Reactivity of (*p*-MeOC₆H₄)₂TeO toward *t*-Bu₂Si(OH)₂. Synthesis of a 12-Membered Tellurasiloxane Ring, *cyclo*-[(*p*-MeOC₆H₄)₂TeOSi*t*-Bu₂O]₃

Jens Beckmann* and Jens Bolsinger[†]

Institut für Chemie und Biochemie, Freie Universität Berlin, Germany

Received January 29, 2007

Summary: Condensation of t-Bu₂Si(OH)₂ with $(p-MeOC_6H_4)_2$ -TeO in a Si/Te ratio of 1:1.2 exclusively produced the 12-membered tellurasiloxane ring cyclo-[$(p-MeOC_6H_4)_2$ TeOSit-Bu₂O]₃ (**1**), whose molecular structure was determined by X-ray crystallography. At larger Si/Te ratios, the open-chain tellurasiloxanes HOt-Bu₂SiOR₂TeOSit-Bu₂OH (**2**, $R = p-MeOC_6H_4$) and HOt-Bu₂SiOR₂TeOSit-Bu₂OR₂TeOSit-Bu₂OH (**3**, R = $p-MeOC_6H_4$) were identified in solution by ²⁹Si and ¹²⁵Te NMR spectroscopy along with **1** and unreacted t-Bu₂Si(OH)₂. The analogous reaction of Ph₂Si(OH)₂ with ($p-MeOC_6H_4$)₂TeO did not provide tellurasiloxanes, but led to the formation of the known siloxanes rings cyclo-(Ph₂SiO)₃ and cyclo-(Ph₂SiO)₄.

Although the first diorganotellurium oxides R_2 TeO (R = alkyl, aryl) were prepared more than 90 years ago,¹ only recently has attention been paid to their structure and reactivity. While diorganotellurium oxides, such as R_2 TeO, having polar Te–O double bonds (R = Ph, C₆F₅, *p*-MeC₆H₄, *p*-MeOC₆H₄), are monomers in chloroform,² the structures in the solid state are more diverse. For instance, Ph₂TeO³ and (C₆F₅)₂TeO⁴ are asymmetric dimers with elongated Te–O double bonds are accordary Te···O intermolecular contacts, whereas (*p*-MeOC₆H₄)₂-TeO forms a 1D polymer with symmetric Te–O single bonds.² Diorganotellurium oxides have found applications as "oxygen" transfer reagents in organic⁵ and organometallic synthesis.⁶ Diorganotellurium oxides are Lewis bases and undergo condensation reactions to give tetraorganoditelluroxanes with proton acids, such as carboxylic acids,⁷ HNO₃,⁸ HO₃SCF₃, and HO₂-

PPh₂⁹ Diorganotellurium oxides show potential for the preparation of tellurastannoxanes and related species featuring Te-O-Sn bonds, as well as for the fixation of carbon dioxide.¹⁰

Metallasiloxanes, compounds containing M–O–Si linkages (M includes metals as well as nonmetals), have attracted considerable attention in recent years owing to applications in material science and catalysis.¹¹ Although studies on metallasiloxanes have been extensive for most elements of the periodic table, there are very few reports on tellurasiloxanes.¹² As part of our interest in the chemistry of telluroxanes we have now investigated the reactivity of diorganotellurium oxides toward organosilanols. The condensation reaction of *t*-Bu₂Si(OH)₂ with 1.2 equiv of (*p*-MeOC₆H₄)₂TeO provided the 12-membered tellurasiloxane ring *cyclo*-[(*p*-MeOC₆H₄)₂TeOSi*t*-Bu₂O]₃ (1) as colorless crystalline material in quantitative yield (eq 1).

The molecular structure of **1** has been established by X-ray crystallography and is shown in Figure 1. Selected bond parameters are collected in the caption of the figure. The geometry of the Te atoms of **1** can be described as distorted trigonal bipyramidal when taking into account the stereochemically active lone pair of Te.² The axial O coordination is rather symmetric, as the Te–O bond lengths (2.051(3)-2.064(3) Å) differ only marginally. No secondary Te···O intermolecular contacts are observed. Therefore, the coordination sphere of **1** resembles that of the parent (*p*-MeOC₆H₅)₂TeO, but differs substantially from those of related tetraorganoditelluroxanes^{7–9} and tellurastannoxanes,¹⁰ whose structures reveal a rather

^{*} To whom correspondence should be addressed. E-mail: beckmann@ chemie.fu-berlin.de. Fax: ++49-30838-52440.

[†] This work contains part of the intended Ph.D. Thesis of Jens Bolsinger. (1) (a) Lederer, K. Ann. Chem. **1912**, 391, 326. (b) Lederer, K. Chem. Ber. **1916**, 49, 1076. For a review see: (c) Irgolic, K. I. The Organic Chemistry of Tellurium; Gordon and Breach: New York, 1974.

