Synthesis and Interconversion of Some Small Ruthenaboranes: **Reaction of a Ruthenium Borohydride with Pentaborane(9) to Form** Larger Ruthenaboranes

Malcolm L. H. Green

Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QR, U.K.

John B. Leach

Department of Chemistry, Manchester Metropolitan University, John Dalton Building, Chester Street, Manchester M1 5GD, U.K.

Malcolm A. Kelland*

Department of Mathematics and Natural Science, Faculty of Science and Technology, University of Stavanger, N-4036 Stavanger, Norway

Received April 2, 2007

A number of ruthenaborane clusters have been prepared containing the $\{(\eta - C_5Me_5)Ru(PMe_3)\}$ fragment. Reaction of $[(\eta - C_5Me_5)Ru(PMe_3)H_3]$ with 1 equiv of BH₃•thf gives $[(\eta - C_5Me_5)Ru(PMe_3)BH_4]$ (1), which reacts further with another equivalent of BH₃·thf to give $[(\eta - C_5Me_5)Ru(PMe_3)B_2H_7]$ (2) in nearly quantitative yield. Thermolysis of 2 in solution at 60 °C gives a mixture of 1, arachno-2-[$(\eta$ -C₅Me₅)- $Ru(PMe_3)B_3H_8$ (3), and *arachno*-1-[(η -C₅Me₅)Ru(PMe₃)B₃H₈ (4). Thermolysis of the wing isomer 3 in solution at 100 °C gives 100% conversion to the hinge isomer 4. Thermolysis in a solution of arachno- $3-[(\eta-C_5Me_5)Ru(PMe_3)B_4H_9]$ also gives 4 and 1. The borohydride 1 reacts with pentaborane(9) to give four ruthenaborane clusters, compound **3**, $nido-2-[(\eta-C_5Me_5)RuB_5H_{10}]$ (**5**), $arachno-2-[(\eta-C_5Me_5)Ru-2-[(\eta-C_5Me_5)Ru-2-1])]$ $(PMe_3)B_5H_8$ (6), and arachno-3- $[(\eta-C_5Me_5)Ru(PMe_3)B_4H_9]$ (7). Thermolysis of 5 in solution gives nido- $1-[(\eta-C_5Me_5)RuB_5H_{10}]$ (8) in good yield. Compound 5 deprotonates cleanly at the unique basal B-H-B bridge on reaction with KH in thf to form nido-2- $[(\eta$ -C₅Me₅)RuB₅H₉ $^{-}][K^+]$ (9). Compound 8 deprotonates cleanly at a B–H–B bridge on reaction with KH in thf to form fluxional *nido*-1- $[(\eta-C_5Me_5)RuB_5H_9^-]$ - $[K^+]$ (10). The X-ray crystal structure of 3 is reported.

Introduction

Metallaboranes of ruthenium (ruthenaboranes) have a rich and diverse chemistry.¹⁻³ Most early work on ruthenaboranes concentrated on using ruthenium fragments that are isolobal with {BH^t} such as { $(\eta$ -C₆R₆)Ru}⁴ or { (L_3) Ru} (L = carbonyl or phosphine).^{5,6} For example, Greenwood, Kennedy, and coworkers have shown that $[(\eta - C_6 Me_6)RuCl_2]_2$ reacts with a variety of borane anions to give ruthenaboranes containing 3-17 boron atoms.⁷⁻¹⁰ More recently, Shimoi and co-workers syn-

- (5) Greenwood, N. N.; Kennedy, J. D.; Thornton-Pett, M.; Woollins, J. D. J. Chem. Soc., Dalton Trans. 1985, 2397.
- (6) Alcock, N. W.; Burns, I. D.; Claire, K. S.; Hill, A. F. Inorg. Chem. 1992, 31, 4606.
- (7) Bown, M.; Fontaine, X. L. R.; Greenwood, N. N.; Kennedy, J. D.; MacKinnon, P. J. Chem. Soc., Chem. Commun. 1987, 817.
- (8) Bown, M.; Fontaine, X. L. R.; Greenwood, N. N.; Kennedy, J. D. J. Organomet. Chem. 1987, 325, 233.
- (9) Bown, M.; Fontaine, X. L. R.; Greenwood, N. N.; Kennedy, J. D.; Thornton-Pett, M. J. Organomet. Chem. 1986, 315, C1.
- (10) Shea, S. L.; MacKinnon, P.; Thornton-Pett, M.; Kennedy, J. D. Inorg. Chim. Acta 2005, 358, 1709-1714.

thesized arachno-1-[$(\eta$ -C₆Me₆)RuB₄H₁₀] by the reaction of [$(\eta$ -C₆Me₆)RuCl₂]₂ with excess BH₃•thf.¹¹

Some years ago we decided to explore the chemistry of ruthenaboranes containing the 1 and 3 electron fragments { $(\eta$ - C_5Me_5 Ru and {(η -C₅Me₅)(PMe₃)Ru }. We reported the reaction of $[(\eta-C_5Me_5)Ru(PMe_3)Cl_2]$ with NaBH₄, which gave a mixture of $[(\eta - C_5 Me_5)Ru(PMe_3)BH_4]$ (1) and $[(\eta - C_5 Me_5)Ru$ - $(PMe_3)B_2H_7$ (2), the latter molecule in low yield.¹² Compound **2** is still the only example of an η^2 -B₂H₇ bonding geometry in a three-vertex metallaborane. We also synthesized the first arachno-3-metallapentaborane arachno-3-[(η-C₅Me₅)Ru(PMe₃)- B_4H_9 along with other metallaboranes from the reaction of [(η -C₅Me₅)Ru(PMe₃)H₃] with pentaborane(9).¹³

In the last 10 years, the groups of Fehlner and Shimoi have synthesized a range of mostly diruthenaboranes containing the fragment { $(\eta$ -C₅Me₅)Ru}. For example, reaction of BH₃·thf with $[(\eta - C_5 Me_5)RuCl_2]_2$ or $[(\eta - C_5 Me_5)RuH_2]_2$ gives initially the dimetalla cluster *nido*-1,2-[{Ru(η -C₅Me₅)H}₂B₃H₇].¹⁴⁻¹⁶ This

^{*} Corresponding author. Tel: +47 51831823. Fax: +47 51831750. E-mail: malcolm.kelland@uis.no.

