text{ °C}; \delta)$: A₂, 126.0 (s). Anal. Calcd for C₂₃H₃₀BrO₇P₂Re: C, 37.00; H, 4.05; Br, 10.70. Found: C, 37.13; H, 4.00; Br, 10.91.

 $ReCl(CO)₂P₃$ ($P = PPh(OEt)₂$, $P(OEt)₃$). An excess of the appropriate phosphite (17 mmol) was added to a solution of ReCl- (CO) ₅ (5.0 mmol, 1.8 g) in 40 mL of toluene, and the reaction mixture was irradiated at room temperature for 70 min in a Pyrex Schlenk flask under a standard 400 W medium-pressure mercury arc lamp. The solvent was then evaporated to dryness under reduced pressure to give an oil, which was triturated with ethanol. A white solid slowly separated out from the resulting solution, which was isolated by filtration and crystallized from CH_2Cl_2 and ethanol; yield $\geq 75\%$.

ReCl(CO)₂[PPh(OEt)₂]₃. IR (KBr; cm⁻¹): *ν*_{CO} 1985, 1873 (s). ¹H NMR (CD₂Cl₂, 25 °C; *δ*): 7.75-7.30 (m, 15 H, Ph), 4.10, 3.75 (m, 12 H, CH₂), 1.27, 1.23 (t, 18 H, CH₃). ³¹P{¹H} NMR (CD₂Cl₂, 25 °C; δ): AB₂, δ _A 129.9, δ _B 127.8, J _{AB} = 35.5 Hz. Anal. Calcd

⁽⁵⁾ For our previous papers on Mn and Re complexes stabilized by phosphite ligands, see: (a) Albertin, G.; Antoniutti, S.; Bacchi, A.; Bordignon, E.; Busatto, F.; Pelizzi, G. *Inorg. Chem.* **¹⁹⁹⁷**, *³⁶*, 1296-1305. (b) Albertin, G.; Antoniutti, S.; Bettiol, M.; Bordignon, E.; Busatto, F. *Organometallics* **¹⁹⁹⁷**, *¹⁶*, 4959-4969. (c) Albertin, G.; Antoniutti, S.; Garcia-Fonta´n, S.; Carballo, R.; Padoan, F. *J. Chem. Soc., Dalton Trans.* **¹⁹⁹⁸**, 2071-2081. (d) Albertin, G.; Antoniutti, S.; Bacchi, A.; Ballico, G. B.; Bordignon, E.; Pelizzi, G.; Ranieri, M.; Ugo, P. *Inorg. Chem.* **2000**, *³⁹*, 3265-3279. (e) Albertin, G.; Antoniutti, S.; Bacchi, A.; Bordignon, E.; Miani, F.; Pelizzi, G. *Inorg. Chem.* **²⁰⁰⁰**, *³⁹*, 3283-3293. (f) Albertin, G.; Antoniutti, S.; Bordignon, E.; Visentin, E. *Inorg. Chem.* **²⁰⁰¹**, *⁴⁰*, 5465- 5467. (g) Albertin, G.; Antoniutti, S.; Bacchi, A.; Bordignon, E.; Giorgi, M. T.; Pelizzi, G. *Angew. Chem., Int. Ed.* **²⁰⁰²**, *⁴¹*, 2192-2194. (h) Albertin, G.; Antoniutti, S.; Bravo, J.; Castro, J.; Garcia-Fontán, S.; Marín, M. C.; Noe`, M. *Eur. J. Inorg. Chem.* **²⁰⁰⁶**, 3451-3462.

⁽⁹⁾ Balacco, G. *J. Chem. Inf. Comput. Sci.* **¹⁹⁹⁴**, *³⁴*, 1235-1241 (http:// www.inmr.net/).

^{(10) (}a) Reimer, K. J.; Shaver, A. *Inorg. Synth.* **¹⁹⁹⁰**, *²⁸*, 155-156, 158- 159. (b) Quick, M. H.; Angelici, R. J. *Inorg. Synth.* **¹⁹⁹⁰**, *²⁸*, 156-157. (c) Schmidt, S. P.; Trogler, W. C.; Basolo, F. *Inorg. Synth.* **¹⁹⁹⁰**, *²⁸*, 160- 163.

for C₃₂H₄₅ClO₈P₃Re: C, 44.06; H, 5.20; Cl, 4.06. Found: C, 43.89; H, 5.15; Cl, 4.23.

ReCl(CO)₂[P(OEt)₃]₃. IR (KBr; cm⁻¹): v_{CO} 1980, 1969 (s). ¹H NMR (CD₂Cl₂, 25 °C; δ): 4.08 (m, 18 H, CH₂), 1.30, 1.28 (t, 27 H, CH₃). ³¹P{¹H} NMR (CD₂Cl₂, 25 °C; δ): 115 (s, br). ³¹P{¹H} NMR (CD₂Cl₂, -70 °C; δ): AB₂, δ_A 117.9, δ_B 117.2, $J_{AB} = 46.8$ Hz. Anal. Calcd for $C_{20}H_{45}ClO_{11}P_3Re: C$, 30.95; H, 5.84; Cl, 4.57. Found: C, 31.17; H, 5.79; Cl, 4.44.

 ReBr(CO)_2P_3 ($P = \text{PPh(OEt)}_2$, $P(\text{OEt})_3$). An excess of the appropriate phosphite (20 mmol) was added to a solution of ReBr- (CO) ₅ (5.0 mmol, 2.0 g) in 80 mL of toluene, and the reaction mixture was refluxed for 2.5 h. The solvent was removed under reduced pressure to give an oil, which was triturated with ethanol. A white solid slowly separated out from the resulting solution, which was isolated by filtration and crystallized from CH_2Cl_2 and ethanol; yield $\geq 90\%$.

ReBr(CO)₂[PPh(OEt)₂]₃. IR (KBr; cm⁻¹): *ν*_{CO} 1981, 1870 (s). ¹H NMR (CD₂Cl₂, 25 °C; *δ*): 7.75-7.30 (m, 15 H, Ph), 4.06, 3.74 (m, 12 H, CH₂), 1.26, 1.23 (t, 18 H, CH₃). ³¹P{¹H} NMR (CD₂Cl₂, 25 °C; δ): AB₂, δ _A 130.6, δ _B 128.2, J _{AB} = 35.6 Hz. Anal. Calcd for C32H45BrO8P3Re: C, 41.93; H, 4.95; Br, 8.72. Found: C, 41.72; H, 5.04; Br, 8.65.

ReBr(CO)₂[P(OEt)₃]₃. IR (KBr; cm⁻¹): *ν*_{CO} 1983, 1872 (s). ¹H NMR (CD₂Cl₂, 25 °C; δ): 4.10 (m, 18 H, CH₂), 1.29, 1.27 (t, 27 H, CH3). 31P{1H} NMR (CD2Cl2, 25 °C; *δ*): 114 (s, br). 31P{1H} NMR (CD₂Cl₂, -70 °C; δ): AB₂, δ_A 117.4, δ_B 117.0, $J_{AB} = 46.7$ Hz. Anal. Calcd for $C_{20}H_{45}BrO_{11}P_3Re: C, 29.27; H, 5.53; Br, 9.74.$ Found: C, 29.36; H, 5.40; Br, 9.98.

Mn(SnCl3)(CO)3[PPh(OEt)2]2 (1a). In a 100 mL three-necked round-bottomed flask were placed solid samples of MnCl(CO)₃- $[PPh(OEt)_2]_2$ (2.0 g, 3.0 mmol), an excess of $SnCl_2^{\bullet}2H_2O$ (9 mmol, 2.03 g), and 40 mL of ethanol. The reaction mixture was refluxed for 2 h, and the solution was then evaporated under reduced pressure to about 5 mL. A yellow solid separated out, which was isolated by filtration and crystallized from CH_2Cl_2 and ethanol; yield $\geq 80\%$. Complex $1a$ can be also prepared by starting from $MnBr(CO)₃$ - $[PPh(OEt)₂]$ ₂ and using the same reaction conditions; yield \geq 80%. IR (KBr; cm⁻¹): v_{CO} 2051 (m), 1976, 1906 (s). ¹H NMR (CD₂Cl₂, 25 °C; δ): 7.70-7.30 (m, 10 H, Ph), 4.19, 3.95 (m, 8 H, CH₂), 1.34 (t, 12 H, CH₃). ¹¹⁹Sn NMR (CD₂Cl₂, -70 °C; δ): A₂M spin system (A = ³¹P, M = ¹¹⁹Sn), δ_M 142.6, J_{AM} = 459.0. ³¹P{¹H} NMR (CD₂Cl₂, 25 °C; *δ*): 185.6 (s, br). ³¹P{¹H} NMR (CD₂Cl₂, -70 °C; *δ*): A₂, $δ_A$ 189.6 (*J*_A117_{Sn} = 441.5 Hz). Anal. Calcd for C23H30Cl3MnO7P2Sn: C, 36.33; H, 3.98; Cl, 13.99. Found: C, 36.18; H, 4.07; Cl, 14.11.

 $\text{Re}(\text{SnCl}_3)(CO)_n \text{P}_{5-n}$ (2, 3: $P = \text{PPh}(OEt)_2$ (a), $P(OEt)_3$ (b); $n = 3$ (2), 2 (3)). Method A. In a 100 mL three-necked roundbottomed flask were placed solid samples of the appropriate $ReCl(CO)_nP_{5-n} complex (1.5 mmol)$, an excess of $SnCl₂·2H₂O$ (6 mmol, 1.35 g), and 40 mL of ethanol. The reaction mixture was refluxed for 5 h, and the solution was then evaporated under reduced pressure to about 5 mL. The white solid that separated out was isolated by filtration and crystallized from CH_2Cl_2 and ethanol; yield for $2 \ge 70\%$, yield for $3 \ge 90\%$.

Method B. In a 50 mL three-necked round-bottomed flask were placed 0.67 g (1 mmol) of $ReH(CO)_{3}$ [PPh(OEt)₂]₂, an excess of anhydrous $SnCl₂$ (4 mmol, 0.76 g), and 30 mL of toluene. The reaction mixture was stirred at room temperature for 20 h and the solvent then evaporated to dryness under reduced pressure. The resulting solid was extracted with three 20 mL portions of CH₂-Cl2, and the extracts were evaporated to dryness. The oil was triturated with ethanol until a white solid separated out, which was isolated by filtration and crystallized from CH_2Cl_2 and ethanol; yield g75% (**2a**).

2a. IR (KBr; cm⁻¹): *ν*_{CO} 2066 (m), 1995 (sh), 1976 (s). ¹H NMR (CD2Cl2, 25 °C; *^δ*): 7.70-7.45 (m, 10 H, Ph), 3.98 (m, 8 H, CH2), 1.40 (t, 12 H, CH₃). ¹¹⁹Sn NMR (CD₂Cl₂, -70 °C; δ): A₂M, δ_M

 -129.7 , $J_{AM} = 251.0$ Hz. ³¹P{¹H} NMR (CD₂Cl₂, 25 °C; δ): A₂, δ_A 131.0 (J_A ¹¹⁷_{Sn} = 243.0). Anal. Calcd for C₂₃H₃₀Cl₃O₇P₂ReSn: C, 30.98; H, 3.39; Cl, 11.93. Found: C, 31.15; H, 3.27; Cl, 11.73. **3a.** IR (KBr; cm⁻¹): v_{CO} 1986, 1929 (s). ¹H NMR (CD₂Cl₂, 25 [°]C; δ): 7.85-7.40 (m, 15 H, Ph), 3.94, 3.80, 3.68 (m, 12 H, CH₂), 1.37, 1.31, 1.28 (t, 18 H, CH₃). ¹¹⁹Sn NMR (CD₂Cl₂, 25 °C; δ): AB_2M (A, B = ³¹P, M = ¹¹⁹Sn), δ_M -107.9, J_{AM} = 324.0, J_{BM} = 299.4 Hz. ³¹P{¹H} NMR (CD₂Cl₂, 25 °C; δ): AB₂, δ_A 136.9, δ_B $136.9, J_{AB} = 35.1 (J_{A^{117}Sn} = 314.2, J_{B^{117}Sn} = 290.5).$ ¹³C{¹H} NMR $(CD_2Cl_2, 25 \text{ }^\circ\text{C}; \delta)$: 193.1 ($J_{CP} = 55, J_{CP} = 10$), 192.5 ($J_{CP} = J_{CP}$ $=$ 10) (dt, CO), 140-128 (m, Ph), 65.1, 64.4 (t), 63.5 (d) (CH₂), 16.2 (m), 16.1 (d) (CH₃). Anal. Calcd for $C_{32}H_{45}Cl_{3}O_{8}P_{3}$ ReSn: C, 36.20; H, 4.27; Cl, 10.02. Found: C, 36.04; H, 4.38; Cl, 9.85.

