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Summary: It is found from theoretical calculations that
Ar*PbPbAr* (Ar* ) C6H3-2,6-(C6H2-2,4,6-iPr3)2) has a mul-
tiply bonded structure in solution, although a singly bonded
structure with a highly trans-bent core skeleton has been
reported from the X-ray crystal study.

Multiple bonds between heavier elements are of wide interest
in main-group chemistry. Among these, the heavier group 14
element analogues of alkynes, REER (E) Si, Ge, Sn, Pb), have
attracted special interest.1 Thus, RSiSiSiRSi(RSi ) SiiPr-
{CH(SiMe3)2}2),2 Ar′GeGeAr′ (Ar′ ) C6H3-2,6-(C6H3-2,6-
iPr2)2),3 BbtGeGeBbt (Bbt ) C6H2-2,6-{CH(SiMe3)2}2-4-
C(SiMe3)3),4 Ar′SnSnAr′,5 and Ar*PbPbAr* (Ar* ) C6H3-2,6-
(C6H2-2,4,6-iPr3)2)6 have been successfully synthesized and
isolated up to now. Bulky silyl and aryl groups play an important
role in making these heavier analogues synthetically accessible
and isolable as stable compounds.7 As shown by X-ray crystal
analysis, the heavier analogues have a trans-bent core skeleton,8

unlike the alkyne case. However, the Si-Si distance of
RSiSiSiRSi is considerably shorter than those of Si-Si double
bonds,2 while the Ge-Ge and Sn-Sn distances of Ar′GeGeAr′,
BbtGeGeBbt, and Ar′SnSnAr′ are close to those of Ge-Ge and
Sn-Sn double bonds.3-5 In contrast, the X-ray crystal analysis
of the heaviest analogue, Ar*PbPbAr*, has shown that the trans-
bending is greatly increased and the Pb-Pb distance is much
longer than the Pb-Pb single-bond distances of diplumbanes
such as Ph3Pb-PbPh3.6 The singly bonded structure having no
Pb-Pbπ bond has been also confirmed by model calculations.9

The exceptional structure of Ar*PbPbAr* has been explained
by the fact that the heaviest Pb atom has the strongest tendency

to preserve the valence 6s electrons as lone-pair electrons in
making bonds (see Figure 1).1,6

To investigate whether Ar*PbPbAr* takes a multiply bonded
structure, we have carried out theoretical calculations. Geom-
etries were fully optimized without symmetry constraint with
hybrid density functional theory at the B3PW91 level10 using
the Gaussian 03 program.11 The triple-ú basis set12 augmented
by two sets of d polarization functions (d exponents 0.213 and
0.062)13 and relativistic effective core potentials12 were used
for Pb, while the 6-31G(d) basis set was used for other atoms.14
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Figure 1. Multiply (M) and singly bonded (S) structures.

Figure 2. Multiply (M) and singly bonded (S) structures of
Ar*PbPbAr* optimized at the B3PW91 level.
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Single-point calculations were also performed using the MP2
(second-order Møller-Plesset perturbation) and TD (time-
dependent)-B3PW91 methods.15

The singly bonded structure of Ar*PbPbAr* found from the
X-ray crystal study was first optimized. As Figure 2 shows,
the optimized structure hasC2 symmetry. The Pb-Pb distance
and Pb-Pb-C trans-bent angle (θ) are 3.260 Å and 100.4°,
respectively. These agree reasonably well with the experimental
values of 3.188 Å and 94.3° in the crystal structure, despite
packing forces. The optimized core skeleton is nearly planar,
as indicated by the C-Pb-Pb-C dihedral angle (ω) of 175.2°.
Interestingly enough, a new structure withC2 symmetry was
also located as an energy minimum by switching the HOMO
and LUMO levels of the singly bonded structure. The newly
located structure is much less trans-bent (θ ) 117.7°) and has
the shorter Pb-Pb distance of 3.071 Å, while it is 119.8° twisted
around the Pb-Pb bond because of the bulk of the Ar* group.
The Pb-Pb distance is longer than those of typical Pb-Pb single
bonds. As is apparent from Figure 3, however, the newly located
structure corresponds to a multiply bonded structure, since the
central Pb-Pb bond consists of aσ bond, a somewhat dis-
torted πdis bond (resulting from the twisting of the out-of-
planeπ orbital), and a slippedπslip bond (resulting from the
mixing of σ* and in-planeπ orbitals due to trans-bending8). It
is notable that the multiply bonded structure is 1.0 (B3PW91)
and 0.5 kcal/mol (MP2) more stable than the singly bonded
structure.16

In this context, important information can be obtained from
UV-vis spectra. For Ar*PbPbAr*, two absorptions with dif-
ferent intensities have been observed at 397 nm (ε ) 29 000)
and 719 nm (ε ) 5200) inn-hexane solution,6 as in the cases
of Ar′GeGeAr′ (371 and 501 nm)3 and Ar′SnSnAr′ (410 and
597 nm).5 For the multiply bonded structure of Ar*PbPbAr*,
the two absorptions were calculated at 413 nm (f ) 0.141) and

822 nm (f ) 0.025) at the TD-B3PW91 level, which are
assignable to theπslip f πslip* + πdis f σ* + πdis f Ar* and
πdis f πdis* transitions, respectively.17 For the singly bonded
structure of Ar*PbPbAr*, however, only one strong absorption
was calculated at 416 nm (f ) 0.383) at the same level, which
is assignable to theπslip* f σ* transition. Obviously, these
results indicate that Ar*PbPbAr* has a multiply bonded structure
in solution.

It has been known that the lead analogues of alkenes
(R2PbPbR2) dissociate in solution to provide two singlet divalent
species (PbR2) because of the weak Pb-Pb bonding.18 The
dissociation of the multiply bonded Ar*PbPbAr*, which leads
to two PbAr* fragments in the ground doublet state, was
calculated to be endothermic by 12.2 kcal/mol. For the PbAr*
fragment, two weak pπ(Pb)f Ar* absorptions with almost equal
intensities were calculated at 420 nm (f ) 0.026) and 388 nm
(f ) 0.024), which differ considerably in both absorption
positions and intensities from the two absorptions observed (or
calculated) for Ar*PbPbAr*. These confirm that the multiply
bonded structure of Ar*PbPbAr* is present in solution, unlike
the R2PbPbR2 case.

In conclusion, Ar*PbPbAr* takes a multiply bonded structure
in solution,19 although a singly bonded structure with a highly
trans-bent skeleton has been found by X-ray crystal analysis.
The singly bonded structure of Ar*PbPbAr* in the crystalline
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Figure 3. σ, πdis, andπslip orbitals of the multiply bonded structure of Ar*PbPbAr* at the B3PW91 level, plotted with a value of 0.03 au.
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phase is ascribable to packing forces. In addition, crystallization
is significantly affected by the bulk of the substituent groups.
These have been very recently demonstrated20 also for tin
analogues of alkynes: Ar*SnSnAr* and 4-SiMe3-Ar′SnSnAr′-
4-SiMe3 (Ar′-4-SiMe3 ) C6H2-2,6-(C6H3-2,6-iPr2)2-4-SiMe3).21
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