⁽¹⁾ Barton, L.; Srivastava, D. K. Comprehensive Organometallic Chemistry II; Pergamon: Oxford, 1995; Chapter 8.

⁽²⁾ Kennedy, J. D. Prog. Inorg. Chem. 1984, 32, 519.

⁽³⁾ Kennedy, J. D. Prog. Inorg. Chem. 1986, 34, 211.
(4) Bown, M.; Greenwood, N. N.; Kennedy, J. D. J. Organomet. Chem. 1986, 309, C67.

⁽¹¹⁾ Kawano, Y.; Kawakami, H.; Shimoi, M. Chem. Lett. 2001, 1006. (12) Grebenik, P. D.; Green, M. L. H.; Kelland, M. A.; Leach, J. B.; Mountford, P.; Stringer, G.; Walker, N. M.; Wong, L. L. J. Chem. Soc., Chem. Commun. 1988, 799.

⁽¹³⁾ Grebenik, P. D.; Green, M. L. H.; Kelland, M. A.; Leach, J. B.; Mountford, P. New J. Chem. 1992, 16, 19.

⁽¹⁴⁾ Peldo, M. A.; Beatty, A. M.; Fehlner, T. P. Organometallics 2002, 21. 2821.

⁽¹⁵⁾ Peldo, M. A.; Beatty, A. M.; Fehlner, T. P. Organometallics 2003, 22. 3698.

cluster reacts further with BH₃•thf to give first *nido*-1,2-[{Ru- $(\eta$ -C₅Me₅)}₂(μ -H)B₄H₉] and then larger dimetallaboranes on heating in further equivalents of BH₃•thf.^{17,18} Shimoi has further shown that *nido*-1,2-[{Ru(η -C₅Me₅)H}₂B₃H₇] reacts with tertiary phosphines to give the electron-deficient metallaborane [1,2-{Ru(η -C₅Me₅)}₂(μ -H)(|l- μ - η ⁴-B₂H₅)(PMe₂Ph)] containing the fragment {(η -C₅Me₅)Ru(PMe₂Ph)}. The unusual properties of metallaboranes containing the {(η -C₅Me₅)Ru(PR₃)} fragment, as shown by us and Shimoi, led us to probe its chemistry further.¹⁹

Results and Discussion

We wished to synthesize **2** in high yield, and it seemed reasonable to try using a ruthenium hydride precursor to make the metallaborane, on the basis of earlier success in using other transition metal hydrides. For example, we have shown that photolysis of $[(\eta-C_5H_5)_2MoH_2]$ with BH₃•thf gives $[(\eta-C_5H_5)_2-MoHB_2H_5]$,¹² while treatment of $[W(PMe_3)_3H_6]$ with BH₃•thf gives *arachno*-2- $[W(PMe_3)_3H_3B_3H_8]$.²⁰ More recently, Fehlner and co-workers have reported reactions of BH₃•thf with transition metal hydrides. Reaction of BH₃•thf with $[Fe(\eta-C_5Me_5)-H_2]_2$ gives the monometal cluster *arachno*-1- $[Fe(\eta-C_5Me_5)-H_2]_2$ gives the monometal cluster *arachno*-1- $[Fe(\eta-C_5Me_5)-B_4H_{11}]$,¹⁵ while $[(\eta-C_5Me_5)ReH_6$ reacts with BH₃•thf to give *arachno*-2- $[(\eta-C_5Me_5)ReH_3B_3H_8]$.²¹

We found that treatment of $[(\eta - C_5Me_5)Ru(PMe_3)H_3]^{22}$ with 1 equiv of BH₃·thf gives $[(\eta - C_5Me_5)Ru(PMe_3)BH_4]$ (1) in an isolated yield of 90%. Further, $[(\eta - C_5 Me_5)Ru(PMe_3)H_3]$ reacts with 2 equiv of BH₃•thf to give $[(\eta - C_5Me_5)Ru(PMe_3)B_2H_7]$ (2) in 80% isolated yield (Scheme 1). Compound 2 does not react further with excess BH3•thf at room temperature. The above reactions represent easy, high-yielding routes to these small ruthenaboranes. It seems clear that 2 is formed from 1 by the addition of a second {BH₃} fragment to the original η^2 borohydride. This was confirmed by reacting 1 with 1 equiv of BH_3 •thf, giving 2 in an isolated yield of 90%. Cage expansion from a borohydride to a {MB₂} cluster is an unprecedented reaction for a metal borohydride and underlines the unusual nature of the { $(\eta$ -C₅Me₅)Ru(PMe₃)} fragment. We also found that compound 2 could be synthesized directly in high yield by the reaction of $[(\eta - C_5 Me_5)Ru(PMe_3)Cl_2]$ with a mixture of BH₃. thf and NaBH₄ at room temperature, thereby eliminating the step of making $[(\eta - C_5 Me_5)Ru(PMe_3)H_3]$ from $[(\eta - C_5 Me_5)Ru$ -(PMe₃)Cl₂].

The only homologation of a 3-vertex metallaborane to have been reported is the thermolysis of $[(\eta-C_5H_5)_2MOHB_2H_5]$ to give *arachno*-2- $[Mo(\eta-C_5H_5)(\eta^5:\eta^{1-}C_5H_4)B_4H_7]$.²³ Therefore we were interested to see if compound **2** would also homologate. Thermolysis in toluene of orange **2** at 60 °C for 3 days gave a deep red solution containing a mixture of products as determined by ¹¹B NMR spectroscopy. The major, pale yellow product **4** was separated by fractional crystallization in 39% yield (based on ruthenium) and characterized as *arachno*-1- $[(\eta-C_5Me_5)Ru-(PMe_3)B_3H_8]$ by multinuclear NMR and elemental analysis (Scheme 1). Compound **4** was also formed in 40% yield by the

 ⁽¹⁶⁾ Kawano, Y.; Matsumoto, H.; Shimoi, M. Chem. Lett. 1999, 489.
 (17) Ghosh, S.; Beatty, A. M.; Fehlner, T. P. Angew. Chem., Int. Ed.
 2003. 42, 4678.

⁽¹⁸⁾ Ghosh, S.; Noll, B. C.; Fehlner, T. P. Angew. Chem., Int. Ed. 2005, 44, 2916.