3b. IR (KBr; cm⁻¹): *ν*_{CO} 1988, 1937 (s). ¹H NMR (CD₂Cl₂, 25 [°]C; *δ*): 4.07 (m, 18 H, CH₂), 1.34, 1.32 (t, 27 H, CH₃). ¹¹⁹Sn NMR $(CD_2Cl_2, 25 \text{ }^\circ\text{C}; \delta)$: AB₂M, δ_M – 160.6, J_{AM} = 382.9, J_{BM} = 324.6 Hz. ³¹P{¹H} NMR (CD₂Cl₂, 25 °C; δ): AB₂, δ_A 116.2, δ_B 115.0, $J_{AB} = 46.0$ ($J_{A^{117}Sn} = 361.7$, $J_{B^{117}Sn} = 311.2$). Anal. Calcd for C₂₀H₄₅-Cl3O11P3ReSn: C, 24.87; H, 4.70; Cl, 11.01. Found: C, 24.72; H, 4.10; Cl, 11.25.

 $M(SnH_3)(CO)_nP_{5-n}$ (4-6) (M = Mn (4), Re (5, 6); P = PPh- $(OEt)₂$ **(a), P(OEt)**₃ **(b);** $n = 3$ **(4, 5), 2 (6)).** An excess of NaBH₄ (19 mmol, 0.72 g) in ethanol (10 mL) was added to a suspension of the appropriate trichlorostannyl complex M(SnCl3)(CO)*n*P5-*ⁿ* (0.95 mmol) in ethanol (40 mL), and the reaction mixture was refluxed for 15 min for manganese complexes and 45 min for rhenium complexes. The solvent was removed under reduced pressure to give a solid, from which the $[M]-SnH_3$ complex was extracted with three 30 mL portions of benzene. The extracts were evaporated to dryness, leaving an oil which was triturated with ethanol (3 mL). A yellow (Mn) or white (Re) solid slowly separated out from the resulting solution, which was isolated by filtration and crystallized from ethanol; yield $\geq 60\%$ (4), $\geq 75\%$ (5, 6).

4a. IR (KBr; cm⁻¹): v_{CO} 2000 (m), 1930, 1914 (s); v_{SnH_3} 1798, 1750 (m). ¹H NMR ((CD₃)₂CO, 25 °C; δ): 7.68-7.44 (m, 10 H, Ph), 4.04, 3.86 (m, 8 H, CH₂), A_2X_3 spin system (X = ¹H), δ_X 3.40, J_{AX} = 2.25 Hz ($J_{X^{117}Sn}$ = 1358.5) (3 H, SnH₃), 1.32 (t, 12 H, CH₃). ¹¹⁹Sn NMR ((CD₃)₂CO, 25 °C; δ): A₂MX₃ (X = ¹H), $\delta_{\rm M}$ -259.7 , $J_{AM} = 229.7$, $J_{AX} = 2.25$, $J_{XM} = 1419.2$. ³¹P{¹H} NMR $((CD_3)_2CO, -70 \text{ °C}; \delta)$: A₂, δ_A 200.8 (J_A ¹¹⁷S_n = 220). Anal. Calcd for C23H33MnO7P2Sn: C, 42.04; H, 5.06. Found: C, 42.16; H, 5.12.

5a. IR (KBr; cm⁻¹): v_{CO} 2043 (m), 1940, 1922 (s); v_{SnH_3} 1786, 1742 (m). ¹H NMR ((CD₃)₂CO, 25 °C; δ): 7.70–7.35 (m, 10 H, Ph), 3.98, 3.82 (m, 8 H, CH₂), A_2X_3 , δ_X 2.82, J_{AX} = 3.2 Hz, $(J_{X^{117}Sn}$ $=$ 1255) (3 H, SnH₃), 1.32 (t, 12 H, CH₃). ¹¹⁹Sn NMR ((CD₃)₂CO, 25 °C; δ): A₂MX₃, $\delta_{\rm M}$ -468.4, $J_{\rm AM}$ = 151.0, $J_{\rm AX}$ = 3.2, $J_{\rm XM}$ = 1321. ³¹P{¹H} NMR ((CD₃)₂CO, 25 °C; δ): A₂, δ_A 134.1 (J_A ¹¹⁷Sn $=$ 143.8). ¹³C{¹H} NMR ((CD₃)₂CO, 25 °C; δ): 197.1 (*J*_{CP} = 11.3), 192.0 (J_{CP} = 9.0) (t, CO), 141-128 (m, Ph), 63.2 (t, CH₂), 16.0 (t, CH₃). Anal. Calcd for $C_{23}H_{33}O_7P_2ReSn$: C, 35.04; H, 4.22. Found: C, 34.88; H, 4.11.

6a: IR (KBr; cm⁻¹): *ν*_{CO} 1971, 1904 (s); *ν*_{SnH₃} 1752, 1739 (m). ¹H NMR ((CD₃)₂CO, 25 °C; *δ*): 7.85-7.34 (m, 15 H, Ph), 3.88, 3.73, 3.62 (m, 12 H, CH₂), AB₂X₃, δ_X 2.70, J_{AX} = 3.8, J_{BX} = 3.7
Hz ($J_{X^{117}\text{Sn}}$ = 1135) (3 H, SnH₃), 1.26, 1.25, 1.24 (t, 18 H, CH₃). ¹¹⁹Sn NMR ((CD₃)₂CO, 25 °C; *δ*): AB₂MX₃, *δ*_M -454.8, *J*_{AM} = 228.1, $J_{AX} = 3.8$, $J_{BM} = 200.3$, $J_{BX} = 3.7$, $J_{XM} = 1188$. ³¹P{¹H} NMR ((CD₃)₂CO, 25 °C; δ): AB₂, δ_A 138.6, δ_B 134.3, $J_{AB} = 36.0$ $(J_A^{117}S_n = 221.3, J_B^{117}S_n = 191.4)$. ¹³C{¹H} NMR ((CD₃)₂CO, 25 [°]C; δ): 196.2, 194.6 (m, CO), 143-127 (m, Ph), 63.5 (m), 62.3 (d) (CH_2) , 16.2 (m, CH₃). Anal. Calcd for $C_{32}H_{48}O_8P_3ReSn$: C, 40.10; H, 5.05. Found: C, 40.03; H, 5.11.

6b. IR (KBr; cm⁻¹): *ν*_{CO} 1971, 1895 (s); *ν*_{SnH3} 1752, 1735 (m). ¹H NMR ((CD₃)₂CO, -70 °C; *δ*): 4.01 (m, 18 H, CH₂), AB₂X, δ _X 2.82, $J_{AX} = J_{BX} = 3.8$ Hz ($J_{X^{117}Sn} = 1121.7$) (3 H, SnH₃), 1.27, 1.26 (t, 27 H, CH₃). ¹¹⁹Sn NMR ((CD₃)₂CO, 25 °C; δ): AB₂MX₃, $\delta_{\rm M}$ –487.5, $J_{\rm AM}$ = 254.7, $J_{\rm AX}$ = 3.8, $J_{\rm BM}$ = 225.5, $J_{\rm BX}$ = 3.8, $J_{\rm XM}$ $=$ 1182.4. ³¹P{¹H} NMR ((CD₃)₂CO, -70 °C; *δ*): AB₂, *δ*_A 122.9, δ_B 122.4, $J_{AB} = 45.6$ (J_A ¹¹⁷Sn = 241.6, J_B ¹¹⁷Sn = 216.4). Anal. Calcd for $C_{20}H_{48}O_{11}P_3$ ReSn: C, 27.85; H, 5.61. Found: C, 27.68; H, 5.64.

 $Re(SnD_3)(CO)_3[PPh(OEt)_2]_2$ (5a₁). This compound was prepared exactly like the related unlabeled $5a$, using NaBD₄ in C₂H₅-OD as a reagent. IR (KBr; cm⁻¹): $ν_{SnD_3}$ 1265, 1246 (m).

 $M(SnMe₃)(CO)₃[PPh(OEt)₂]₂$ (7a, 8a: $M = Mn$ (7), Re (8)). An excess of MgBrMe (1.5 mmol, 0.5 mL of a 3 M solution in diethyl ether) was added to a suspension of the appropriate trichlorostannyl complex $M(SnCl₃)(CO)₃P₂$ (0.25 mmol) in 20 mL of diethyl ether cooled to -196 °C. The reaction mixture was brought to room temperature and stirred for 2 h and the solvent then removed under reduced pressure. Ethanol (10 mL) was added to the solid obtained, and the resulting suspension was stirred for 1 h. The solvent was removed under reduced pressure to give a solid, from which the complex was extracted first with two 10 mL portions of diethyl ether and then with two 10 mL portions of benzene. The extracts were evaporated to dryness, leaving an oil, which was triturated with ethanol (3 mL). A pale yellow (Mn) or white (Re) solid slowly separated out from the resulting solution, which was isolated by filtration and crystallized from ethanol; yield $\geq 55\%$.

7a. IR (KBr; cm⁻¹): *ν*_{CO} 1979 (m), 1915, 1890 (s). ¹H NMR (CD2Cl2, 25 °C; *^δ*): 7.72-7.38 (m, 10 H, Ph), 4.02, 3.84 (m, 8 H, CH₂), 1.31 (t, 12 H, CH₃ phos), 0.22 (s, 9 H, SnCH₃, J_{H}^{119} s_n = 42
Hz) 119 Sn¹H³ NMR (CD₂Cl₂ -70 °C· δ); A₂M δ_{M} 56.5 J_{M} = Hz). ¹¹⁹Sn{¹H} NMR (CD₂Cl₂, -70 °C; δ): A₂M, $\delta_{\rm M}$ 56.5, $J_{\rm AM}$ = 179.4. ³¹P{¹H} NMR (CD₂Cl₂, -70 °C; δ): A₂, δ_A 202.2 (J_A ¹¹⁷Sn $=$ 170.5). ¹³C{¹H} NMR (CD₂Cl₂, -70 °C; δ): 219.3 (*J*_{CP} = 15), 218.0 (J_{CP} = 15) (t, CO), 141-128 (m, Ph), 62.8 (t, CH₂), 16.5 (t, CH₃ phos), -3.13 (s, SnCH₃, $J_{\rm^{13}C^{119}Sn} = 209$, $J_{\rm^{13}C^{117}Sn} = 203$). Anal. Calcd for $C_{26}H_{39}MnO_7P_2Sn$: C, 44.67; H, 5.62. Found: C, 44.85; H, 5.69.

8a. IR (KBr; cm⁻¹): *ν*_{CO} 2013 (m), 1940, 1920 (s). ¹H NMR ((CD3)2CO, 25 °C; *^δ*): 7.62-7.44 (m, 10 H, Ph), 3.95, 3.78 (m, 8 H, CH₂), 1.32, 1.30 (t, 12 H, CH₃ phos), 0.19 (s, 9 H, SnCH₃, *J*₁₄¹¹⁹_{Sn} = 36 Hz). ¹¹⁹Sn^{{1}H} NMR ((CD₃)₂CO, 25 °C; *δ*): A₂M, *δ*, -100 7 *L*₁₁ = 122 8 ³¹P¹^{1H}} NMR ((CD₃)₂CO, 25 °C· *δ*): *δ*_M -100.7, *J*_{AM} = 122.8. ³¹P{¹H} NMR ((CD₃)₂CO, 25 °C; *δ*): A_2 , δ_A 135.7 (J_A ¹¹⁷Sn = 118.2). ¹³C{¹H} NMR ((CD₃)₂CO, 25 °C; *δ*): 200.0 ($J_{CP} = 11.5$), 193.7 ($J_{CP} = 10$ Hz) (t, CO), 141-128 (m, Ph), 62.6 (m), 62.3 (d) (CH₂), 15.9 (m, CH₃ phos), -5.7 (s, SnCH₃, $J_{13}C_{119}S_{n} = 194.7$, $J_{13}C_{117}S_{n} = 186.7$). Anal. Calcd for C26H39O7P2ReSn: C, 37.61; H, 4.73. Found: C, 37.74; H, 4.63.

 $Re(SnMe_3)(CO)_2P_3$ (9: $P = PPh(OEt)_2$ (a), $P(OEt)_3$ (b)). An excess of MgBrMe $(1.5 \text{ mmol}, 0.5 \text{ mL of a } 3 \text{ M}$ solution in diethyl ether) was added to a solution of the appropriate trichlorostannyl complex $\text{Re}(SnCl_3)(CO)_2P_3$ (0.25 mmol) in 30 mL of diethyl ether cooled to -196 °C. The reaction mixture was warmed to room temperature and stirred for 3 h and the solvent then removed under reduced pressure. The solid obtained was treated with ethanol (5 mL) and the resulting solution stirred for 1 h. A white solid slowly separated out by allowing the solution to stand at -25 °C for some days. The solid was isolated by filtration and crystallized from CH₂- $Cl₂$ and ethanol; yield $\geq 60\%$.