⁽²⁾ Beckmann, J.; Dakternieks, D.; Duthie, A.; Ribot, F.; Schürmann M.; Lewcenko, N. A. *Organometallics* **2003**, *22*, 3257.

⁽³⁾ Alcock, N. W.; Harrison, W. D. J. Chem. Soc., Dalton Trans. 1982, 709.

^{(4) (}a) Naumann, D.; Tyrra, W.; Hermann, R.; Pantenburg, I.; Wickleder, M. S. *Z. Anorg. Allg. Chem.* **2002**, *628*, 833. (b) Klapötke, T. M.; Krumm, B.; Mayer P.; Piotrowski, H.; Ruscitti, O. P. *Z. Naturforsch.* **2002**, *B57*, 145.

^{(5) (}a) Barton, D. H. R.; Ley, S. V.; Meerholz, C. A. J. Chem. Soc., Chem. Commun. **1979**, 755. (b) Ley, S. V.; Meerholz, C. A.; Barton, D. H. R. Tetrahedron Lett. **1980**, 21, 1785. (c) Engman, L.; Cava, M. P. Tetrahedron Lett. **1981**, 22, 5251. (d) Ley, S. V.; Meerholz, C. A.; Barton, D. H. R. Tetrahedron, Suppl. **1981**, 213.

^{(6) (}a) Shen, J. K.; Gao, Y.; Shi, Q.; Rheingold, A. L.; Basolo, F. *Inorg. Chem.* **1991**, *30*, 1868. (b) Xue, M.; Gao, Y. C.; Shen, J. K.; Shi, Q. Z.; Basolo, F. *Inorg. Chim. Acta* **1993**, *207*, 207. (c) Liu, X.; Gao, Y. C.; Su, Z. X.; Wang, Y. Y.; Shi, Q. Z. *Trans. Met. Chem.* **1999**, *24*, 666. (d) Song, L. C.; Li, Q. S.; Hu, Q. M.; Dong, Y. B. J. Organomet. Chem. **2001**, *619*, 194.

^{(7) (}a) Kobayashi, K.; Izawa, H.; Yamaguchi, K.; Horn, E.; Furukawa, N. *Chem. Commun.* **2001**, 1428. (b) Alcock, N. W.; Culver, J.; Roe, S. M. *J. Chem. Soc., Dalton Trans.* **1992**, 1477.

⁽⁸⁾ Alcock, N. W.; Harrison, W. D. J. Chem. Soc., Dalton Trans. 1982, 1421.

⁽⁹⁾ Beckmann, J.; Dakternieks, D.; Duthie, A.; Lewcenko, N. A.; Mitchell, C.; Schürmann, M. Z. Anorg. Allg. Chem. 2005, 631, 1856.

^{(10) (}a) Beckmann, J.; Dakternieks, D.; Duthie, A.; Lewcenko, N. A.; Mitchell, C. *Angew. Chem., Int. Ed.* **2004**, *43*, 6683. (b) Beckmann, J.; Dakternieks, D.; Duthie, A.; Mitchell, C. *Dalton Trans.* **2005**, 1563.

^{(11) (}a) Schmidbaur, H. Angew. Chem. **1965**, 77, 206. (b) Schindler, F.; Schmidbaur H. Angew. Chem. **1967**, 79, 697. (c) Voronkov, M.G.; Lavrent'yev, V. I. Top. Curr. Chem. **1982**, 102, 199. (d) Murugavel, R.; Voigt, A.; Walawalkar, M. G.; Roesky, H. W. Chem. Rev. **1996**, 96, 2205.

 ^{(12) (}a) Roesky, H. W.; Mazzah, A.; Hesse, D.; Noltemeyer, M. Chem.
Ber. 1991, 124, 519. (b) Driess, M.; Von Hänisch, C.; Merz, K. Z. Anorg.
Allg. Chem. 1999, 625, 493.

Figure 1. (a) Molecule of $(p-\text{MeOC}_6\text{H}_4)_2\text{TeOSi}t-\text{Bu}_2\text{O}_3$ (1) showing 30% probability displacement ellipsoids and the atom numbering. Selected bond parameters [Å, deg]: Si-O 1.617(4)-1.630(2), Te-O 2.051(3)-2.064(3), Si-O-Te 134.80(12)-141.70-(13). (b) Ring conformation of **1** (only α-carbon atoms are shown for clarity) with the large deviation from the ideal Te₃Si₃O₆ plane being 0.46 Å for Si1. Selected torsion angles [deg]: Te1-O1-Si1-O2-64.35(24), O1-Si1-O2-Te2 57.77(22), Si1-O2-Te2-O3-159.67(51), O2-Te2-O3-Si2 170.02(50), Te2-O3-Si2-O4-60.71(24), O3-Si2-O4-Te3 53.82(25), Si2-O4-Te3-O5 177.20(45), O4-Te3-O5-Si3 174.29(45), Te3-O5-Si3-O6-54.56(24), O5-Si3-O6-Te1 69.63(21), Si3-O6-Te1-O1 166.05-(56), O6-Te1-O1-Si1-173.95(54).