⁽¹⁹⁾ Pangan, L. N.; Kawano, Y.; Shimoi, M. Organometallics 2000, 19, 5575.

⁽²⁰⁾ Grebenik, P. D.; Leach, J. B.; Green, M. L. H.; Walker, N. M. J. Organomet. Chem. 1988, 345, C31.

⁽²¹⁾ Ghosh, S.; Beatty, A. M.; Fehlner, T. P. Collect. Czech. Chem. Commun. 2002, 67, 808.

⁽²²⁾ Suzuki, H.; Lee, D. H.; Oshima, N.; Moro-Oka, Y. Organometallics 1987, 6, 1569.

⁽²³⁾ Grebenik, P. D.; Green, M. L. H., Kelland, M. A.; Leach, J. B.; Mountford, P. J. Chem. Soc., Chem. Commun. **1989**, 1397.

thermolysis of arachno-3-[$(\eta$ -C₅Me₅)Ru(PMe₃)B₄H₉] (7)¹³ at 80 °C. The ¹¹B NMR spectrum of **4** shows partial overlap of the B(3) and B(4) resonances such that coupling to B(4) cannot be resolved. The B(3) resonance resolves as a doublet of doublets of doublets using resonance enhancement techniques. The main splitting is due to terminal coupling to H(3) and the minor splittings due to bridging coupling to H(23) and H(34). This was confirmed by selective ¹¹B{¹H} NMR experiments. The B(2) resonance is a triplet due to terminal coupling to H(2)and H(5). Broad-band ¹¹B decoupling of the ¹H NMR spectrum sharpens eight resonances of equal intensity, and selective ¹H-^{{11}B} NMR experiments were carried out to assign the protons. In particular, decoupling of the B(3) and B(4) atoms sharpens three proton resonances that have chemical shifts typical of terminal B-H protons. Only one of these protons is bonded to B(3); the other two protons are assigned as terminal B-Hprotons on B(4).

In comparison to *arachno*-2-metallatetraboranes, few {MB₃} clusters with the metal at the hinge position have been reported. They include several platinum and palladium clusters of general formulas [M(L₂)B₃H₇] (M = Pt, Pd) and [Ir(CO)(PPh₃)-HB₃H₇].^{24–26} The {B₃H₇} fragment is formally {B₃H₇²⁻} and can be described as a π -borallyl ligand, an analogue of a π -allyl moiety.²⁷ Shimoi has recently reported the formation of *arachno*-1-[(η -C₆Me₆)(PMe₃)RuB₃H₇] from the reaction of *arachno*-1-[(η -C₆Me₆)RuB₄H₁₀] with PMe₃.¹¹ In addition, *arachno*-1-Ir[(η -C₅Me₅)H₂B₃H₇] has been reported to be formed via thermal rearrangement of the 2-isomer *arachno*-2-Ir[(η -C₅Me₅)HB₃H₈].^{28.29} The 2-isomer is formed together with *arachno*-2-Ir[(η -C₅Me₅)-ClB₃H₈] from the reaction of [Ir(η -C₅Me₅)Cl₂]₂ with TlB₃H₈. Interestingly, the chloro complex does not undergo the same thermal rearrangement to the hinge isomer.

The mother liquor from the thermolysis of **2** was shown to be a mixture of **1** and *arachno*-2-[(η -C₅Me₅)Ru(PMe₃)B₃H₈] (**3**). The identity of compound **3** was confirmed by comparison of the NMR spectra with a sample of pure orange **3** made by the reaction of pentaborane(9) with [(η -C₅Me₅)Ru(PMe₃)H₃].⁵ Crystals of compound **3** suitable for X-ray diffraction were grown from light petroleum at -30 °C. The molecular structure is shown in Figure 1. Selected bond lengths and bond angles are given in Tables 1 and 2.

The structure of **3** consists of an *arachno*-tetraborane "butterfly" cluster in which a { $(\eta$ -C₅Me₅)Ru(PMe₃)} fragment substitutes in the 2-position (wing-tip) for a {BH₂} fragment. The bond lengths compare well with other *arachno*-2-metallatetraboranes.^{1–3} There is a noncrystallographic mirror plane through Ru(2), B(4), and (P1). The dihedral angle between the planes Ru(2)–B(1)–B(3) and B(1)–B(3)–B(4) is 117°, typical of all known *arachno*-2-metallatetraboranes except *arachno*-2-[Mn(CO)₄B₃H₇-*exo*-Br].³⁰ The pentamethylcyclopentadienyl ligand occupies the *exo* position and the PMe₃ ligand the *endo* position. The molecule *arachno*-2-[(η -C₅Me₅)-ReH₃B₃H₈]²¹ has been crystallographically characterized, and the pentamethylcyclopentadienyl ligand is also shown to be in

(29) Nestor, K. Ph.D. Thesis, Leeds, England, 1990.

(30) Chen, M. W.; Gaines, D. F.; Hoard, L. G. Inorg. Chem. 1980, 19, 2989.

Figure 1. Molecular structure of *arachno*-2-[$(\eta$ -C₅Me₅)Ru(PMe₃)-B₃H₈] (**3**). Hydrogen atoms are omitted for clarity.

Table 1.	Crystal Da	ita, Data	Collection,	and Structure	e
Refineme	nt for <i>arach</i>	no-2-[(n	-C5Me5)Ru(PMe ₃)B ₃ H ₈] (3)

empirical formula	C13H32B3PRu
molecular weight	352.87
cryst size/mm	$0.7 \times 0.8 \times 1.25$
cryst syst	orthorhombic
space group	Pcab
a/Å	12.922(1)
b/Å	15.320(2)
c/Å	18.542(4)
β /deg	90
volume/Å ³	3670.5
Ζ	4
$D_{\rm c}/{ m g~cm^{-3}}$	1.277
μ/cm^{-1}	9.07
F(000)	1472
<i>T</i> (K)	293 (10)
radiation (λ/μ)	Μο Κα (0.71069)
2θ limits/deg	0-27
scan mode	$\omega/ heta$
total data collected	5289
no. of observations	2695
no. of variables	164
obsrvns/variables	16.43
weighting scheme	unit weights
R	0.023
$R_{ m w}$	0.026

the *exo* position. However, the X-ray crystal structure of *arachno*-2-[Ru(η -C₆H₅Me)ClB₃H₈] shows the toluene ligand in the *exo* position and the Cl ligand *endo*.³¹