9a. IR (KBr; cm⁻¹): v_{CO} 1962, 1880 (s). ¹H NMR (CD₂Cl₂, 25 ${}^{\circ}C$; δ): 7.70-7.33 (m, 15 H, Ph), 4.00-3.50 (m, 12 H, CH₂), 1.27, 1.25, 1.23 (t, 18 H, CH₃ phos), -0.10 (s, 9 H, SnCH₃, J_{H}^{119} _{Sn} = 32 H₇) ¹¹⁹Sn NMR (CD₂C₁, 25 °C; δ); AB₂MX, δ_{M} -126 7 32 Hz). ¹¹⁹Sn NMR (CD₂Cl₂, 25 °C; δ): AB₂MX₉, δ_M -126.7, $J_{AM} = 210.8$, $J_{AX} = 0.1$, $J_{BM} = 185.3$, $J_{BX} = 0.1$, $J_{XM} = 32$. ³¹P- $\{^1H\}$ NMR (CD₂Cl₂, -70 °C; δ): AB₂, δ_A 140.9, δ_B 136.1, J_{AB} = 37.0 (J_A ¹¹⁷Sn = 192.7, J_B ¹¹⁷Sn = 178.0). ¹³C{¹H} NMR (CD₂Cl₂, 25 ${}^{\circ}C$; δ): 200.4 (*J*_{CP} = 58, *J*_{CP} = 10), 196.7 (*J*_{CP} = *J*_{CP} = 9.8) (dt, CO), 142-128 (m, Ph), 63.1, 62.9 (t), 61.9 (d) (CH₂), 16.5 (m), 16.3 (d) (CH₃ phos), -3.21 (s, SnCH₃, J_{13} _C_{119</sup>S_n = 145). Anal. Calcd} for $C_{35}H_{54}O_8P_3$ ReSn: C, 42.01; H, 5.44. Found: C, 41.83; H, 5.37.

9b. IR (KBr; cm⁻¹): v_{CO} 1951, 1882 (s). ¹H NMR (CD₂Cl₂, 25 ${}^{\circ}C$; δ): 4.10 (m, 18 H, CH₂), 1.31, 1.28 (t, 27 H, CH₃ phos), 0.06 (s, 9 H, SnCH₃, $J_{1H¹¹⁹Sn} = 36 Hz$). ¹¹⁹Sn{¹H} NMR (CD₂Cl₂, 25

 ${}^{\circ}C$; *δ*): AB₂M, δ_{M} -110.6, J_{AM} = 240.8, J_{BM} = 210.8. ³¹P{¹H} NMR (CD₂Cl₂, 25 °C; δ): AB₂, δ_A 124.1, δ_B 122.3, $J_{AB} = 47.7$ $(J_A^{117}S_n = 228.8, J_B^{117}S_n = 197.2)$. ¹³C{¹H} NMR (CD₂Cl₂, 25 °C; *δ*): 200.4 (J_{CP} = 70.0, J_{CP} = 11.5), 196.9 (J_{CP} = J_{CP} = 11.0) (dt, CO), 61.4 (m), 61.3 (d) (CH₂), 16.4 (m, CH₃ phos), -3.77 (s, $SnCH₃, J¹³C¹¹⁹Sn = 159, J¹³C¹¹⁷Sn = 153$. Anal. Calcd for C₂₃H₅₄O₁₁P₃-ReSn: C, 30.54; H, 6.02. Found: C, 30.37; H, 6.10.

 $Mn[Sn(C=CH)_3](CO)_3[PPh(OEt)_2]_2$ (10a) and $Re[Sn(C=CH)_3]$ CH)₃] $(CO)_{2}$ [PPh $(OEt)_{2}$]₃ (11a). An excess of MgBr(C=CH) (2.0 mmol, 0.8 mL of a 2.5 M solution in diethyl ether) was added to a suspension of the appropriate trichlorostannyl complex M(SnCl3)- $(CO)_nP_{5-n}$ (0.33 mmol) in 20 mL of diethyl ether cooled to -196 °C. The reaction mixture was warmed to room temperature and stirred for 20 h. The solvent was removed under reduced pressure to give a solid, which was treated with ethanol (5 mL). The resulting suspension was vigorously stirred at 0 °C until a solid began to separate out. After the precipitation was completed (about $2-3$ h), the solid was isolated by filtration and crystallized from benzene and ethanol; yield $\geq 40\%$.

10a. IR (KBr; cm⁻¹): $ν_{CH}$ 3275 (m); $ν_{CO}$ 2018 (m), 1955, 1930 (s). 1H NMR ((CD3)2CO, -⁷⁰ °C; *^δ*): 7.83, 7.48 (m, 10 H, Ph), 4.09, 3.94 (m, 8 H, CH₂), 2.53 (s, 3 H, \equiv CH, $J_{\text{H}}^{119}\text{Sn} = 13.8 \text{ Hz}$), 138 (t, 12 H, CH₂), ¹¹⁹Sn NMR ((CD₂)₂CO, -70 °C, δ); **4**.M 1.38 (t, 12 H, CH₃). ¹¹⁹Sn NMR ((CD₃)₂CO, -70 °C; δ): A₂M, $δ$ _M -174.2, *J*_{AM} = 330.1. ³¹P{¹H} NMR ((CD₃)₂CO, -70 °C; *δ*): A_2 , δ_A 194.7 (J_A ¹¹⁷S_n = 324.5). ¹³C{¹H} NMR ((CD₃)₂CO, 25 °C; δ): 219.0 (*J*_{CP} = 15), 217.3 (*J*_{CP} = 15) (t, CO), 132-129 (m, Ph), 95.2 (s, C β , $J^{13}C^{119}S_n = 61$), 94.1 (s, C α , $J^{13}C^{119}S_n = 303$, $J^{13}C^{117}S_n =$ 285), 64.0 (t, CH₂), 16.1 (t, CH₃). Anal. Calcd for C₂₉H₃₃MnO₇P₂-Sn: C, 47.77; H, 4.56. Found: C, 47.65; H, 4.44.

11a. IR (KBr; cm⁻¹): $ν_{CH}$ 3269 (m); $ν_{CO}$ 1976, 1902 (s). ¹H NMR ((CD₃)₂CO, 25 °C; δ): 7.98-7.36 (m, 15 H, Ph), 4.05-3.60 (m, 12 H, CH₂), 2.20 (s, 3 H, \equiv CH, J_{H}^{119} _{Sn} = 19.6 Hz), 1.33, 1.27, 1.25 (t, 18 H, CH₂), ¹¹⁹Sn NMR ((CD₂)-CO, -70 ^oC, Δ) 1.27, 1.25 (t, 18 H, CH3). 119Sn NMR ((CD3)2CO, -⁷⁰ °C; *^δ*): AB₂M, δ_{M} -361.3, J_{AM} = 283.0, J_{BM} = 253.1. ³¹P{¹H} NMR $((CD₃)₂CO, 25 °C; \delta)$: AB₂, δ_A 135.2, δ_B 131.4, $J_{AB} = 36.6 (J_A$ ¹¹⁷_{Sn} $=$ 271.7, $J_{\rm B}^{117}$ _{Sn} = 245.1). ¹³C{¹H} NMR ((CD₃)₂CO, 25 °C; *δ*): 195.8 (m), 194.5 (dt) $(J_{CP} = J_{CP} = 10.0)$ (CO), 142-128 (m, Ph), 97.2 (s, Cα, $J^{13}C^{119}Sn = 187$), 93.2 (s, Cβ, $J^{13}C^{119}Sn = 37.6$), 64.3, 63.7 (t), 62.8 (d) (CH₂), 16.0 (m, CH₃). Anal. Calcd for C₃₈H₄₈O₈P₃-ReSn: C, 44.29; H, 4.69. Found: C, 44.08; H, 4.81.

 $M[Sn(C\equiv C-p-tolyl)_3](CO)$ _{*n*} $[PPh(OEt)_2]_{5-n}$ (12a-14a: M = **Mn** (12), **Re** (13, 14); $n = 3$ (12, 13), 2 (14)). An excess of the lithium acetylide $Li[C= C-p$ -tolyl] (1.2 mmol, 0.8 mL of a 1.5 M solution in tetrahydrofuran (thf)) was added to a suspension of the appropriate trichlorostannyl complex $M(SnCl₃)(CO)_nP_{5-n}$ (0.3) mmol) in 20 mL of diethyl ether cooled to -196 °C. The reaction mixture was warmed to room temperature and stirred for 3 h, and the solvent was then removed under reduced pressure. The oil obtained was treated with ethanol (5 mL), and the resulting solution was stirred at 0 °C until a solid separated out. In the case of manganese, the solid separated out after cooling the solution to -25 °C. The solids were isolated by filtration and crystallized from benzene and ethanol; yields ranged from 75% (Re) to 50% (Mn).

12a. IR (KBr; cm⁻¹): $v_{C=C}$ 2132 (m); v_{CO} 2007 (w), 1938, 1927 (s). ¹H NMR (CD₂Cl₂, 25 °C; δ): 7.85-7.13 (m, 22 H, Ph), 4.08, 3.94 (m, 8 H, CH2), 2.35 (s, 9 H, CH3 *p-*tolyl), 1.36 (t, 12 H, CH3 phos). ¹¹⁹Sn NMR (CD₂Cl₂, -70 °C; δ): A₂M, $\delta_{\rm M}$ -166.3, $J_{\rm AM}$ = 353.5 Hz. ³¹P{¹H} NMR (CD₂Cl₂, -70 °C; δ): A₂, δ_A 195.8 (J_A ¹¹⁷Sn $=$ 338.4). ¹³C{¹H} NMR (CD₂Cl₂, 25 °C; δ): 219 (m, CO), 138-121 (m, Ph), 107.3 (s, C β , $J_{13}C_{119}S_n = 66$, $J_{13}C_{117}S_n = 63$), 98.2 (s, C α , *J*¹³_C¹¹⁹S_n = 312, *J*¹³_C¹¹⁷S_n = 297), 65.5 (t, CH₂), 21.6 (s, CH₃) p -tolyl), 16.2 (t, CH₃ phos). Anal. Calcd for $C_{50}H_{51}MnO_7P_2Sn$: C, 60.08; H, 5.14. Found: C, 60.26; H, 5.25.

13a. IR (KBr; cm⁻¹): $v_{C\equiv C}$ 2131 (m); v_{CQ} 2036 (m), 1951, 1937 (s). ¹H NMR (CD₂Cl₂, 25 °C; δ): 7.80-7.12 (m, 22 H, Ph), 4.04, 3.99 (m, 8 H, CH2), 2.36 (s, 9 H, CH3 *p-*tolyl), 1.37 (t, 12 H, CH3 phos). ¹¹⁹Sn NMR (CD₂Cl₂, 25 °C; δ): A₂M, $\delta_{\rm M}$ -342.3, $J_{\rm AM}$ =

Table 1. Crystal Data and Structure Refinement Details

197.0 Hz. ³¹P{¹H} NMR (CD₂Cl₂, 25 °C; δ): A₂, δ_A 131.9 (J_A ¹¹⁷Sn $= 188.6$). ¹³C{¹H} NMR (CD₂Cl₂, 25 °C; δ): 193.4 (*J*_{CP} = 10.9), 189.8 ($J_{\rm CP}$ = 9.0) (t, CO), 140-122 (m, Ph), 107.2 (s, C β , $J_{\rm ^{13}C^{119}Sn}$ $= 69, J13_C¹¹⁷S_n = 67$, 97.3 (s, C α , $J¹³C¹¹⁹S_n = 295, J¹³C¹¹⁷S_n = 289$), 63.7 (t, CH2), 21.5 (s, CH3 *p-*tolyl), 16.1 (t, CH3 phos). Anal. Calcd for C50H51O7P2ReSn: C, 53.11; H, 4.55. Found: C, 52.92; H, 4.46.

14a. IR (KBr; cm⁻¹): $v_{C\equiv C}$ 2131 (m); v_{C0} 1975, 1902 (s). ¹H NMR (CD₂Cl₂, 25 °C; δ): 8.00-7.09 (m, 27 H, Ph), 4.00, 3.84, 3.62 (m, 12 H, CH2), 2.35 (s, 9 H, CH3 *p-*tolyl), 1.33, 1.21, 1.19 (t, 18 H, CH₃ phos). ¹¹⁹Sn NMR (CD₂Cl₂, 25 °C; δ): AB₂M, δ_M -358.5 , $J_{AM} = 280.2$, $J_{BM} = 258.5$ Hz. ³¹P{¹H} NMR (CD₂Cl₂, 25 °C; δ): AB₂, δ_A 136.9, δ_B 132.3, $J_{AB} = 35.0$ ($J_{A^{117}Sn} = 268.0$, $J_{\rm B}^{117}$ _{Sn} = 246.6). ¹³C{¹H} NMR (CD₂Cl₂, 25 °C; *δ*): 196.0 ($J_{\rm CP}$ = 57, $J_{CP} = 9.8$), 194.4 ($J_{CP} = J_{CP} = 9.8$) (dt, CO), 141-123 (m, Ph), 105.8 (s, C β , $J_{\rm{}^{13}C^{119}Sn} = 42$), 101.4 (s, C α , $J_{\rm{}^{13}C^{119}Sn} = 195.6$, *J*¹³_C¹¹⁷S_n = 185.8), 63.9, 63.3 (t), 62.2 (d) (CH₂), 21.5 (s, CH₃ *p*-tolyl), 16.2 (m, CH₃ phos). Anal. Calcd for $C_{59}H_{66}O_8P_3$ ReSn: C, 54.47; H, 5.11. Found: C, 54.30; H, 5.03.

