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Iron Trichloride Mediated Allylation of Lithium Alkoxides through
an Unusual Carbon—Oxygen Bond Cleavage
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Summary: Iron trichloride was found to cleacarbon-oxygen
bonds in avariety of lithium alkoxides at room temperature.
Other Lewis acids were also found to clegthe alkoxides. Acid-
sensitve groups are tolerated under the reported reaction
conditions.

In the last two decades, considerable effort has been devoted

to the cleavage of unreactive bonds, such as carhgdrogent
carbon-carbor? carbonr-nitrogend and carbor-oxygen bonds.

Direct cleavage of these bonds provides several advantages in

organic syntheses, including atom efficiency, low environmental
load, and the potential for unusual chemoselectivity. With
respect to carbonoxygen bond cleavage, significant results
have been achieved using alco@ad ether§.Herein we wish

to report an unusual bond cleavage involving the carbon
oxygen bond in lithium alkoxides (ROLI) in the presence of
metal halides (MX), including iron, tin, silicon, aluminum, and
boron chlorides. This carberoxygen cleavage occurs smoothly,
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Scheme 1. Transition-Metal-Free Coupling of Alkoxides
with Organoboron Dihalides
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Table 1. Alkoxide Carbon—Oxygen Bond Cleavage Using
Lewis Acids?
Ph i, _Lewis Acid eh
Me Me
entry Lewisacid vyield (%) entry Lewisacid yield (%)
1 BCl; 96° 5 SiCly 27
2 FeCh 95 6 CuC} 0
3 SnCh 77 7 NiCh 0
4 AlCl3 77

2 Reaction carried out at room temperature on a 1.5 mmol scale in dry
dichloromethane? Isolated yield based on lithium alkoxideReference 12.

even at room temperature, and most likely proceeds through
the unstable metal alkoxide complex intermediate [M(@R).n].

We have been investigating boron halide chemistry for many
years, and a number of novel reactions have been developed.
Recently, we reported the transition-metal-free coupling of
alkoxides with alkenylboron dihalides and alkynylboron diha-
lides (Scheme 13.

Preliminary mechanistic studies revealed that these reactions
apparently proceed through cation intermedi8tés.a continu-
ation of these studies, we discovered that this type of carbon
oxygen bond cleavage can be achieved using $-@0Ithe best
of our knowledge, direct carberoxygen bond cleavage in an
alkoxide by a metal halide is unknowWralthoughs-hydrogen®
andg-hydrocarbyt! eliminations in the transition-metal alkoxide
complexes [M(OR)Xn-n], generated in situ, have been docu-
mented.
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Table 2. Iron Trichloride Mediated Allylation of Lithium Alkoxides 18
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aReaction carried out at room temperature on a 1.5 mmol scale in dry dichlorométitdeelated yield based on the alkoxide.

The reaction of the lithium salt of phengHolylmethanol

iron trichloride (96% vs 95%). Interestingly, iron trichloride has

with allyltrimethylsilane was chosen as the model reaction to been reported to be an ineffective catalyst for the allylation of
evaluate the breadth of the new cleavage reaction. Several Lewihenzylic alcohols using allyltrimethylsiladé!* and reactions
acids were screened, and the results are illustrated in Table 1.

As demonstrated by the data in Table 1, several Lewis acids

successfully cleave the carbeoxygen bond in the alkoxide.
Comparable results were obtained with boron trichldddad
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using a stoichiometric amount of iron trichloride generally lead
to an inseparable mixture of the allylation product along with
the HCI addition product® The separation problems related to
the HCI addition product, together with other isstfa®lated

to the high acidity of the reactiof,can be overcome by using
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Scheme 2. Evidence Supporting a Cationic Mechanism

, FeCl Ph
. SiMe; __FeCls _ . @/
; e DCM, it
Ph N
4 5

Ph™ “OLi
3
12%

alkoxides as the reactants. Iron trichloride was chosen to evaluate

the scope of the cleavage reaction due to its low cost (Table 2).
All reactions utilizing secondary allylic, propargylic, and
benzylic alkoxides produced the desired products in moderate

to high yields. Attempts to cleave the carbaoxygen bond in
primary benzylic alkoxides and secondary aliphatic alkoxides
were unsuccessful. The carbeoxygen bond cleavage in
tertiary alkoxides is remarkable because complexes bearing
tertiary alkoxide ligands have been reported to undetdny-
drocarbyl eliminations to form an organometal intermediate
along with a ketonéld1°The regioselective allylation of pro-
pargylic alkoxides is significant, since this transformation tra-
ditionally relies on the Nicholas reacti#{a multistep reaction
involving transition-metal-stabilized propargylic cations).
Though a detailed mechanistic study has not been undertaken
potential driving forces for the reaction include steric interactions
between the organic substituents and the chlorine, the crystal
lattice energy of LiCl, and the strength of the-F@ bond. A
similar cleavage has been proposed recently in the,/RgN-
mediated conversion of propargyl alcohols to chloroalléfes.
The formation of an oxonium ion intermediate via [RFHO-
(FeCk)FeCh] would be in line with Lewis acid catalyzed
allylation reactions of acetatég?and silyl ether@2 In addition,
1-phenylcyclopentenes) was isolated during the allylation of
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Scheme 3. Tandem Reaction
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alkoxide3 (Scheme 2). Althougb could, in theory, be formed
via an & elimination from the initial (benzyloxy)iron chloride,
the absence of a base would appear to make this unlikely.

The iron trichloride mediated coupling reaction of alkoxides
with allyltrimethylsilane also makes tandem reactions feasible,
since most secondary and tertiary alcohols can be prepared in
situ from the reaction of aldehydes and alkyllithium reagents
(Scheme 3).

The cleavage of a carberoxygen bond in a metal alkoxide
by a Lewis acid under such mild reaction conditions is unique.
From the viewpoint of organic synthesis, this iron trichloride
mediated coupling reaction can be viewed as a substitution
of the OFeC] group. On the basis of the facile reaction of
[RR1CHOFeC}] with allylsilane, OFeCl appears to be more
effective than traditional leaving groups, such as OAc, OTf,
and OTs. Further investigations using this methodology are
under way.
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