The ¹¹B NMR of compound **3** consists of a doublet and triplet in an integral ratio of 2:1, the chemical shifts being typical of a wing-tip-substituted *arachno*-2-metallatetraborane. The ¹¹B-{¹H} NMR shows eight protons associated with the boron cage in an integral ratio of 1:1:2:22; together with resonances for a PMe₃ ligand and η -C₅Me₅ ligand. Further data from ¹H and ¹¹B decoupling experiments were used to assign the skeletal protons. Compound **3** is the ruthenium congener of the iron metallatetraborane *arachno*-2-[(η -C₅Me₅)Fe(PMe₃)B₃H₈], formed as one of the products from the reaction of pentaborane(9) with [(η -C₅Me₅)Fe(PMe₃)₂H], which shows similar chemical shifts in the ¹¹B and ¹H{¹¹B} NMR spectra.³² The five resonances for the {B₃H₈} fragment in **3** at 20 °C in the ¹H NMR spectrum

⁽²⁴⁾ Bould, J.; Greenwood, N. N.; Kennedy, J. D.; McDonald, W S. Dalton Trans. 1985, 1843.

⁽²⁵⁾ Guggenberger, L. J.; Kane, A. R.; Muetterties, E. L. J. Am. Chem. Soc. 1972, 94, 5665.

⁽²⁶⁾ Kane, A. R.; Muetterties, E. L. J. Am. Chem. Soc. 1971, 93, 1041.
(27) Housecroft, C. E.; Owen, S. M.; Raithby, P. R.; Shayk, B. A. M. Organometallics 1990, 9, 1617.

⁽³¹⁾ Bown, M. Ph.D. Thesis, Leeds, England, 1987.

Table 2. Selected Bond Distances and Angles for Compound

5					
Bond Distances (Å)					
Ru(2) - B(1)	2.38(1)				
Ru(2)-B(3)	2.31(1)				
B(1) - B(4)	1.82(2)				
B(1)-B(3)	1.83(2)				
B(4)-B(3)	1.88(2)				
Ru(2) - P(1)	2.311(2)				
Ru(2)-C(4)	2.190(8)				
Ru(2) - C(5)	2.216(8)				
Ru(2)-C(6)	2.217(9)				
Ru(2) - C(7)	2.206(8)				
Ru(2)-C(8)	2.209(8)				
Angles (deg)					
B(1)-Ru(2)-P(1)	99.3(3)				
B(3)-Ru(2)-P(1)	99.7(3)				
B(3)-Ru(2)-P(1)	45.9(4)				
B(4)-B(1)-Ru(2)	109.0(7)				
B(3)-B(1)-Ru(2)	65.1(5)				
B(3)-B(1)-B(4)	62.0(7)				
B(3)-B(4)-B(1)	59.2(6)				
B(1)-B(3)-Ru(2)	69.0(5)				
B(4)-B(3)-Ru(2)	109.7(7)				

suggest a static structure for the molecule. A variety of exchange processes have been observed for the protons of $\{B_3H_8\}$ fragments in other molecules such as $[Mo(CO)_4B_3H_8^-]$, $[Cu-(PPh_3)_2B_3H_8]$, and $[Be(B_3H_8)_2]$.²

We were not able to ascertain from our studies whether compound **4** is formed directly from the thermolysis of compound **2** or whether it is formed only via compound **3** because we always obtained a mixture of the two butterfly clusters at various thermolysis temperatures below 70 °C. However, compound **3** clearly rearranges to compound **4** in quantitative yield by raising the thermolysis temperature of a toluene solution to 100 °C for 4 days, as judged by multinuclear NMR. Therefore we assume that compound **3** is the first-formed kinetic product, which rearranges to the thermodynamic product **4** on further heating.

The unique ability of the borohydride 1 to cluster expand to form 2 on reaction with BH_3 thf prompted us to investigate its reaction with larger boranes. Indeed, treatment of a toluene solution of 1 with pentaborane(9) gave four metallaboranes after column chromatography on silica gel (Scheme 2). Two of the products isolated were compound 3 and the previously reported arachno-3-[$(\eta$ -C₅Me₅)Ru(PMe₃)B₄H₉] (7).¹³ The first orange band off the column was identified as nido-2-[(η-C5Me5)- RuB_5H_{10}] (5) by multinuclear NMR and EI mass spectrometry. Due to its extreme solubility in many solvents, we were not able to prepare crystals suitable for X-ray diffraction. The ¹¹B NMR of 5 consists of three doublets in an integral ratio of 2:2:1 assigned to B(3, 6), B(4, 5), and B(1), each with a single terminal B-H coupling. It was possible to observe bridged-H coupling using line-narrowing techniques. For example, B(3, 6) appears as a doublet of triplets due to coupling to H(23, 34)and H(36, 56). Atoms B(4, 5) also appear as a doublet of triplets, the triplet structure now arising from coupling to H(34, 45) and H(45, 56). The ${}^{1}H{}^{11}B$ NMR spectrum of (5) consists of six resonances in an integral ratio of 2:2:1:1:2:2 assigned to the 10 cage protons and a sharper resonance due to the η -C₅Me₅ ligand. Assignments were made using selective ¹H{¹¹B} NMR experiments. There is a close similarity of the chemical shifts of the boron atoms and cage protons of compound 5 with the iron congeners $nido-2-[(\eta-C_5H_5)FeB_5H_{10}]^{33,34}$ and $nido-2-[(\eta-C_5H_5)FeB_5H_{10}]^{33,34}$ C₅Me₅)FeB₅H₁₀].³²