 $[Re{Sn[OC(H)=O]}_2(\mu-OH){CO}_2P_3]_2$ (15: $P = PPh(OEt)_2$ **(a), P(OEt)3 (b)).** A solution of the appropriate trihydride stannyl complex $\text{Re}(SnH_3)(CO)_2P_3$ (0.1 mmol) in benzene (5 mL) was allowed to stand under a $CO₂$ atmosphere (1 atm) at room temperature for 24 h. The solvent was removed under reduced pressure, to give an oil which was triturated with pentane (5 mL) and ethanol (1 mL). A white solid slowly separated out, which was isolated by filtration and crystallized from acetone and ethanol; yield \geq 80%.

15a. IR (KBr; cm⁻¹): *ν*_{CO} 1989, 1926 (s); *ν*_{CHO} 1674 (m), 1636 (s). 1H NMR ((CD3)2CO, 25 °C; *^δ*): 8.82 (s, 4 H, CHO), 7.90- 6.97 (m, 30 H, Ph), 3.90-3.60 (m, 24 H, CH2), 1.22, 1.17, 1.13 (t, 36 H, CH3). 1H NMR ((CD3)2CO, -⁷⁰ °C; *^δ*): 9.72 (s, 4 H, CHO), 8.90 (s, 2 H, *^µ*-OH),7.95-6.90 (m, 30 H, Ph), 4.20-3.40 (m, 24 H, CH2), 1.43 (t, 36 H, CH3). 119Sn NMR ((CD3)2CO, 25 °C; *δ*): AB₂M, δ_{M} –496.6, J_{AM} = 353.8, J_{BM} = 341.0 Hz. ³¹P{¹H} NMR ((CD₃)₂CO, -30 °C; *δ*): AB₂, *δ*_A 133.9, *δ*_B 133.0, *J*_{AB} = 39.8 $(J_{A^{117}Sn} = 335.2, J_{B^{117}Sn} = 325.1)$. ¹³C{¹H} NMR ((CD₃)₂CO, 25 [°]C; δ): 193.2, 192.2 (m, CO), 166.0 (s, CHO), 140-124 (m, Ph), 64.1, 63.2 (m, CH₂), 16.0 (m, CH₃). Anal. Calcd for C₆₈H₉₆O₂₆P₆-Re2Sn2: C, 38.43; H, 4.55. Found: C, 38.26; H, 4.62.

15b: IR (KBr; cm⁻¹): *ν*_{CO} 1988, 1919 (s); *ν*_{CHO} 1665 (m), 1594 (s). ¹H NMR (CD₃C₆D₅, 25 °C; δ): 8.85 (s, 4 H, CHO), 4.02 (m, 36 H, CH₂), 1.23 (m, 54 H, CH₃). ¹H NMR (CD₃C₆D₅, -70 °C; *δ*): 9.21 (s, 4 H, CHO), 8.91 (s, 2 H, *µ*-OH), 4.12 (m, 36 H, CH2), 1.37 (m, 54 H, CH₃). ¹¹⁹Sn NMR (CD₃C₆D₅, 25 °C; δ): AB₂M, $\delta_{\rm M}$ -487.7, $J_{\rm AM}$ = 367.0, $J_{\rm BM}$ = 328.5 Hz. ³¹P{¹H} NMR $(CD_3C_6D_5, -70$ °C; δ): A₂B, δ_A 117.9, δ_B 116.1, $J_{AB} = 48.6$ ($J_{A^{117}Sn}$ $=$ 338.6, $J_{\rm B}$ ¹¹⁷S_n $=$ 311.4). ¹³C{¹H} NMR (CD₃C₆D₅, 25 °C; *δ*): 198.0, 195.5 (m, CO), 166.4 (s, CHO), 62.8 (t, CH2), 16.2 (t, CH3). Anal. Calcd for $C_{44}H_{96}O_{32}P_6$ Re₂Sn₂: C, 27.34; H, 5.01. Found: C, 27.15; H, 5.13.

Crystal Structure Determination. Data were collected on a SIEMENS Smart CCD area-detector diffractometer with graphitemonochromated Mo $K\alpha$ radiation. Absorption correction was carried out by SADABS.¹¹

Crystallographic calculations were performed with the Oscail program.12 Structures were solved by direct methods and refined by a full-matrix least-squares method based on *F*2. ¹³ Non-hydrogen atoms were refined with anisotropic displacement parameters. Hydrogen atoms were included in idealized positions and refined with isotropic displacement parameters, except those bonded to the tin atom for **4a** and **6b**, which were located and refined with anisotropic displacement parameters, and the hydrogen on the bridging hydroxyl oxygen atom for complex **15b**, which was located but its position was not refined.

Atomic scattering factors and anomalous dispersion corrections for all atoms were taken from ref 14. Details of crystal data and structural refinements are given in Table 1.

Results and Discussion

The chloro complexes¹⁵ MCl(CO)_nP_{5-n} (M = Mn, Re; P = PPh(OEt)₂, P(OEt)₃; $n = 2$, 3) react with an excess of SnCl₂.

(11) Sheldrick, G. M. SADABS: An Empirical Absorption Correction Program for Area Detector Data; University of Göttingen, Göttingen, Germany, 1996.

⁽¹²⁾ McArdle, P. *J. Appl. Crystallogr.* **1995**, *28*, 65.

⁽¹³⁾ Sheldrick, G. M. SHELX-97: Program for the Solution and Refinement of Crystal Structures; University of Göttingen, Göttingen, Germany, 1997.

⁽¹⁴⁾ *International Tables for X-ray Crystallography*; Kluwer: Dordrecht, The Netherlands, 1992; Vol. C.

⁽¹⁵⁾ The halogeno complexes $MX(CO)_nP_{5-n}$ (X = Cl, Br; P = PPh- $(OEt)₂$, $P(OEt)₃$; *n* = 2, 3) were prepared by substituting carbonyl ligands with phosphites in pentacarbonyl precursors MX(CO)₅, following the method reported in the Experimental Section. Analytical and spectroscopic data support the proposed formulation.

a Legend: $P = PPh(OEt)_2$ (**a**), $P(OEt)_3$ (**b**).

2H2O in refluxing ethanol to give the trichlorostannyl derivatives $M(SnCl₃)(CO)_nP_{5-n}$ (1-3) in high yields. Treatment of these $[M]$ -SnCl₃ compounds with NaBH₄ in ethanol affords the trihydridostannyl complexes $M(SnH_3)(CO)_nP_{5-n}$ (4–6), which were separated as pale yellow or white microcrystals and characterized (Schemes 1 and 2).

The insertion of $SnCl₂$ into the M-Cl bond, to give trichlorostannyl complexes $1-3$, is slow at room temperature and needs reflux conditions for good yields. It may be noted that the $SnCl₃$ ligand in $1-3$ also forms by starting from the bromide precursors $MBr(CO)_nP_{5-n}$, probably through the initial metathetic reaction with SnCl₂, giving the chloro intermediate $MCI(CO)_nP_{5-n}$. Halide exchange between the first-formed mixed trihalostannyl complex $[M]$ -SnBrCl₂ and SnCl₂ in excess cannot be excluded. Surprisingly, the trichlorostannyl complexes $[M]$ -SnCl₃ **1**-3 can also be obtained from the reaction of the hydrides $MH(CO)_nP_{5-n}$ with anhydrous $SnCl₂$. A first reaction of the hydride with $SnCl₂$, to give the chloro complex $MCl(CO)_nP_{5-n}$ followed by the insertion of $SnCl₂$ into the M-Cl bond, may explain the formation of the $[M]-SnCl_3$ complex. However, the direct insertion of $SnCl₂$ into the metal-hydride bond to give the hydridodihalostannyl intermediate $[M]$ -SnHCl₂ is also plausible. Halide exchange may then give the final $[M]$ -SnCl₃ derivatives $1-3$.

The trichlorostannyl complexes $[M]$ -SnCl₃ undergo substitution of all three chlorides with H^- when NaBH₄ is used as a reagent, thus allowing the synthesis of the first complexes of Mn and Re (**4**-**6**) containing tin trihydride as a ligand. Crucial for the success of syntheses was the use of very pure samples of precursors **¹**-**³** and of an appropriate reaction time. Otherwise, only large amounts of decomposition products or very impure materials were isolated.

Stannyl complexes **¹**-**⁶** were isolated as yellow (Mn) or white (Re) solids, stable in air and in solutions of common organic solvents, where they behave as nonelectrolytes.¹⁶ Their formulation is supported by analytical and spectroscopic data (IR and ¹H, ³¹P, and ¹¹⁹Sn NMR) and by the X-ray crystal structure determinations of the derivatives $Mn(SnH_3)(CO)_{3}[PPh(OEt)_2]_{2}$ (**4a**) and $\text{Re}(SnH_3)(CO)_2[P(OEt)_3]_3$ (**6b**).

The IR spectra of the $[M]$ -SnCl₃ tricarbonyl complexes $(1, 1)$ **2**) in the ν_{CO} region show one band of medium intensity and two strong bands between 2066 and 1906 cm^{-1} , suggesting a mer arrangement of the three carbonyl ligands.17 In the temperature range between $+20$ and -80 °C, the ³¹P NMR spectra appear as sharp singlets, fitting the magnetic equivalence of the two phosphite ligands. The spectra also show the characteristic satellites due to the coupling with the 119Sn and 117 Sn nuclei of the SnCl₃ ligand. However, the presence of the stannyl ligand is confirmed by ¹¹⁹Sn NMR spectra, in which it appears as triplets, due to coupling with the two magnetically equivalent phosphorus nuclei. On the basis of these data, a mertrans geometry of type **I** (Scheme 1) may be proposed for trichlorostannyl derivatives **1** and **2**.

The IR spectra of the related dicarbonyl complexes Re- $(SnCl₃)(CO)₂P₃$ (3) show two v_{CO} bands at 1988-1929 cm⁻¹, in agreement with the mutually cis position of the two carbonyl ligands. The 13C NMR spectra of **3a** also indicate the magnetic inequivalence of the two CO groups, showing two wellseparated multiplets for carbonyl carbon resonances. As ³¹P spectra appear as AB_2 multiplets, with ^{119}Sn and ^{117}Sn satellites, a mer-cis geometry of type **II** (Scheme 2) may reasonably be proposed for trichlorostannyl derivatives **3**.

The IR spectra of the trihydridostannyl complexes M(SnH3)- $(CO)_{3}[PPh(OEt)_{2}]_{2}$ (4, 5), in addition to the three ν_{CO} bands characteristic of a mer arrangement, show two medium-intensity bands at $1798-1742$ cm⁻¹, attributed to the v_{SnH} band of the $SnH₃$ ligand. In the labeled complex $Re(SnD₃)(CO)₃[PPh (OEt)_2]_2$ (5a₁), the two v_{SnD} bands were observed at 1265 and 1246 cm^{-1} , thus confirming the proposed attribution. Diagnostic for the presence of tin trihydride as a ligand are both ${}^{1}H$ and 119Sn NMR spectra. In the proton spectra a triplet, with the characteristic satellites due to coupling with 119Sn and 117Sn, was observed at 3.40 ppm for the manganese complex **4a** and at 2.82 ppm for the rhenium complex **5a** (Figure S1), which was attributed to the SnH₃ group. Proton- and phosphoruscoupled 119 Sn spectra appear as quartets of doublets at -259.7 ppm $(4a)$ (Figure S2) and -468.4 ppm $(5a)$, due to coupling with three hydrides and the two magnetically equivalent phosphorus nuclei, confirming the presence of the SnH3 group. In the temperature range between $+20$ and -80 °C, the ³¹P NMR spectra of rhenium complex **5a** are in fact sharp singlets, indicating the magnetic equivalence of the two phosphite ligands. Instead, the spectrum of the related manganese derivative **4a** is broad at room temperature but resolves into a sharp singlet at -70 °C, suggesting the magnetic equivalence of the two phosphite ligands in this case as well. On the basis of these data, a mer-trans geometry of type **III** (Scheme 1), like that found in the solid state for **4a** (see below), may reasonably be proposed for the trihydridostannyl derivatives $M(SnH₃)(CO)₃P₂$ (**4**, **5**).