asymmetric axial O coordination and a number of secondary Te···O intra- and intermolecular contacts. The conformation of the inorganic 12-membered Te₃Si₃O₆ ring deviates from planarity, with the largest deviation of 0.46 Å being observed for Si1. Related torsion angles are collected in the caption of Figure 1. It is worth noting that the formation of 12-membered metallasiloxane rings is rare, while six- and eight-membered ring systems are more common.¹¹ We are aware of only one other 12-membered metallasiloxane ring derived from *t*-Bu₂Si(OH)₂, namely, *cyclo*-[(O)(Cl)VOSi*t*-Bu₂O]₃.¹³ In CDCl₃ solution, the tellurasiloxane ring *cyclo*-[(*p*-MeOC₆H₄)₂TeOSi*t*-Bu₂O]₃ (1) is characterized by ²⁹Si and ¹²⁵Te NMR chemical shifts of δ –20.2 and 921.5, respectively.

In an effort to obtain insight into the formation of **1**, the reaction between *t*-Bu₂Si(OH)₂ and (*p*-MeOC₆H₄)₂TeO was monitored by ²⁹Si and ¹²⁵Te NMR spectroscopy. While the reaction was quantitative at a Si/Te ratio of 1:1.2, increasing amounts of *t*-Bu₂Si(OH)₂ give varying mixtures of *cyclo*-[(*p*-MeOC₆H₄)₂TeOSi*t*-Bu₂O]₃ (**1**) and the open-chain tellurasil-

(13) Gosink, H.-J.; Roesky, H. W.; Noltemeyer, M.; Schmidt, H.-G.; Freire-Erdbrügger, C.; Sheldrick, G. M. Chem. Ber. **1993**, *126*, 279.

oxanes HOt-Bu₂SiOR₂TeOSit-Bu₂OH ($2, \delta$ (²⁹Si) -13.5, δ (¹²⁵Te) 957.2, R = p-MeOC₆H₄) and HOt-Bu₂SiOR₂TeOSit-Bu₂OR₂-TeOSit-Bu₂OH (3, δ ⁽²⁹Si) -13.6, -18.4 (2:1), δ ⁽¹²⁵Te) 940.0 R = p-MeOC₆H₄). At Si/Te ratios of 2:1 and 4:1, the molar distribution of 1, 2, 3, and unreacted *t*-Bu₂Si(OH)₂ (δ (²⁹Si) -6.5) was 5, 66, 18, and 11% and 8, 47, 26, and 19%, respectively. The assignment of the NMR signals is based on the relative integral intensities at the varying Si/Te ratios and the fact that bridging TeO-Si-OTe units (δ ⁽²⁹Si) -18.4, -20.2) and terminal TeO-Si-OH units (δ ⁽²⁹Si) -13.5, -13.6) can be clearly distinguished. At a Si/Te ratio of 2:1, the ESI-MS spectrum (positive mode, cone voltage 30 V) of a diluted solution in MeCN (1:100) reveals four mass clusters with relative intensities greater than 10% based on the highest peak that were unambiguously assigned to the cations $[R_2TeOH]^+$ $(361.01), [t-Bu_2SiOTeR_2OH]^+ (519.12), [R_2TeOR_2TeOH]^+$ (717.01), and [t-Bu₂SiOR₂TeOR₂TeOH]⁺ (875.12), respectively $(R = p-MeOC_6H_4)$. While two of these cations confirm the presence of Si-O-Te linkages, no quantitative information can be obtained about neutral species in solution. Attempts to isolate 2 and 3 by fractional crystallization and column chromatography failed. The equimolar reaction of $Ph_2Si(OH)_2$ with $(p-MeOC_6H_4)_2$ -TeO under similar conditions did not afford tellurasiloxanes, but proceeds with condensation of the silanol groups to give a mixture (ratio 46:54%) of the known siloxane rings cyclo- $(Ph_2SiO)_3 (\delta(^{29}Si) - 33.4) \text{ and } cyclo-(Ph_2SiO)_4 (\delta(^{29}Si) - 42.3),$ which have been unambiguously identified by their ²⁹Si NMR chemical shifts.14

Experimental Section

Synthesis of $[(p-MeOC_6H_4)_2$ TeOSit-Bu₂O]₃ (1). A solution of $(p-MeOC_6H_4)_2$ TeO² (292 mg, 0.82 mmol) and $(t-Bu)_2$ Si(OH)₂¹⁵ (120 mg, 0.68 mmol) in toluene (30 mL) was heated at reflux for 12 h in a Dean-Stark apparatus. The solvent was removed in a vacuum, and the solid residue was dissolved in ether (10 mL) and filtered. Slow evaporation of the solvent afforded colorless crystals of 1 (341 mg, 0.22 mmol, 97%; mp 230–235 °C).