The fourth metallaborane isolated from column chromatography was recrystallized to give a very low yield of an orange

metallaborane. It has been characterized only by multinuclear NMR. However, the proposed structure, arachno-2- $[(\eta - C_5Me_5) Ru(PMe_3)B_5H_8$ (6), seems very plausible on the basis of the NMR data and assuming the cluster obeys the electron-counting rules (Scheme 2).35-37 The ¹¹B NMR spectrum consists of four resonances in an integral ratio of 1:1:2:1. At $\delta = -22.6$ ppm there is a well-resolved doublet assigned to the apical boron atom B(1) coupled to proton H(1). As we believe the molecule has no plane of symmetry, accidental overlap of the resonances due to B(4) and B(5) must be occurring at $\delta =$ 22.4 ppm. Evidence that it is accidental is based on the fact that decoupling B(4, 5) sharpens the two protons H(4) and H(5) at different chemical shifts ($\delta = 5.90$ and 5.63 ppm, respectively) in the ¹H NMR spectrum. The chemicals shifts are typical of terminal B-H protons. The rest of the ¹¹B NMR spectrum consists of two doublets at $\delta = 46.8$ ppm for B(3) and 65.8 ppm for B(6), typical of boron atoms bonded to a metal center. Broad-band ¹¹B decoupling of the ¹H NMR spectrum sharpens eight protons associated with the borane fragment, five terminal B-H protons, two B-H-B protons, and one Ru-H-B proton. Selective decoupling experiments were in agreement with the proposed structure and were used to assign the protons.

Assuming compound **6** obeys the electron-counting rules, it has the same *nido*-metallahexaborane structure as compound **5**. Thus **6** can be thought of as being derived from **5** by removing two of the basal bridging protons and coordinating a PMe₃ ligand to the ruthenium atom, thereby keeping the same electron count. Compound **6** is thus the sixth metallaborane with a $\{(\eta-C_5Me_5)Ru(PMe_3)\}$ fragment, the others being compounds **1**, **2**, **3**, **4**, and **7**. Three-electron fragments in small *nido* clusters are fairly rare, the most notable example being *nido*-2-[Ir(CO)-(PPh₃)₂B₅H₈], for which the X-ray crystal structure has been reported.³⁸ It contains a basal three-electron {Ir(CO)(PPh₃)₂} fragment as well as three basal B–H–B bridging protons in an analogous arrangement to compound **6**. Other three-electron fragments in small *nido* clusters have been reported.^{39–42}

The formation of small metallaboranes by reaction of an organometallic borohydride complex with neutral pentaborane-(9) appears to be unique. Thus, the borohydride ligand in compound **1** is clearly fairly labile. Compound **1** has been determined to be a η^2 -borohydride from X-ray crystallography.⁴³ We propose that one of the Ru–H–B bridges in the η^2 -borohydride ligand is broken to form a 16-electron η^1 -borohydride intermediate. This then reacts with BH₃•thf to cluster expand to form compound **2** or with pentaborane to form several metallaboranes, the same metallaboranes formed by reaction of $[(\eta-C_5Me_5)Ru-(PMe_3)H_3]$ with pentaborane(9).¹³ Interestingly, we did not observe the formation of any {RuB₆} clusters from the reaction of **1** with pentaborane(9). We have recently shown that

- (32) Green, M. L. H.; Kelland, M. A.; Leach, J. B. J. Organomet. Chem. Submitted for publication.
 - (33) Weiss, R.; Grimes, R. N. J. Am. Chem. Soc. 1977, 99, 8087.
 - (34) Weiss, R.; Grimes, R. N. Inorg. Chem. 1979, 18, 3291.
 - (35) Wade, K. Adv. Inorg. Chem Radiochem. 1976, 18, 1.
 - (36) Williams, R. E. Adv. Inorg. Chem. Radiochem. 1976, 18, 67.
 - (37) Mingos, D. M. P. Nat. Phys. Sci. 1972, 236, 99.
- (38) Greenwood, N. N.; Kennedy, J. D.; McDonald, W. S.; Reed, D.; Staves, J. J. Chem. Soc., Dalton Trans. **1979**, 117.
- (39) Bould, J.; Rath, N. P.; Barton, L. Angew. Chem., Int. Ed. Engl. 1995, 34, 1641.
- (40) Bould, J.; Pasieka, M.; Braddock-Wilking, J.; Rath, N. P.; Barton, L.; Gloeckner, C. *Organometallics* **1995**, *14*, 5138.
 - (41) Bould, J.; Rath, N. P.; Barton, L. Inorg. Chem. 1996, 35, 35.

(42) Bould, J.; Rath, N. P.; Fang, H.; Barton, L. Inorg. Chem. 1996, 35, 2062.

(43) Stringer, G. Ph.D. Thesis, Oxford, UK, 1990.

Scheme 2

the borohydride [Ru(PMe₃)₃HBH₄] reacts with BH₃•thf at 110 °C to give a low yield of nido-2-[Ru(PMe₃)₃B₄H₈].⁴⁴ This product may also be formed via a 16-electron η^1 -borohydride intermediate.

Two reactions of compound 5 are also herein reported. Compound 5 deprotonates cleanly using KH in thf at room temperature to give the ionic product *nido*-2-[(η -C₅Me₅)RuB₅H₉⁻]-[K⁺] (9) (Scheme 3). From multinuclear NMR spectroscopy it is clear that the unique bridging B-H-B proton furthest from the ruthenium atom has been removed. The cluster now has the same arrangement of skeletal electrons as the previously reported metallaboranes nido-2-[(η-C₆Me₆)RuB₅H₉]⁴⁵ and [Ru-(CO)(PPh3)2B5H9].5

⁽⁴⁴⁾ Green, M. L. H.; Leach, J. B.; Kelland, M. A. J. Organomet. Chem. 2006, 691, 2063.

We also investigated the thermolysis of compound 5. Heating a toluene solution of 5 at 140 °C for 1 week gave a mixture of two compounds, which were separable by fractional crystallization. The first product was isolated in 70% yield and identified as nido-1-[(η -C₅Me₅)RuB₅H₁₀] (8) by comparison of NMR data first reported by Fehlner's group.⁴⁶ They synthesized compound 8 in very low yield by thermolysis of $[(\eta - C_5 Me_5)_2 -$ Ru₂B₃H₉] with 10 equiv of BH₃•thf. The NMR data for 8 also compare well with those of the iron congeners *nido*-1- $[(\eta - C_5 R_5)$ - FeB_5H_{10}] (R = H, Me) (Scheme 3).^{32–34} The iron metallaboranes were isolated in low yields by the thermolysis of *nido*-2- $[(\eta$ -C₅R₅)FeB₅H₁₀]. Thus, switching to ruthenium leads to less decomposition and gives a much higher yield of the apical nido-1-metallahexaborane isomer, which is isoelectronic with decamethylruthenocene. Compound 8 deprotonates cleanly at a B-H-B bridge on reaction with KH in thf to form nido-1- $[(\eta - C_5 Me_5)RuB_5 H_9^{-}][K^+]$ (10). The ¹¹B and ¹H{¹¹B} NMR spectra are consistent with a fluxional molecule in which the four B-H-B bridging protons undergo rapid exchange on the NMR time scale. The neutral molecule $nido-1-[(\eta-C_5H_5)-$ CoB₅H₉] shows a similar fluxional process at room temperature.⁴⁷ The ¹¹B NMR spectrum of **10** consists of a doublet at δ = 0.9 ppm. This is very close to the chemical shift of the neutral molecule 8, indicating that the negative charge is delocalized.