The IR spectra of the related dicarbonyl complexes Re(SnH3)- $(CO)_2P_3$ (6a, 6b) show two ν_{CO} bands at 1971–1895 cm⁻¹ of two carbonyls in a mutually cis position and two mediumintensity absorptions at $1752-1735$ cm⁻¹, due to the ν_{SnH} band of the $SnH₃$ ligand. The ${}^{1}H$ NMR spectra confirm the presence of the trihydridostannyl group, showing multiplets at 2.70 ppm (**6a**) and 2.8 ppm (**6b**) (at -70 °C), with the characteristic

⁽¹⁶⁾ Geary, W. J. *Coord. Chem. Re*V*.* **¹⁹⁷¹**, *⁷*, 81-122.

⁽¹⁷⁾ Adams, D. M. *Metal-ligand and Related Vibrations*; St. Martin's Press: New York, 1968.

Figure 1. ORTEP view of the complex $Mn(SnH₃)(CO)₃[PPh (OEt)₂$]₂ (4a) drawn with thermal ellipsoids at the 30% probability level. The substituents on the phosphorus atoms were removed for clarity.

Table 2. Selected Bond Lengths (Å) and Angles (deg) for Mn(SnH3)(CO)3[PPh(OEt)2]2 (4a)

$Sn-H(2)$	1.59(6)	$Sn-H(3)$	1.74(6)
$Sn-H(1)$	1.81(6)	$Sn-Mn$	2.6260(9)
$Mn-C(1)$	1.783(6)	$Mn-C(2)$	1.814(5)
$Mn-C(3)$	1.878(5)	$Mn-P(2)$	2.2303(15)
$Mn-P(1)$	2.2335(14)	$C(1)-O(1)$	1.154(6)
$C(2)-O(2)$	1.149(5)	$C(3)-O(3)$	1.077(6)
$H(2) - Sn - H(3)$	96(3)	$H(2) - Sn - H(1)$	108(3)
$H(3)-Sn-H(1)$	109(3)	$H(2)-Sn-Mn$	115(2)
$H(3)-Sn-Mn$	116(2)	$H(1)-Sn-Mn$	110.9(19)
$C(1)-Mn-C(2)$	96.4(2)	$C(1)-Mn-C(3)$	100.2(2)
$C(1)$ -Mn-P(2)	89.86(16)	$C(2)-Mn-P(2)$	88.44(15)
$C(3)-Mn-P(2)$	89.75(14)	$C(1)$ -Mn-P(1)	89.04(16)
$C(2)-Mn-P(1)$	90.14(15)	$C(3)-Mn-P(1)$	91.98(14)
$P(2)-Mn-Sn$	91.48(5)	$C(2)-Mn-Sn$	82.61(16)
$C(3)-Mn-Sn$	80.77(18)	$P(1)$ -Mn-Sn	89.59(4)
$P(2)$ -Mn- $P(1)$	178.10(6)	$C(1)-Mn-Sn$	178.33(16)
$C(2)-Mn-C(3)$	163.2(2)		

satellites due to coupling with ¹¹⁹Sn and ¹¹⁷Sn. Taking into account that the ${}^{31}P$ spectra are AB_2 multiplets, the proton multiplet can be simulated with an AB_2X_3 model with the parameters reported in the Experimental Section. In addition, the proton-coupled 119Sn NMR spectra appear as complicated multiplets, due to coupling with the hydride and phosphorus nuclei, which can be simulated with an AB_2MX_3 model (M = ^{119}Sn ; X = ^{1}H), in agreement with the presence of the SnH₃ ligand.

The ¹³C NMR spectrum of the complex $\text{Re}(SnH_3)(CO)_2[PPh (OEt)₂$ ₃ (6a) shows two well-separated multiplets at 196.2 and 194.6 ppm, due to the carbonyl carbon resonances of two magnetically inequivalent carbonyl ligands. On the basis of these data, a mer-cis geometry of type **IV** (Scheme 2), like that observed in the solid state for **6b**, may reasonably be proposed in solution for our trihydridostannyl derivatives **6**.

The perspective view of the complex $Mn(SnH_3)(CO)_3[PPh (OEt)_2$ ₂ (**4a**) is shown in Figure 1. Selected bond distances and angles are given in Table 2. The manganese ion is coordinated by three carbonyl ligands in mer positions, two phosphorus atoms of two phosphinite ligands in trans positions, and a tin atom from a trihydridostannyl group. The coordination polyhedron around the manganese may be defined as an octahedron, but some distortion is found in the carbonyl-manganesecarbonyl axis, with a $C(2)$ -Mn-C(3) angle of 163.2(2)°, bent toward the position occupied by the trihydridostannyl ligand, perhaps due to the lower steric requirements for this ligand. The other two axes are almost linear (178.10(6) and 178.33- $(16)^\circ$). The cis angles are close to the theoretical 90 $^\circ$, except

those concerning the mentioned carbonyl groups. The bond distance between the carbonyl groups and the manganese atom is affected by the trans influence, and the $Mn-C(1)$ distance of the carbonyl trans to the trihydridostannyl group is only slightly shorter than the Mn-C distances involving the two carbonyl groups trans to each other. These data let us propose a trans influence for the SnH3 ligand intermediate between those of the carbonyl group and the $P(\text{OMe})_3$ group.⁴ Accordingly, the corresponding C-O distances follow the opposite trend. These values are similar to those found in previously reported mer-tricarbonylmanganese complexes.5a The Mn-P distances are $2.2303(15)$ and $2.2335(14)$ Å and are significantly shorter than those found in other mer,trans-tricarbonylbis(phosphinite) manganese complexes.5a,18

The substituents on the phosphorus atoms are situated in a pseudo-eclipsed fashion, both phenyl groups following the direction of one of the carbonyl groups, with torsion angles $C(11)-P(1)-P(2)-C(21)$, $O(11)-P(1)-P(2)-O(22)$, and $O(12) P(1)-P(2)-O(21)$ of only $-6.8(3)$, $-2.3(2)$, and $-3.4(3)$ ° and $C(11)-P(1)-Mn-C(2)$ and $C(21)-P(2)-Mn-C(2)$ of $-15.3-$ (2) and $8.5(3)^\circ$, respectively.

The Sn-H bond lengths (in the range $1.59(6)-1.81(6)$ Å)⁴ and angles confirm the $sp³$ character of the tin atom, but these values may be misleading due to the well-known limitations of X-ray diffractometry for hydrogen atoms in the proximity of heavy metals.

The Mn $-Sn$ bond length, 2.6260(9) Å, is shorter than those found in bis(pentacarbonylmanganese)diphenyltin¹⁹ and in other (triaryltin)pentacarbonylmanganese(I) complexes.6l

The perspective view of complex $\text{Re}(SnH_3)(CO)_2[P(OEt)_3]_3$ (**6b**) is shown in Figure 2. Selected bond distances and angles are given in Table 3. In this compound, the rhenium atom is coordinated by three phosphorus atoms of the phosphite ligands in mer positions, two carbonyl ligands in cis positions, and a tin atom from a trihydridostannyl group. The Re-C bond distances, 1.922(5) and 1.935(5) Å, show small differences, the shorter one being trans to the trihydridostannyl ligand, confirming the trend found previously in the $Mn(I)$ complex. The $Re-P$ bond distances range from $2.3664(11)$ to $2.3883(12)$ Å, being about 0.02 Å shorter those mutually trans than the one trans to the carbonyl ligand. Except for the Re-C bond length trans to the trihydridostannyl ligand, all Re-C and Re-P bond lengths are shorter than those found in $[ReBr(CO)₂{P(OEt)₃}₃]²⁰$ a rhenium(I) complex with a similar environment. The Re-Sn bond length, 2.7632(6) Å, is similar to those found in (trialky $ltin$)rhenium(I) complexes²¹ and is shorter than the sum of the covalent radii of the metals (∼2.95 Å).

The angles around the rhenium atom fall well into the range expected for a regular octahedron, the most distorted value being that of the P-Re-P axis, $171.94(4)$ °, which is slightly bent toward the bisector of the Sn-Re-CO angle. The substituents on the phosphorus atoms, mutually in trans positions, are situated in a pseudo-eclipsed fashion, with torsion O-P-P-O angles of only 5.6(2)° (average), but none of the substituents follow the same direction as any ligand in the equatorial plane, with

⁽¹⁸⁾ Bravo, J.; Castro, J.; Garcia-Fontán, S.; Lamas, E. M.; Rodríguez-Seoane, P. *^Z*. *Anorg. Allg. Chem*. **²⁰⁰³**, *⁶²⁹*, 297-302.

⁽¹⁹⁾ Christendat, D.; Wosnick, J. H.; Butler, I. S.; Gilson, D. F. R.; Lebuis, A.-M.; Morin, F. G. *J. Mol. Struct.* **²⁰⁰¹**, *⁵⁵⁹*, 235-243.

⁽²⁰⁾ Carballo, R.; Losada-Gonza´lez, P.; Va´zquez-Lo´pez, E. M. *Z. Anorg. Allg. Chem*. **²⁰⁰³**, *⁶²⁹*, 249-254.

^{(21) (}a) Lee, S. W.; Yang, K.; Martin, J. A.; Bott, S. G.; Richmond, M. G. *Inorg. Chim. Acta* 1995, 232, 57-62. (b) López, E. M.; Miguel, D.; Pe´rez, J.; V. Riera, V.; Bois, C.; Jeannin, Y. *Organometallics* **1999**, *18*, ⁴⁹⁰-494.

Figure 2. ORTEP views of the complex $\text{Re}(\text{SnH}_3)(CO)_2[P(OEt)_3]_3$ (**6b**) drawn with thermal ellipsoids at the 30% probability level. The substituents on the phosphorus atoms were removed for clarity.

Table 3. Selected Bond Lengths (Å) and Angles (deg) for Re(SnH3)(CO)2[P(OEt)3]3 (6b)

$Sn-H(1)$ $Sn-H(3)$ $Re-C(1)$ $Re-P(1)$ $Re-P(3)$	1.81(5) 1.63(5) 1.922(5) 2.3664(11) 2.3883(12)	$Sn-H(2)$ $Re-Sn$ $Re-C(2)$ $Re-P(2)$ $C(1)-O(1)$	1.63(6) 2.7632(6) 1.935(5) 2.3693(11) 1.140(5)	
$C(2)-O(2)$	1.156(5)			
$C(1)$ -Re- $C(2)$ $C(2)$ -Re-P(1) $C(2)$ -Re-P(2) $C(1)$ -Re-P(3) $P(1) - Re - P(3)$ $C(1)$ -Re-Sn $P(1)$ –Re–Sn $P(3)$ -Re-Sn $H(2) - Sn - H(1)$ $H(1)-Sn-Re$ $O(2) - C(2) - Re$	89.33(19) 89.78(13) 83.01(13) 88.69(13) 93.42(4) 177.28(12) 88.04(3) 93.73(3) 100(2) 116.6(17) 176.8(4)	$C(1)$ -Re-P(1) $C(1)$ -Re-P(2) $P(1) - Re - P(2)$ $C(2)$ -Re-P(3) $P(2) - Re - P(3)$ $C(2)$ -Re-Sn $P(2)$ –Re–Sn $H(2) - Sn - H(3)$ $H(3)-Sn-H(1)$ $O(1) - C(1) - Re$	90.57(12) 92.94(12) 171.94(4) 176.25(13) 93.92(4) 88.33(15) 88.15(3) 91(3) 101(2) 179.7(4)	

O-P-Re-P(3) or O-P-Re-C(1) torsion angles of about 15° and O-P-Re-Sn torsion angles of about 45° (see Figure 2, bottom).

The Sn-H bond lengths are in the range of $1.63(5)-1.81(5)$ Å, as found previously for the $Mn(I)$ complex, but these values may be misleading, due to the well-known restrictions of X-ray diffractometry for hydrogen atoms in the proximity of heavy metals.