¹H NMR (CDCl₃): δ 8.03, (d, 12H; *p*-O_mMeC₆H₄), 6.78 (d, 12 H; *p*-O_oMeC₆H₄), 3.76 (s, 18 H; OCH₃), 0.93 (s, 54 H; CH₃). ¹³C NMR (CDCl₃): δ 161.2 (*p*-O_iMeC₆H₄), 133.8 (*p*-O_mMeC₆H₄), 130.6 (*p*-O_pMeC₆H₄), 114.0 (*p*-O_oMeC₆H₄), 55.1 (OCH₃), 29.1 (CH₃), 21.6 (C_qCH₃). ²⁹Si NMR (CDCl₃): δ -20.2. ¹²⁵Te-NMR (CDCl₃): δ 921.5. Anal. Calcd for C₆₆H₉₆O₁₂Si₃Te₃ (1548.52): C, 51.19; H, 6.25. Found: C, 50.89; H, 5.86.

Crystallography. Single crystals were grown by slow evaporation of a ether/CH₂Cl₂ solution of $[(p-\text{MeOC}_6\text{H}_4)_2\text{TeOSit-Bu}_2\text{O}]_3$ (1). Crystal data and structure solution: C₆₆H₉₆O₁₂Si₃Te₃, $M_r =$ 1548.56, monoclinic, $P2_1/n$, a = 14.079(3) Å, b = 22.641(5) Å, c = 22.189(5) Å, $\beta = 93.219(5)^\circ$, V = 7062(3) Å³, Z = 4, $D_x =$ 1.456 Mg/m³, F(000) = 3144, $\mu = 1.338$ mm⁻¹, T = 173 K. Intensity data were collected on a Bruker SMART 1000 CCD diffractometer fitted with Mo K α radiation (graphite crystal monochromator, $\lambda = 0.71073$ Å) to a maximum of $\theta_{\text{max}} = 30.540^\circ$ via ω scans (completeness 99.4% to θ_{max}). Data were reduced and corrected for absorption using the programs SAINT and SADABS.¹⁶ The structure was solved by direct methods and difference Fourier synthesis using SHELX-97 implemented in the program WinGX

⁽¹⁴⁾ Foucher, D. A.; Lough, A. J.; Manners, I. *Inorg. Chem.* **1996**, *108*, 1712.

⁽¹⁵⁾ Weidenbruch, M.; Pesel, H.; Van Hieu, D. Z. Naturforsch. 1980, 35b, 31.

⁽¹⁶⁾ SMART, SAINT, and SADABS; Siemens Analytical X-ray Instruments Inc.: Madison, WI, 1999.

2002.¹⁷ Full-matrix least-squares refinement on F^2 , using all data, was carried out with anisotropic displacement parameters applied to all non-hydrogen atoms. Hydrogen atoms attached to carbon atoms were included in geometrically calculated positions using a riding model (including free rotation about C–C) and were refined isotropically. $R_1 = 0.0409$ for 15 197 [$I > 2\sigma(I)$] and $wR_2 = 0.1102$ for 21 497 independent reflections. GooF = 1.047. The max. and min. residual electron densities were 1.742 and -0.762 e Å⁻³. The figure was prepared using the DIAMOND program.¹⁸

Crystallographic data for **1** have been deposited at the Cambridge Crystallographic Data Centre as supplementary publication no. CCDC-634720. Copies of the data can be obtained, free of charge,

on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (fax: +44-(0)12 23-33 60 33; e-mail: deposit@ccdc.cam.ac.uk).

Acknowledgment. The Deutsche Forschungsgemeinschaft (DFG) is gratefully acknowledged for financial support. Mrs. Irene Brüdgam (Freie Universität Berlin) is thanked for the X-ray data collection.

Supporting Information Available: A CIF file of the crystallographic data (excluding structure factors) of **1**. This material is available free of charge via the Internet at http://pubs.acs.org.

OM070084L

⁽¹⁷⁾ Farrugia, L. J. J. Appl. Crystallogr. 1999, 32, 837.

⁽¹⁸⁾ *DIAMOND* V2.1d; Crystal Impact, K. Brandenburg & M. Berndt GbR: Bonn, Germany, 2002.