The second product isolated from the thermolysis of **5** has not been fully characterized, but multinuclear NMR spectroscopy data including ¹¹B⁻¹¹B¹H} and ¹H⁻¹H{1¹B} COSY studies suggest that the molecule has the empirical formula [(η -C₅Me₅)₂Ru₂B₁₀H₁₆]. An isomer with this formula has been prepared by Fehlner's group, but the NMR data do not match that of our compound.⁴⁸ We have not managed to grow crystals suitable for X-ray diffraction, and we are unable to propose a structure from the NMR data.

Conclusion

We have prepared a number of small monometallic ruthenaboranes containing the $\{(\eta$ -C₅Me₅)Ru\} or $\{(\eta$ -C₅Me₅)Ru-(PMe₃)\} fragments using small borane precursors. In particular, the borohydride **1** has been shown to undergo cage expansion on reaction with BH₃•thf and to form $\{RuB_3\}$, $\{RuB_4\}$, and $\{RuB_5\}$ clusters on reaction with pentaborane(9). We are currently investigating whether other transition metal borohydrides cluster expand on reaction with BH₃•thf.

Experimental Section

All preparations, manipulations, and reactions were carried out under an inert atmosphere of dinitrogen using standard techniques for handling air-sensitive materials (Schlenk line and glovebox). Dinitrogen was purified by passage through a column containing BASF catalyst and 4 Å molecular sieves. Solvents were predried over molecular sieves (4 or 5 Å), distilled from appropriate drying agents, and stored under dinitrogen in Teflon valve ampules. Deuterated solvents were stored over activated molecular sieves or sodium-potassium alloy. BH₃-thf was used as a 1 M solution in thf as supplied by Aldrich Chemical Co. Ltd. Chromatography was carried out on silica gel G (Fluka, type GF 254) under dinitrogen. Reaction mixtures were generally deposited as a "sand" on silica gel and admitted to the top of the column via a tipper tube under a gentle stream of dinitrogen. Solvents used for chromatography (petroleum ether and diethyl ether) were not predried but only flushed with dinitrogen before use. Pentaborane(9) was used from stock as a 0.25–0.4 M solution in toluene. The NMR spectra were obtained using Bruker AM-250 or AM-300 or Varian 300 MHz instruments. ¹H spectra were referenced internally with respect to the residual protiosolvent (C₆D₆, δ 7.10); ¹¹B and ³¹P spectra were referenced internally relative to the deuterium lock signal using the SR command of standard Bruker software, with respect to the standards 85% H₃PO₄–D₂O (³¹P) and BF₃–Et₂O (¹¹B). All chemical shifts are quoted in δ (ppm) and coupling constants in hertz (Hz). Elemental analysis was carried out by the analysis department of the Inorganic Chemistry Laboratory, Oxford University.

X-ray Structure Determinations. Data were collected on an Enraf-Nonius CAD4 diffractometer ($3^{\circ} > 2\theta < 50^{\circ}$). The structure was solved from direct methods and Fourier syntheses and refined by full-matrix least-squares procedures with anisotropic thermal parameters for all non-hydrogen atoms. Hydrogen atoms bonded to carbon atoms were included in calculated positions (C–H 0.96 Å) and refined riding on their attached atom. Hydrogen atoms bonded to boron atoms were located from a difference synthesis and their coordinates and isotropic thermal parameters refined. Crystallographic calculations were carried out using the Oxford "Crystals" package.⁴⁹

Preparation of $[(\eta$ -C₅Me₅)Ru(PMe₃)BH₄] (1). $[(\eta$ -C₅Me₅)Ru(PMe₃)H₃]²² (0.8 g, 2.5 mmol) was dissolved in pentane (10 mL), and BH₃•thf (1.0 M in thf, 2.5 mL, 2.5 mmol) was added dropwise with stirring. The yellow solution immediately became a deep orange-red color. After stirring for 10 min solvent was removed *in vacuo*, and the residue was extracted with pentane (10 mL) and filtered. Cooling to -78 °C overnight gave red crystals of 1, which were filtered off and dried *in vacuo*. Concentration and cooling of the mother liquor gave two further crops. Total yield: 0.75 g, 90%.

Preparation of $[(\eta-C_5Me_5)Ru(PMe_3)B_2H_7]$ (2) from $[(\eta-C_5Me_5)Ru(PMe_3)H_3]$. $[(\eta-C_5Me_5)Ru(PMe_3)H_3]$ (0.8 g, 2.5 mmol) was dissolved in pentane (10 mL), and BH₃•thf (1.0 M in thf, 5.0 mL, 5.0 mmol) was added dropwise with stirring. The yellow solution rapidly became deep orange-red. After 1 h the solution had become a less intense orange color. Solvent was removed *in vacuo*, and the residue was extracted with light petroleum (2 × 10 mL) and filtered. The solution was concentrated to about half volume and cooled overnight at -30 °C. Orange crystals of **2** were filtered off and dried in vacuo. Yield: 0.69 g, 80%. Alternatively, addition of 1 equiv of BH₃•thf to **1**, followed by an identical workup, gave **2** in 90% yield.