Relatively few examples of rhenium-tin complexes have been reported to date^{2r,t,7} and mainly include di- or polynuclear

Scheme 3

 $P = PPh(OEt)₂ (a), P(OEt)₃ (b)$

derivatives,^{2r,t} prepared from the oxidative addition of Ar₃SnH species to precursor complexes in a low oxidation state. The use of mixed-ligand Re(CO)*n*P5-*ⁿ* fragments, with carbonyl and phosphite, allows easy synthesis of mononuclear rhenium stannyl complexes containing SnCl₃ and, for the first time, tin trihydride (SnH₃) as a ligand. Manganese stannyl derivatives⁶ are better known than rhenium ones, and some years ago a very unstable stannyl complex, 6g formulated as $Mn(SnH_3)(CO)_5$, was obtained from the reaction of Na[Mn(CO)₅] with SnH₃Cl at -45 °C. The absence of 119Sn and 117Sn satellites in the proton signals attributed to the SnH₃ group in the NMR spectra may have made its formulation uncertain. However, comparison with the spectroscopic data of our tin trihydride derivative Mn(SnH3)- $(CO)_{3}[PPh(OEt)_{2}]$ suggests that the complex prepared by Mackay et al., although so unstable as to appear as a transient species, probably did contain the SnH₃ ligand. In our case, the use of the mixed-ligand $Mn(CO)_{3}P_{2}$ fragment instead of Mn-(CO)₅ allowed easy stabilization of the SnH₃ group bonded to manganese, yielding stable and isolable complexes. The use of NaBH₄²² to synthesize trihydridostannyl complexes may also be important in providing a easy route to this new class of complexes containing $SnH₃$ as a ligand.

The easy synthesis of trihydridostannyl complexes **⁴**-**6**, by substituting chloride with H^- in the metal-bonded SnCl₃ group, prompted us to extend the substitution reaction on $[M]-SnCl_3$ complexes **¹**-**³** to other nucleophilic reagents: the results are shown in Schemes 3 and 4.

The trichlorostannyl complexes $M(SnCl₃)(CO)_nP_{5-n}$ react with both Grignard reagents MgBrMe and MgBr($C\equiv CR$) to give the trimethylstannyl derivatives M(SnMe3)(CO)*n*P5-*ⁿ* (**7**-**9**) and tris(alkynyl)stannyl derivatives $M[\text{Sn}(C\equiv CR)_3](CO)_nP_{5-n}$ (10-**14**), respectively, which can be isolated in the solid state and characterized. The tris(alkynyl)stannyl complexes **¹²**-**¹⁴** can also be prepared by treating $[M]$ -SnCl₃ precursors with the lithium acetylide $Li^+(C\equiv CR)^-$ in thf. The substitution reaction is quite fast at room temperature and yields the trisubstituted stannyl group with a moderate excess of the nucleophile.

Good analytical data were obtained for stannyl complexes **⁷**-**14**, which were isolated as yellow (Mn) or white (Re) solids, stable in air and in solution in common organic solvents, where they behave as nonelectrolytes.¹⁶ The compounds were characterized by spectroscopy (IR and 1H, 31P, 13C, and 119Sn NMR)

⁽²²⁾ The use of N a BH ₄ as a reagent is rare in the chemistry of tin ligands,23 which generally involves oxidative addition or nucleophilic substitution reactions to coordinate tin compounds to metal fragments.

⁽²³⁾ Lappert, M. F.; McGeary, M. J.; Parish, R. V. *J. Organomet. Chem.* **¹⁹⁸⁹**, *³⁷³*, 107-117.

 $R = H(11), p$ -tolyl (14) ; $P = PPh(OEt)_2 (a)$

Table 4. Selected Bond Lengths (Å) and Angles (deg) for Re(SnMe3)(CO)2[P(OEt)3]3 (9b)

molecule 1		molecule 2	
$Re(1) - C(1)$	1.81(2)	$Re(2) - C(7)$	1.77(3)
$Re(1) - C(2)$	1.904(13)	$Re(2) - C(6)$	1.915(15)
$Re(1) - P(11)$	2.293(4)	$Re(2) - P(21)$	2.334(4)
$Re(1) - P(12)$	2.338(4)	$Re(2) - P(22)$	2.342(4)
$Re(1) - P(13)$	2.354(4)	$Re(2) - P(23)$	2.348(4)
$Re(1) - Sn(1)$	2.7917(10)	$Re(2) - Sn(2)$	2.7929(10)
$Sn(1)-C(4)$	2.183(11)	$Sn(2)-C(10)$	2.183(13)
$Sn(1)-C(3)$	2.194(13)	$Sn(2)-C(8)$	2.201(12)
$Sn(1)-C(5)$	2.212(11)	$Sn(2)-C(9)$	2.221(11)
$O(2) - C(2)$	1.158(12)	$O(6)-C(6)$	1.148(13)
$O(1) - C(1)$	1.249(19)	$O(7) - C(7)$	1.26(2)
$C(1)$ -Re (1) -C (2)	92.6(6)	$C(7)-Re(2)-C(6)$	92.1(6)
$C(1)$ -Re (1) -P (11)	177.8(4)	$C(7)-Re(2)-P(21)$	177.7(5)
$C(2)$ -Re(1)-P(11)	89.6(4)	$C(6)-Re(2)-P(21)$	90.1(4)
$C(1) - Re(1) - P(12)$	88.8(4)	$C(7)-Re(2)-P(22)$	88.6(5)
$C(2)-Re(1)-P(12)$	94.5(4)	$C(6)-Re(2)-P(22)$	95.4(4)
$P(11) - Re(1) - P(12)$	91.03(14)	$P(21) - Re(2) - P(22)$	92.01(13)
$C(1) - Re(1) - P(13)$	88.6(4)	$C(7)-Re(2)-P(23)$	88.2(5)
$C(2)-Re(1)-P(13)$	94.6(4)	$C(6)-Re(2)-P(23)$	94.7(4)
$P(11) - Re(1) - P(13)$	91.29(15)	$P(21) - Re(2) - P(23)$	90.81(14)
$P(12) - Re(1) - P(13)$	170.62(14)	$P(22) - Re(2) - P(23)$	169.54(13)
$C(1) - Re(1) - Sn(1)$	85.7(4)	$C(7)-Re(2)-Sn(2)$	85.4(5)
$C(2) - Re(1) - Sn(1)$	178.1(4)	$C(6)-Re(2)-Sn(2)$	177.4(4)
$P(11) - Re(1) - Sn(1)$	92.08(10)	(21) -Re (2) -Sn (2)	92.48(9)
$P(12) - Re(1) - Sn(1)$	86.32(10)	$P(22) - Re(2) - Sn(2)$	84.96(10)
$P(13) - Re(1) - Sn(1)$	84.51(10)	$P(23) - Re(2) - Sn(2)$	84.86(9)
$C(4)-Sn(1)-C(3)$	99.1(6)	$C(10)-Sn(2)-C(8)$	97.8(5)
$C(4) - Sn(1) - C(5)$	99.8(5)	$C(10)-Sn(2)-C(9)$	101.0(6)
$C(3)-Sn(1)-C(5)$	101.3(5)	$C(8)-Sn(2)-C(9)$	100.2(5)
$C(4)-Sn(1)-Re(1)$	119.2(3)	$C(8)-Sn(2)-Re(2)$	119.9(4)
$C(3)-Sn(1)-Re(1)$	120.3(4)	$C(10)-Sn(2)-Re(2)$	120.8(3)
$C(5)-Sn(1)-Re(1)$	113.6(3)	$C(9)-Sn(2)-Re(2)$	113.5(4)
$O(1) - C(1) - Re(1)$	177.8(14)	$O(6)-C(6)-Re(2)$	179.5(13)
$O(2)-C(2)-Re(1)$	179.1(13)	$O(7)-C(7)-Re(2)$	175.5(17)

and by an X-ray crystal structure determination of the derivative $Re(SnMe₃)(CO)₂[P(OEt)₃]$ ₃ (9b).

Diagnostic for the presence of the stannyl SnMe₃ and Sn- $(C\equiv CR)$ ₃ ligands are the ¹H, ¹³C, and ¹¹⁹Sn NMR spectra. The ¹H NMR spectra of the trimethylstannyl complexes M(SnMe₃)- $(CO)_nP_{5-n}$ (**7-9**), beside the signals of the phosphites, show a singlet at -0.10 to $+0.22$ ppm, with the characteristic satellites due to coupling with $\frac{119}{5}$ n (*J*¹¹⁹_{Sn} between 32 and 42 Hz), attributed to the methyl proton resonances of the SnMe₃ ligand. In the 13 C NMR spectra, the carbon signal of the SnMe₃ group falls between -3.13 and -5.7 ppm, showing the characteristic satellites due to the coupling with 119Sn , with $J^{13}C^{119}\text{Sn}$ between 209 and 145 Hz. In an HMQC experiment, this signal was also correlated with the proton singlet at -0.10 to $+0.22$ ppm, fitting

Figure 3. ORTEP views of one of the molecules of the asymmetric unit of the compound $\text{Re}(\text{SnMe}_3)(CO)_2[P(OEt)_3]_3$ (9b) drawn with thermal ellipsoids at the 30% probability level. The substituents on the phosphorus atoms were removed for clarity.

the proposed attribution. Finally, the proton-coupled 119Sn NMR spectra show a very complicated multiplet, owing to coupling with the nine methyl protons and the phosphorus nuclei. However, the proton-decoupled spectra are more simplified and appear either as a triplet $(7, 8)$ or an AB₂M (M = ¹¹⁹Sn) multiplet (**9**), in agreement with the proposed formulation.

The perspective view of one of the two molecules found in the asymmetric unit of the complex $Re(SnMe_3)(CO)_2[POEt)_3]_3$ (**9b**) is shown in Figure 3. Selected bond distances and angles are given in Table 4. The two molecules are essentially identical, within experimental error (see geometrical parameters in Table 4). The compound is similar to **6b**, with the rhenium atom coordinated by three phosphorus atoms of the phosphite ligands in mer positions, two carbonyl ligands in cis positions, and a tin atom with analogous geometrical parameters. However, some differences can be found, apart from the change of a trihydridostannyl for a trimethylstannyl ligand. First, the Re-C bond distances are slightly different from those found in **6b**, ranging from 1.77(3) to 1.92(2) Å, and the shorter ones $(1.77(3)$ and $1.81(2)$ Å) correspond to those trans to the phosphorus atom, about 0.1 Å shorter than those trans to the trimethyltin ligand. The Re-P bond distances range from 2.293(4) to 2.354(4) \AA , those mutually trans being slightly longer than that trans to the carbonyl ligand, opposite to the case found for **6b**.

The Sn-C bond lengths are in the range of $2.18(1)-2.22(1)$ Å, as found previously in the rhenium complex (dimethylchlo-

rotin)bis(*η5-*cyclopentadienyl)rhenium,24 other (triaryltin)rhenium(I) complexes, 21 and other (trimethyltin)metal complexes. 25

As occurs in **6b**, the substituents on the phosphorus atoms mutually in trans positiond are situated in a pseudo-eclipsed fashion, with torsion angles $O-P-P-O$ of only $6.1(7)^\circ$ (average). However, another difference with respect to the related complex is that one of the substituents follows the same direction as the carbonyl ligand in the equatorial plane, with ^O-P-Re-C torsion angles of 4.6(7)° (average), probably due to the steric hindrance of the methyl groups on the tin ligand (see Figure 3, bottom).

The IR spectra of the tris(alkynyl)stannyl complexes $M[\text{Sn}(C\equiv CR)_{3}](CO)_{n}P_{5-n}$ (12-14: R = p-tolyl) show a medium-intensity band at $2131-2132$ cm⁻¹, attributed to the $v_{\text{C}=\text{C}}$ band of the alkynyl group. In the spectra of the ethynyl complexes $[M]$ -Sn(C \equiv CH)₃ (10a, 11a), this band was not observed, but an absorption at $3275-3269$ cm⁻¹, attributed to the *ν*_{CH} band of the C≡CH group, was observed. However, the presence of the tris(alkynyl)stannyl ligand was confirmed by the 13C and 119Sn NMR spectra. In addition to the signals of CO and phosphite ligands, the 13 C spectra of the derivatives $M[\text{Sn}(C\equiv CR)_3](CO)_nP_{5-n}$ (10a-14a) (Figures S3a and S3b, Supporting Information) show two singlets, at $101-94$ and ¹⁰⁷-93 ppm, with the characteristic satellites due to coupling with 119 Sn and 117 Sn nuclei, which were attributed to the C α and C β carbon resonances, respectively, of the Sn(C $\alpha \equiv C\beta R$)₃ group. The $J¹³C¹¹⁹S_n$ values between 312 and 187 Hz in one case and between 69 and 37 Hz in the other clearly allow attribution of the C α and C β signals. Furthermore, in the spectra of ethynyl $Sn(C\equiv CH)$ ₃ complexes (10, 11), the ¹³C signals at 94.1 ppm (**10a**) and 97.2 ppm (**11a**) were also correlated, in an HMQC experiment (Figure S4b, Supporting Information), with the singlets at 2.53 (**10a**) and 2.20 (**11a**) ppm observed in the 1H NMR spectra (Figure S4a, Supporting Information) and attributed to ethynyl protons, in agreement with the presence of the C \equiv CH group. Finally, the ¹¹⁹Sn NMR spectra appear as a triplet for the tricarbonyl complex **10**, **12**, and **13** and an AB2M $(M = {}^{119}Sn)$ multiplet for dicarbonyl complexes 11 and 14 complexes, fitting the presence of the stannyl ligands.

