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Do Lead Analogues of Alkynes Take a Multiply Bonded Structure?
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Summary: It is found from theoretical calculations that R R
Ar*PbPbAr* (Ar* = CgHs-2,6-(GH2-2,4,6-iPR),) has a mul- 4 .Pb_FLb
tiply bonded structure in solution, although a singly bonded / | ’
structure with a highly trans-bent core skeleton has been R R

reported from the X-ray crystal study.

Multiple bonds between heavier elements are of wide interest
in main-group chemistry. Among these, the heavier group 14
element analogues of alkynes, REERKESI, Ge, Sn, Pb), have
attracted special interest.Thus, RISISIRS(RS' = SiiPr-
{CH(SiMQ)z}z),Z Ar'GeGeAf (Ar' = C6H3-2,6-(C§H3-2,6-
iPI’z)Q),s BbtGeGeBbt (Bbt= C6H2-2,6-{ CH(SiM%)z} 2-4-
C(SiMe)3),* Ar'SnSnAt,5 and Ar*PbPbAr* (Ar* = CgHz-2,6-
(CeH2-2,4,6iPr3),)® have been successfully synthesized and
isolated up to now. Bulky silyl and aryl groups play an important S
role in making these heavier analogues synthetically accessible
and isolable as stable compouridss shown by X-ray crystal
analysis, the heavier analogues have a trans-bent core sk&leton,
unlike the alkyne case. However, the—-Si distance of
RSISiSiRS! is considerably shorter than those of-Si double
bonds? while the Ge-Ge and Sr-Sn distances of AGeGeAf,
BbtGeGeBbt, and ABnSnAf are close to those of Gese and
Sn—Sn double bond%:® In contrast, the X-ray crystal analysis
of the heaviest analogue, Ar*PbPbAr*, has shown that the trans-
bending is greatly increased and the-fb distance is much
longer than the PbPb single-bond distances of diplumbanes
such as P¥Pb—PbPR.6 The singly bonded structure having no M
Pb—Pba bond has been also confirmed by model calculatfons.
The exceptional structure of Ar*PbPbAr* has been explained
by the fact that the heaviest Pb atom has the strongest tendency

Figure 1. Multiply (M) and singly bonded (S) structures.
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Figure 3. o, m4is, andagip orbitals of the multiply bonded structure of Ar*PbPbAr* at the B3PW91 level, plotted with a value of 0.03 au.

Single-point calculations were also performed using the MP2 822 nm { = 0.025) at the TD-B3PW91 level, which are

(second-order MgllerPlesset perturbation) and TD (time-
dependent)-B3PW91 methotfs.

The singly bonded structure of Ar*PbPbAr* found from the
X-ray crystal study was first optimized. As Figure 2 shows,
the optimized structure h& symmetry. The PbPb distance
and Pb-Pb—C trans-bent angled} are 3.260 A and 100%4

assignable to thesip — 7siip* + 7ais — 0* + 7gis — Ar* and

T4is — Tgis” transitions, respectively. For the singly bonded
structure of Ar*PbPbAr*, however, only one strong absorption
was calculated at 416 nnfi £ 0.383) at the same level, which
is assignable to thergi,* — o* transition. Obviously, these
results indicate that Ar*PbPbAr* has a multiply bonded structure

respectively. These agree reasonably well with the experimentalin solution.

values of 3.188 A and 94°3n the crystal structure, despite

packing forces. The optimized core skeleton is nearly planar,

as indicated by the €Pb—Pb—C dihedral angle¢) of 175.2.
Interestingly enough, a new structure with symmetry was
also located as an energy minimum by switching the HOMO
and LUMO levels of the singly bonded structure. The newly
located structure is much less trans-beht5117.7) and has
the shorter PbPb distance of 3.071 A, while it is 119.8visted
around the PbPb bond because of the bulk of the Ar* group.
The Pb-Pb distance is longer than those of typicaH®b single

It has been known that the lead analogues of alkenes
(R2PbPbR) dissociate in solution to provide two singlet divalent
species (PbR because of the weak PiPb bonding® The
dissociation of the multiply bonded Ar*PbPbAr*, which leads
to two PbAr* fragments in the ground doublet state, was
calculated to be endothermic by 12.2 kcal/mol. For the PbAr*
fragment, two weak gPb)— Ar* absorptions with almost equal
intensities were calculated at 420 nfn= 0.026) and 388 nm
(f = 0.024), which differ considerably in both absorption
positions and intensities from the two absorptions observed (or

bonds. As is apparent from Figure 3, however, the newly located calculated) for Ar*PbPbAr*. These confirm that the multiply
structure corresponds to a multiply bonded structure, since thebonded structure of Ar*PbPbAr* is present in solution, unlike

central Pb-Pb bond consists of a bond, a somewhat dis-
torted mgis bond (resulting from the twisting of the out-of-
plane s orbital), and a slippeds, bond (resulting from the
mixing of o* and in-planer orbitals due to trans-bendifig It

the RPbPbR case.

In conclusion, Ar*PbPbAr* takes a multiply bonded structure
in solution?® although a singly bonded structure with a highly
trans-bent skeleton has been found by X-ray crystal analysis.

is notable that the multiply bonded structure is 1.0 (B3PW91) Thg singly bonded structure of Ar*PbPbAr* in the crystalline

and 0.5 kcal/mol (MP2) more stable than the singly bonded
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for the stabilization of multiply bonded structures are developed to realize
a sufficiently short Pb-Pb bond.
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