Preparation of $[(\eta-C_5Me_5)Ru(PMe_3)B_2H_7]$ (2) from $[(\eta-C_5Me_5)Ru(PMe_3)Cl_2]$. NaBH₄ (0.6 g, 16.8 mmol) and BH₃·thf (1.0 M in thf, 8.4 mL, 8.4 mmol) slurried in thf (10 mL) was added to a solution of $[(\eta-C_5Me_5)Ru(PMe_3)Cl_2]$ (1.0 g, 2.6 mmol) in thf (10 mL) and stirred for 4 h at ambient temperature to give an orange solution. Solvent was removed *in vacuo* and the residue extracted with light petroleum (2 × 20 mL). Cooling to -30 °C overnight gave orange crystals of **2**, which were filtered off and dried *in vacuo*. Yield: 0.69 g, 78%.

Thermolysis of $[(\eta$ -C₅Me₅)Ru(PMe₃)B₂H₇] (2): Preparation of *arachno*-1- $[(\eta$ -C₅Me₅)Ru(PMe₃)B₃H₈] (4). $[(\eta$ -C₅Me₅)Ru-(PMe₃)B₂H₇] (0.42 g, 12.3 mmol) was dissolved in toluene (10 mL) and heated in a sealed ampule at 60 °C for 3 days. The original orange solution had by this time become deep red. Volatiles were removed *in vacuo*, and the solid residue was extracted with pentane (10 mL) and filtered. Cooling to -70 °C for several days gave clumps of red crystals, containing compounds 1, 3, and 4. The red crystals were filtered off and washed repeatedly with cold pentane

⁽⁴⁵⁾ Bown, M.; Fontaine, X. L. R.; Greenwood, N. N.; Kennedy, J. D.; Thornton-Pett, M. J. Organomet. Chem. **1986**, 315, C15.

⁽⁴⁶⁾ Ghosh, S.; Noll, B. C.; Fehlner, T. P. Angew. Chem., Int. Ed. 2005, 44, 6568.

⁽⁴⁷⁾ Wilczynski, R.; Sneddon, L. G. Inorg. Chem. 1979, 18, 864.

⁽⁴⁸⁾ Ghosh, S.; Noll, B. C.; Fehlner, T. P. Angew. Chem., Int. Ed. 2005, 44, 2916.

⁽⁴⁹⁾ Watkin, D. J.; Carruthers, J. R.; Betterridge, P. *CRYSTALS User Guide*; Chemical Crystallography Laboratory, University of Oxford: UK, 1985.

 $(5 \times 5 \text{ mL})$ at -70 °C until the washings were pale orange. The mother liquor and washings were combined and shown to be a roughly 2:1 mixture of **1** and **3** by ¹¹B NMR spectroscopy. The remaining red crystals were dissolved in diethyl ether (5 mL), filtered from a little yellow solid, and cooled to -70 °C for 3 days. Pale yellow crystals of *arachno*-1-[(η -C₅Me₅)Ru(PMe₃)B₃H₈] (**4**) were filtered off, washed with cold diethyl ether, and dried *in vacuo*. Yield: 0.17 g (39% based on ruthenium).

Compound 4: Anal. Calcd (%) for $C_{13}H_{32}B_3Pru: C, 44.3; H, 9.1. Found: C, 44.6; H 9,7. NMR data, solventbenzene-<math>d_6$; ¹H NMR at 300 MHz, ³¹P NMR at 121.49 MHz, and ¹¹B NMR at 96.25 MHz: ¹¹B -1.9 [M, 2B, B(3,4)], -7.8 [t, 1B, B(2)]; ³¹P-{¹H} 9.6 [s, PMe₃]; ¹H{¹¹B} 2.84 8s, 1H, H(3)9, 2.45 [s, 1H, H(2 or 5)], 2.40 [s, 1H, H(5 or 2)], 2.33 [s, 1H, H(4 or 6)], 2.30 [s, 1H, H(6 or 4)], 1.59 [s, 15H, C₅Me₅], 0.98 [d, 9H, *J*(H–P) 9, PMe₃], -3.34 [s, 1H, H(23)], -4.27 [s, 1H, H(34)], -13.43 [m, 1H, H(12)].

Thermolysis of *arachno*-2-[$(\eta$ -C₅Me₅)Ru(PMe₃)B₃H₈] (3). A 10 mg sample of 3 in benzene- d_6 in a sealed NMR tube was heated at 100 °C. The contents were analyzed daily by multinuclear NMR spectroscopy. After 4 days the orange solution had changed to pale yellow, giving 100% conversion to *arachno*-1-[$(\eta$ -C₅Me₅)Ru-(PMe₃)B₃H₈] (4).

Reaction of $[(\eta$ -C₅Me₅)**Ru**(PMe₃)**BH**₄] with B₅H₉. $[(\eta$ -C₅Me₅)-Ru(PMe₃)BH₄] (0.9 g, 2.8 mmol) was stirred with a solution of B₅H₉ in toluene (11 mL, 0.26 M, 2.8 mmol) at room temperature for 16 h. The solution changed color from deep orange-red to yellow-orange. Silica gel (3 g) was added and volatiles were removed *in vacuo*. The sand was chromatographed on silica gel eluting with light petroleum/diethyl ether, 30:1. Three orange bands were collected and recrystallized from pentane at -30 °C to afford orange crystals of *nido*-1-[(η -C₅Me₅)RuB₅H₁₀] (**5**) (15%), *arachno*-1-[(η -C₅Me₅)Ru(PMe₃)B₃H₈] (**3**) (10%), and *arachno*-3-[(η -C₅Me₅)-Ru(PMe₃)B₄H₉]¹³ (**7**) (0%). A small fourth band was collected and identified as *arachno*-3-[(η -C₅Me₅)Ru(PMe₃)B₅H₈] (**6**) (<1%) by multinuclear NMR.

Single crystals of compound **3** suitable for X-ray diffraction were grown from light petroleum at -30 °C.

Compound 3. NMR data, solvent benzene- d_6 ; ¹H NMR at 300 MHz, ³¹P NMR at 121.49 MHz, and ¹¹B NMR at 96.25 MHz: ¹¹B -1.9 [t, 1B, $J(B-H_t)$ 121, B(4)], -34.6 [d, 2B, $J(B-H_t)$ 133, B(1,3)]; ³¹P{¹H} -6.51 [s, PMe₃]; ¹H{¹¹B} 4.85 [s, 1H, H(4 or 5)], 3.01 [s, 1H, H(5 or 4)], 1.56 [s, 15H, C₅Me₅)], 1.37, [s, 2H, H(1,3)], 0.97 [d, 9H, J(H-P) 10, PMe₃)], -0.34 [s, 2H, H(14, 34)], -12.01 [d, 2H, H(12, 23)].