The IR and NMR data of the derivatives $M[Sn(CH₃)₃]$ - $(CO)_{n}P_{5-n}$ and $M[Sn(C\equiv CR)_{3}](CO)_{n}P_{5-n}$ (7-14) also allow a geometry in solution to be established. Thus, a mer-trans structure (**V**, **VII**; Schemes 3 and 4) for tricarbonyls **7**, **8**, **10**, **12**, and **13** is supported by the three v_{CO} bands—one of medium intensity and two strong-observed in the infrared spectra and by the singlet that appears in the $31P$ spectra, indicating the magnetic equivalence of the two phosphite ligands. Instead, a mer-cis geometry (**VI**, **VIII**), like those observed in the solid state for **9b**, is proposed for the dicarbonyl compounds **9**, **11**, and **14**. In fact, the IR spectra show two v_{CO} bands of two carbonyls in mutually cis positions, while the $31P$ spectra show $AB₂$ multiplets, suggesting that the two phosphites are magnetically equivalent and different from the third. In addition, the ¹³C spectra indicate that the two carbonyls are magnetically nonequivalent, showing two multiplets for the carbonyl carbon resonances, in agreement with the proposed geometry.

Complexes containing the trimethylstannyl ligand (SnMe3) are known for several transition metals, $1-3$ including some examples for manganese^{2e,6b,e,i,l} and only one for rhenium,^{6e} and have often been obtained from the oxidative reaction of $(CH_3)_3$ -

a Legend: $[M] = \text{Re(CO)}_2P_3$ (15); P = PPh(OEt)₂ (**a**), P(OEt)₃ (**b**).

SnH or $(CH₃)₃SnCl$ species on appropriate complex precursors. Nucleophilic substitution of chloride in the SnCl₃ ligand thus represents an interesting protocol^{2k} for the synthesis of tinorganostannyl complexes, which has allowed us to prepare metal complexes containing tris(alkynyl)stannyl as a ligand for the first time.¹ In fact, numerous stannyl ligands $SnR₃$ are known, with many organic substituents, but none containing three alkynyl groups have yet been reported.

Reactivity of Trihydridostannyl Complexes. The reactivity of the coordinated tin trihydride group toward some substrates was studied, and results are shown in Scheme 5.

The tin trihydride complexes $[M]$ -SnH₃ (4–6) quickly react with carbon tetrachloride to give the trichlorostannyl derivatives $[M]$ -SnCl₃ (1–3). The reaction is fast and cannot be controlled to obtain the intermediate complexes $[M]-\text{SnH}_2Cl$ and $[M]-\text{Sn-}$ $HCl₂⁴$ in pure form. Even with CCl₄ in a 0.4:1 ratio, a mixture of chloro-hydrido stannyl derivatives was obtained, which could not be separated. In every case, reaction with $CCl₄$ to give chloro derivatives is classical for transition-metal hydrides 26 and seems to indicate the polyhydridic character of the SnH₃ group.

Support for this hypothesis came from the reaction with carbon dioxide, which quickly reacted with the dicarbonyl complexes $Re(SnH_3)(CO)_2P_3$ under mild conditions (1 atm, 25) °C) to give the tin bridging-hydroxo bis(formate) derivatives $[\{Re\} \text{Sn}[\text{OC}(H) = O]_{2}(\mu \text{-OH})\}(\text{CO})_{2}P_{3}\}]_{2}$ (15) as final products (Scheme 5). However, a different behavior was shown by the tricarbonyl complexes M(SnH3)(CO)3P2 (**4**, **5**), whose reaction with $CO₂$ (1 atm) was very slow in the case of manganese. With rhenium it gave an unstable formate compound, which decomposed during crystallization.

For information on the reaction path and the nature of the intermediates, the progress of the reaction of $\text{Re}(SnH_3)(CO)_2$ - $[P(OEt)_3]$ ₃ (6b) with CO_2 (1 atm) was monitored by NMR spectra in the temperature range between $+20$ and -70 °C. As the reaction proceeded, the ¹H NMR spectra in $CD_3C_6D_5$ at 20 °C showed the disappearance of the multiplet near 2.8 ppm of the SnH3 group of the precursor and the appearance of

⁽²⁴⁾ Belsky, V. K.; Protsky, A. N.; Molodnitskaya, I. V.; Bulychev, B. M.; Soloveichik, G. L. *J. Organomet. Chem.* **¹⁹⁸⁵**, *²⁹³*, 69-74.

⁽²⁵⁾ Clark, A. M.; Rickard, C. E. F.; Roper, W. R.; Woodman, T. J.; Wright, L. J. *Organometallics* **²⁰⁰⁰**, *¹⁹*, 1766-1774.

^{(26) (}a) Muetterties, E. L. *Transition Metal Hydrides*; Marcel Dekker: New York, 1971. (b) Dedieu, A. *Transition Metal Hydrides*; Wiley-VCH: New York, 1992.

⁽²⁷⁾ The NMR data of the intermediate complex $Re[SnH{OC(H)=O}_{2}]$ - $(CO)_2[P(OEt)_3]_3$ ([A]) are as follows. ¹H NMR $(CD_3C_6D_5, 25 °C; \delta)$: 11.75 (s, br, 1 H, SnH), 8.70 (s, 2 H, CHO), 4.00 (m, 18 H, CH₂), 1.23, 1.20 (t, 27 H, CH₃). ¹H NMR (CD₃C₆D₅, -70 °C; δ): AB₂X spin system, δ_X 11.92, 27 H, CH₃). ¹H NMR (CD₃C₆D₅, -70 °C; *δ*): AB₂X spin system, *δ*_X 11.92,
 $J_{\text{AY}} = J_{\text{BY}} = 0.1$. $J_{\text{H}}^{11986} = 1779$ Hz ($J_{\text{H}}^{11976} = 1703$) (1 H SnH) 8.84 (s $J_{\text{AX}} = J_{\text{BX}} = 0.1$, $J_{\text{H}^{119}\text{Sn}} = 1779$ Hz $(J_{\text{H}^{117}\text{Sn}} = 1703)$ (1 H, SnH), 8.84 (s, 2 H CHO) 3.95 (m, 18 H CH₂), 1.1, 1.1.8 (t, 27 H CH₂), ^{119}Sn NMR 2 H, CHO), 3.95 (m, 18 H, CH2), 1.21, 1.18 (t, 27 H, CH3). 119Sn NMR $(CD_3C_6D_5, 25 \text{ °C}; \delta)$: $AB_2MX, \delta_M -42.0, J_{AM} = 305.6, J_{BM} = 272.8, J_{AX}$ $= J_{\text{BX}} = 0.1, J_{\text{MX}} = 1779.$ ³¹P{¹H} NMR (CD₃C₆D₅, 25 °C; *δ*): 116.7 (s, br). ³¹P{¹H} NMR (CD₃C₆D₅, -70 °C; *δ*): AB₂, *δ*_A 118.2, *δ*_B 117.9, *J*_{AB} = 47 7 (*J*_A¹¹⁷_c_n = 288 9 *J*_B¹¹⁷c_n = 258 7) $=$ 47.7 (J_A ¹¹⁷Sn = 288.9, J_B ¹¹⁷Sn = 258.7).

a Legend: $[M] = \text{Re(CO)}_2P_3$ (15); P = PPh(OEt)₂ (**a**), P(OEt)₃ (**b**).

resonances attributable to the hydridobis(formate)stannyl intermediate Re[SnH{OC(H)=O}₂](CO)₂[P(OEt)₃]₃ ([A])²⁷ (Scheme 6).

A singlet at 8.70 ppm, attributed to $=CH$ of a formate group, and a slightly broad signal at 11.75 ppm, with the characteristic satellites of coupling with Sn isotopes, attributed to SnH proton resonances, appeared in the 1H NMR spectra of the reaction mixture. The proton-coupled 119Sn NMR spectrum also showed, at -70 °C, a doublet of multiplets, due to coupling with one hydride and the three phosphorus nuclei of the phosphites. Taking into account that the ^{31}P spectrum is an AB₂ multiplet at -70 °C, the ¹¹⁹Sn spectrum was simulated with an AB₂MX model ($M = {}^{119}Sn$, $X = {}^{1}H$), in agreement with the proposed formulation for intermediate [**A**], which was the first product of the reaction of $6b$ with $CO₂$. We also attempted to isolate this intermediate as a solid but always obtained the final dimeric species **15**. However, the formulation of intermediate [**A**] as the hydrido bis(formate) complex $[M]-SnH{OC(H)}=O_2$ was confirmed by comparison of the spectroscopic data with those of the related complex $Os[SnH{OC(H)=O}_2](Tp)L(PPh_3)$ (L $=$ phosphite), previously obtained by us⁴ in a similar reaction of the trihydridostannyl $[Os]$ -SnH₃ complex with CO_2 .

The formation of binuclear μ -OH complexes such as **15** as final products is not surprising and is the result of the oxophilic nature of tin compounds,^{28,29} which can react with water to give O and OH bridges in ring and cage compounds. We therefore added an equimolar amount of H_2O to the reaction mixture containing the complex $Re[SnH{OC(H)}=O_{2}](CO)_{2}[P(OEt)_{3}]_{3}$ ([**A**]) by microsyringe and observed the direct formation of the binuclear bridging-OH complex $[Re\{Sn[OC(H)=O]\}$ ₂ $\{µ$ -OH)- $(CO)_2$ {P(OEt)₃}₃]₂ (**15b**) and of free H₂. The ¹H NMR spectra did show the $=C(H)$ formyl signal of the dimer at 8.85 ppm and a singlet near 4.6 ppm, which decreased upon shaking and

Figure 4. ORTEP view of the complex $[Re{Sn[OC(H)=O]}_2(\mu-\mu)]$ OH) $(CO)_2[POEt)_3]_2(15b)$ drawn with thermal ellipsoids at the 20% probability level. The substituents on the phosphorus atoms were removed for clarity.

was attributed³⁰ to free H_2 forming by hydrolysis of the Re-H group. On the basis of these results, we propose the reaction path shown in Scheme 6 for the formation of the *µ*-OH binuclear complexes 15 , which involves the initial insertion of two $CO₂$ molecules into two $Sn-H$ bonds of $SnH₃$ to give the hydrido bis(formate) intermediate [M]-SnH{OC(H)=O}₂ of type [A], which undergoes hydrolysis with H_2O to give the final bridginghydroxo complexes **15**. This reaction path also explains why we were not able to isolate intermediate [**A**] in pure form, owing to its fast reaction even with the traces of $H₂O$ present in common "anhydrous" solvents, to give the final μ -OH derivatives.

Insertion of $CO₂$ into the M-H bond of classical hydrides is well-known^{31,32} and has been studied as an important step of its functionalization reaction. Insertion into the coordinated Sn-H bond has no precedents,³³ and our results may open the way to the use of unconventional hydride species to activate and functionalize the $CO₂$ molecule. It is worth noting that Re- $(SnH₃)(CO)₂P₃$ (6) also reacts with $CO₂$ in the solid state, giving the final formate species **15**. Exposure of solid samples of **6** to $CO₂$ (1 atm) gives first the intermediate Re[SnH{OC(H)=O}₂]-(CO)2P3 ([**A**]), which then undergoes hydrolysis with the traces of H_2O to give the final dinuclear species 15. Diffusion of CO_2 through the crystals of the trihydridostannyl complexes **6** therefore yields formate species.

Compounds $[Re{Sn[OC(H)=O]}_2(\mu-OH){CO}_2P_3]_2$ (15) were obtained as white microcrystals, stable in air and in solutions of common organic solvents, where they behave as nonelectrolytes.16 Their formulation is supported by analytical and spectroscopic data (IR and ¹H, ¹³C, ³¹P, and ¹¹⁹Sn NMR) and by the X-ray crystal structure determination of $[Re\{Sn[OC(H)]\}$ $O_2(\mu$ -OH) $(CO_2[P(OEt)_3]_2]_2$ (15b), whose ORTEP diagram is shown in Figure 4. Selected bond distances and angles are given in Table 5. This compound was a dimeric complex in which two octahedrally coordinated rhenium units are joined by a bridging tetraformatebis(*µ*-hydroxo)ditin moiety. To our knowledge, this is the first example found in the Cambridge Crystallographic Database (CCDC,³⁴ version 5.27, update Aug

(34) Allen, F. H. *Acta Crystallogr.* **²⁰⁰²**, *B58*, 380-388.

^{(28) (}a) Rivière, P.; Rivière-Baudet, M.; Satgé, J. In *Comprehensive Organometallic Chemistry*; Wilkinson, G., Stone, F. G. A., Abel, E. W., Eds.; Pergamon Press: Oxford, U.K., 1982; Chapter 10. (b) Davies, A. G.; Smith, P. J. In *Comprehensive Organometallic Chemistry*; Wilkinson, G., Stone, F. G. A.;, Abel, E. W., Eds.; Pergamon Press: Oxford, U.K., 1982; Chapter 11.