Compound 5. NMR data, solvent benzene- d_6 ; ¹H NMR at 300 MHz and ¹¹B NMR at 96.25 MHz: ¹¹B 43.5 [t of d, 2B, $J(B-H_{\mu})$ 53, $J(B-H_t)$ 148, B(4, 5], 5.4 [t of d, 2B, $J(B-H_{\mu})$ 43, $J(B-H_t)$ 153, B(3,6], -46.7 [d, 1B, $J(B-H_t)$ 143, B(1)]; ¹H{¹¹B} 6.49 [s, 2H, H(3,6)], 4.34 [s, 2H, H(4,5)], 1.63 [s, 15H, C₅Me₅], -0.03 [s, 1H, H(1)], -0.63 [s, 2H, H(34,56)], -1.32 [s, 1H, H(45)], -10.75 [s, 2H, H23, 26]. EI mass spectrum: [M⁺] = 301.

Compound 6. NMR data, solvent benzene- d_6 ; ¹H NMR at 300 MHz, ³¹P NMR at 121.49 MHz, and ¹¹B NMR at 96.25 MHz: ¹¹B 65.8 [d, 1B, $J(B-H_t)$ 137, B(3)], 46.8 [m, 1B, B(6)], 24.4 [m, 2B, B(4,5)], -22.6 [d, 1B, $J(B-H_t)$ 128, B(1)]; ³¹P{¹H} -5.39 [s,

 $\begin{array}{l} PMe_3]; \, {}^{1}H\{ {}^{11}B\} \ 7.4 \ [s, 1H, H(3)], \ 6.55 \ [s, 1H, H(6)], \ 5.90 \ [s, 1H, \\ H(4 \ or \ 5)], \ 5.63 \ [s, 1H, H(4 \ or \ 5)], \ 1.50 \ [d, 15H, \ J(H-P) \ 1.5, \\ C_5Me_5], \ 0.65 \ [s, 9H, \ J(H-P) \ 9, PMe_3], \ -0.34 \ [s, 1H, H(1)], \ -2.15 \\ [s, 2H, \ H(34, \ 56)], \ -12.57 \ [s, 1H, \ H(26)]. \end{array}$

Thermolysis of *arachno*-3-[$(\eta$ -C₅Me₅)Ru(PMe₃)B₄H₉] (7). A solution of *arachno*-3-[$(\eta$ -C₅Me₅)Ru(PMe₃)B₄H₉]¹³ in benzene-*d*₆ in a sealed NMR tube was heated at 80 °C overnight, and the contents were analyzed by multinuclear NMR.

Thermolysis of *nido*-2-[(η -C₅Me₅)RuB₅H₁₀] (5). Compound 5 (0.1 g, 0.3 mmol) was dissolved in toluene (10 mL) and heated to 140 °C in a sealed tube for 1 week. The bright orange solution gradually turned yellow-brown. Volatiles were removed *in vacuo*, and the residue was extracted with pentane (3 × 10 mL). The pale orange extracts were filtered, concentrated to 20 mL, and cooled to -78 °C overnight. Pale yellow crystals were filtered off, washed with cold pentane (2 mL), and pumped dry. Yield of *nido*-1-[(η -C₅Me₅)RuB₅H₁₀] (8): 0.70 g, 70%. The residue left after pentane extraction was chromatographed on silica eluting with light petroleum ether/diethyl ether, 40:1. Four bands were collected, the first one of which was orange and contained boron by ¹¹B NMR. The band was recrystallized from pentane (5 mL) at -78 °C to give 20 mg of orange crystals of **11**.

Compound 8. NMR data, solvent benzene- d_6 ; ¹H NMR at 300 MHz and ¹¹B NMR at 96.25 MHz: ¹¹B 0.27 8d, $J(B-H_t)$ 130, B(2–6)]; ¹H{¹¹B} 2.63 [s, 5H, H(2–6)], 1.90 [s, 15H, C₅Me₅], -4.01 [s, 5H, H(23–26)].

Deprotonation Experiments. Deprotonations were carried out in benzene- d_6 using KH with added 18-crown-6 or in thf- d_8 with KH. Twenty-milligram samples of **3**, **5**, **7**, and **8** were dissolved in the deuterated solvent, and excess KH was added. Effervescence was observed in all cases except with **3**. The reaction mixtures were filtered into 5 mm NMR tubes and sealed. The samples were examined by multinuclear NMR spectroscopy. Compound **5** deprotonated cleanly to give *nido*-2-[(η -C₅Me₅)RuB₅H₉⁻][K⁺] (**9**), and compound **6** deprotonated cleanly to give *nido*-1-[(η -C₅Me₅)-RuB₅H₉⁻][K⁺] (**10**). No reaction was observed with compound **3**, and compound **7** gave a mixture of products.

Compound 9. NMR data, solvent thf- d_8 ; ¹H NMR at 300 MHz and ¹¹B NMR at 96.25 MHz: ¹¹B 45.7 [m, 2B, B(3,6)], 10.9 [m, 2B, B(4,5)], -37.2 [d, 1B J(B-H_t) 155, B(1)]; ¹H{¹¹B} 7.18 [s, 2H, H(3,6)], 4.26 [s, 2H, H(4,5)], 2.20 [s, 15H, C₅Me₅], -1.02 [s, 1H, H(1)], -2.17 [s, 2H, H(34, 56), -11.63 [s, 2H, H(23, 26)].

Compound 10. NMR data, solvent thf- d_8 ; ¹H NMR at 300 MHz and ¹¹B NMR at 96.25 MHz: ¹¹B 0.9 [d, J(B-H) 129, B(2–6)]; ¹H{¹¹B} 2.89 [s, 5H, H(2–6)], 2.37 [s, 15H, C₅Me₅], -4.78 [s, 4H, H23–56 except 26)].

CCDC no. 290786 contains the supplementary crystallographic data for this paper. The data can be obtained free of charge via www.ccdc.cam.ac.uk/conts/retrieving.html (or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge, CB2 1EZ, UK; fax: +(44) 1223-336-033; or email: deposit@ccdc.cam.ac.uk).

OM700323G