^{(29) (}a) Roesky, H. W.; Singh, S.; Jancik, V.; Chandrasekhar, V. *Acc. Chem. Res.* **²⁰⁰⁴**, *³⁷*, 969-981. (b) Shea, K. J.; Loy, D. A. *Acc. Chem. Res.* **2001**, *34*, 707.

⁽³⁰⁾ Crabtree, R. H.; Lavin, M.; Bonneviot, L. *J. Am. Chem. Soc*. **1986**, *¹⁰⁸*, 4032-4037.

^{(31) (}a) Pandey, K. K. *Coord. Chem. Re*V*.* **¹⁹⁹⁵**, *¹⁴⁰*, 37-114. (b) Jessop, P. G.; Hsiao, Y.; Ikariya, T.; Noyori, R. *J. Am. Chem. Soc.* **1996**, *119*, ³⁴⁴-355. (c) Leitner, W. *Coord. Chem. Re*V*.* **¹⁹⁹⁶**, *¹⁵³*, 257-284. (d) Yin, X.; Moss, J. R. *Coord. Chem. Re*V*.* **¹⁹⁹⁹**, *¹⁸¹*, 27-59. (e) Jessop, P. G.; Joo, F.; Tai, C.-C. *Coord. Chem. Re*V*.* **²⁰⁰⁴**, *²⁴⁸*, 2425-2442.

^{(32) (}a) Whittlesey, M. K.; Perutz, R. N.; Moore, M. H. *Organometallics* **¹⁹⁹⁶**, *²⁵*, 5166-5169. (b) Field, L. D.; Lawrenz, E. T.; Shaw, W. J.; Turner, P. *Inorg. Chem.* **²⁰⁰⁰**, *³⁹*, 5632-5638 and references therein.

⁽³³⁾ Some studies on the reaction between Bu₃SnH and CO₂, giving tributhylformate Bu₃SnO₂CH, were reported: Klingler, R. J.; Bloom, I.; Rathke, J. W. *Organometallics* **¹⁹⁸⁵**, *⁴*, 1893-1894.

Table 5. Selected Bond Lengths (Å) and Angles (deg) for $[Re{Sn}[(OCH) = O]_2$ $[(\mu - OH)(CO)_2$ $[P(OEt)_2]_2]_2$ $(15b)^a$

$Re-C(2)$	1.908(8)	$Re-C(1)$	1.957(8)
$Re-P(2)$	2.370(2)	$Re-P(3)$	2.381(2)
$Re-P(1)$	2.4127(18)	$Re-Sn$	2.7489(5)
$C(1) - O(1)$	1.135(8)	$C(2)-O(2)$	1.161(8)
$Sn-O(41)$	2.040(4)	$Sn-O(42)$	2.070(5)
$Sn-O(41)^{i}$	2.164(4)	$Sn-O(43)$	2.245(5)
$O(41) - Sni$	2.164(4)		
$C(2)$ -Re-C(1)	88.1(3)	$C(2)$ -Re-P(2)	89.2(2)
$C(1)$ -Re-P(2)	92.1(2)	$C(2)$ -Re-P(3)	90.4(2)
$C(1)$ -Re-P(3)	87.0(2)	$P(2) - Re - P(3)$	179.03(7)
$C(2)$ -Re-P(1)	88.4(2)	$C(1)$ -Re-P(1)	174.4(2)
$P(2) - Re - P(1)$	92.10(7)	$P(3)$ -Re- $P(1)$	88.77(7)
$C(2)$ -Re-Sn	172.6(2)	$C(1)$ -Re-Sn	85.87(19)
$P(2)$ -Re-Sn	86.83(5)	$P(3)$ -Re-Sn	93.47(5)
$P(1)$ -Re-Sn	97.96(4)	$O(1) - C(1) - Re$	174.8(6)
$O(2)-C(2)-Re$	176.1(7)	$O(41) - Sn - O(42)$	99.30(18)
$O(41) - Sn - O(41)^{i}$	69.66(19)	$O(42) - Sn - O(41)^{i}$	84.65(18)
$O(41) - Sn - O(43)$	81.57(17)	$O(42) - Sn - O(43)$	84.0(2)
$O(41)^{i} - Sn - O(43)$	146.82(17)	$O(41)$ -Sn-Re	143.44(13)
$O(42)$ -Sn-Re	116.65(13)	$O(41)^i$ –Sn–Re	117.84(11)
$O(43)$ -Sn-Re	95.08(13)	$Sn-O(41) - Sni$	110.34(19)

a Symmetry transformations used to generate equivalent atoms: (i) $-x$, $-y$, $-z$.

2006) with this tetraformatebis(μ -hydroxo)ditin moiety. It is also the third complex described with the bis(*µ*-hydroxo)ditin moiety coordinating to another metal atom through the two tin atoms. As previously described complexes have involved iron,³⁵ this is the first reported example involving rhenium. Also, the formate ion is barely used to bond the tin atom.36

Each tin atom has a highly distorted square pyramidal geometry when the Re-Sn bond is considered. However, the *^τ* parameter shows only 6% distortion toward trigonal-bipyramidal geometry.37 One of the formate oxygen atoms occupies the axial position, with a $Sn-O$ bond length of 2.070(5) Å. The other formate oxygen atom, with a $Sn-O$ bond length of $2.245(5)$ Å, is in the basal plane, together with the two bridging hydroxyl groups and the rhenium atom. The basal plane is highly distorted (rms deviation of 0.3731) because, on one hand, the substituents on the rhenium atom provide important steric requirements, giving angle values of $Re-Sn-O(41) = 143.44(13)°$ (expected 180°) and Re-Sn-O(41ⁱ) = 117.84(11)° (expected 90°) and,
on the other hand, the small O-Sn-O angle of the Sn-O₂ on the other hand, the small $O-Sn-O$ angle of the $Sn₂O₂$ distannoxane ring, $69.66(19)$ °. The Sn₂O₂ distannoxane ring is planar but not regular, since the bridging hydroxyl groups are asymmetric, with two Sn-O distances, 2.040(4) and 2.164- (4) Å, analogous to the behavior seen in other $Sn₂O₂$ distannoxane rings.^{35a,38} The short Sn-Sn distance $(3.4514(9)$ Å) is longer than the Sn-Sn single bond (2.95 Å) found in tin clusters.38

The environment around the rhenium metal is a distorted octahedron formed of three phosphorus atoms of phosphite ligands, two carbonyl ligands in cis positions, and a tin atom.

The Re–C bond distances, $1.908(8)$ and $1.957(8)$ Å, show the different trans effects of the phosphite and the diformato-*µ*hydroxostannio ligands, the shorter one being that trans to the tin atom. The Re-P bond distances range from 2.370(2) to 2.4127(18) Å, those mutually trans being about 0.04 Å shorter than that trans to the carbonyl ligand. The bond values are comparable with those mentioned previously in the case of Re- $(SnH₃)(CO)₂[P(OEt)₃]$ ₃ (6b), in which the rhenium atom is surrounded by similar atoms, although the Re-C bond trans to the tin atom is 0.014 Å shorter and the Re-C bond trans to the phosphorus atom is 0.022 Å longer.

The angles around the metal are quite regular and close to the accepted value, except those concerning the tin atom, which is slightly deviated from its expected position, probably due to steric effects of the formato groups, and gives the $C(2)-Re-$ Sn angle a value of $172.6(2)$ °.

The IR spectra of the μ -hydroxobis(formate) complexes show two medium-intensity bands at $1674-1594$ cm⁻¹, attributed^{31,32} to the $\nu_{\text{OCO,asym}}$ band of the two η ¹-formate OC(H)=O groups. Variable-temperature NMR spectra indicate that the complexes are fluxional, but the low-exchange limit spectra were obtained already at -70 °C. At this temperature, the proton spectra show one singlet at $9.72-9.21$ ppm, attributed to the $=C(H)$ of the formate group, and one singlet at 8.91-8.90 ppm, attributed to the hydroxo μ -OH proton resonance.

In addition to the signals of the phosphites, the ${}^{13}C[{^1}H]$ NMR spectra show one singlet near 166 ppm, which was correlated in an HMQC experiment (Figure S5b, Supporting Information) with the formate proton signal at 9.72–9.21 ppm and attributed to the carbon resonance of the formate $=C(H)$ group. Instead, no correlation with any 13C signal was observed for the proton singlet of the hydroxo group at 8.91-8.90 ppm. We also recorded the proton-coupled 13C spectra of **15b**, which show a doublet centered near 166 ppm with a J_{CH} value of 200 Hz, characteristic of a CH formyl resonance.^{32b} The ¹¹⁹Sn spectra of 15 appear as an A_2BM ($M = {}^{119}Sn$) multiplet, owing to coupling with the phosphorus nuclei of phosphites, fitting the proposed formulation. The IR and 31P NMR data also allow us to establish a geometry in solution for the complexes. Thus, a mer-cis geometry (**IX**; Chart 1), like that found in the solid state, may be proposed for the dicarbonyl complexes [Re{Sn[OC- $(H)=O[₂(μ -OH)₃(CO)₂P₃]₂ (15), on the basis of the A₂B$ multiplet observed in the 31P NMR spectra, and of the presence of two strong *ν*_{CO} bands in the IR spectra. These two carbonyl ligands are magnetically inequivalent, as suggested by the presence of two well-separated multiplets in the carbonyl carbon region of the 13C NMR spectra, in agreement with type **IX** geometry.

Conclusions

In this paper, we report the synthesis of the first stable complexes of manganese and rhenium containing tin trihydride as a ligand. Among the main properties shown by the $[M]-SnH_3$ species is easy insertion of $CO₂$ (1 atm) into the Sn-H bond,

^{(35) (}a) Restivo, R.; Bryan, R. F. *J. Chem. Soc. A* **¹⁹⁷¹**, 3364-3368. (b) Pasynskii, A. A.; Grechkin, A. N.; Denisov, F. S.; Torubayev, Yu. V.; Aleksandrov, G. G.; Dobrokhotova, Zh. V.; Lyssenko, K. A. *Russ. J. Inorg. Chem.* **²⁰⁰²**, *⁴⁷*, 1311-1316.

^{(36) (}a) Donaldson, J. D.; Knifton, J. F. *J. Chem. Soc*. **¹⁹⁶⁴**, 4801- 4803. (b) Harrison, P. G.; Thornton, E. W. *J. Chem. Soc., Dalton Trans*. **¹⁹⁷⁸**, 1274-1278. (c) Molloy, K. C.; Quill, K.; Nowell, I. W. *J. Chem. Soc., Dalton Trans*. **¹⁹⁸⁷**, 101-106. (d) Mistry, F.; Rettig, S. J.; Trotter, J.; Aubke, F. *Acta Crystallogr.* **¹⁹⁹⁰**, *C46*, 2091-2093.

⁽³⁷⁾ Addison, A. W.; Rao, T. N.; van Reedijk, J.; Van Rijn, J.; Verschoor, G. C. *J. Chem. Soc., Dalton Trans*. **¹⁹⁸⁴**, 1349-1356.

⁽³⁸⁾ See, for example: (a) Duchateau, R.; W. Dijkstra, T.; Severn, J. R.; van Santen, R. A.; Korobkov, I. V. *Dalton Trans*. **²⁰⁰⁴**, 2677-2682. (b) Chandrasekhar, V.; Thilagar, P.; Bickley, J. F.; Steiner, A. *J. Am. Chem. Soc*. **²⁰⁰⁵**, *¹²⁷*, 11556-11557.

affording the binuclear tin formate complexes $[Re{Sn[OC(H)}=$ $O_2(\mu$ -OH) $(CO)_nP_{5-n}]_2$. Structural parameters for both tin trihydride complexes and bridging-OH tin formate derivatives are also reported. The hydridic nature shown by the SnH₃ group leads us to regard our [M]-SnH3 compounds not only as metal complexes containing SnH₃ as a ligand but also as tin polyhydride complexes stabilized by the $M(CO)_nP_{5-n}$ fragment. Nucleophilic substitution of chloride in the $[M]-SnCl₃$ complexes allows a new route for the synthesis of organostannyl derivatives $M(SnMe_3)(CO)_nP_{5-n}$ and $M[Sn(C\equiv CR)_3](CO)_nP_{5-n}$,

with Grignard compounds MgBrMe and MgBr(C \equiv CH) or lithium acetylides as reagents.

Acknowledgment. Mrs. Daniela Baldan is gratefully acknowledged for technical assistance.

Supporting Information Available: NMR spectroscopic data for selected compounds (Figures S1-S5) and CIF files giving crystallographic data. This material is available free of charge via the Internet at http://pubs.acs.org.

OM070220M