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Summary: o-(Fluorodimethylsilyl)phenyllithium (1) was pre-
pared by bromine-lithium exchange between o-C6H4(SiMe2F)-
Br (2) and t-BuLi in Et2O at -78 °C. The electrophilic Si-F
functionality in1 is not attacked by the nucleophilic aryllithium
moiety at that temperature.7Li, 19F, and 29Si NMR analyses
supported by DFT calculations suggested that the structure of
1 inVolVes an intramolecular coordination of the fluorine substi-
tuent to the lithium atom. Reactions of1 with halosilanes pro-
duced unsymmetrical, silicon-halogenated o-disilylbenzenes4.

(Fluorosilyl)benzenes have received much attention in organic
synthesis as well as in material science because (i) their reactions
with nucleophiles allow facile functional group transformations
on the silicon;1 (ii) the fluorosilyl group can be converted into
a hydroxyl group through Tamao-Fleming oxidation;2 (iii)
(fluorosilyl)benzenes serve as aromatic components in silicon-
based cross-coupling reactions;3 and (iv) they are also potential
building blocks in silicon-containingπ-conjugated polymers
represented by disilanylene-phenylene polymers.4

o-(Fluorosilyl)phenyl alkali metal species could be good
precursors for a variety of (fluorosilyl)benzenes required in the

above-mentioned applications. However, such species have
received little attention, perhaps because it was believed that
they are so unstable that they readily lose LiF and dimerize to
give 9,10-dihydro-9,10-disilaanthracenes. We report the prepara-
tion and reactions ofo-(fluorodimethylsilyl)phenyllithium (1),
in which the electrophilic Si-F functionality is compatible with
the nucleophilic phenyllithium moiety at low temperatures. This
reagent allows us to obtain unsymmetrical, silicon-halogenated
o-disilylbenzenes.5

o-Bromo(fluorodimethylsilyl)benzene (2) selectively under-
went bromine-lithium exchange6 with 1 molar equiv oft-BuLi
in Et2O at -78 °C, leaving the Si-F functionality intact to
afford aryllithium1, as shown in Scheme 1.7 Whereas1 easily
dimerized to form 9,10-dihydro-9,10-disilaanthracene8 3 in 97%
yield during warming up to 0°C,9 1 reacted with HMe2SiCl
(1.1 molar equiv) at-78 °C to give 1,2-disilylbenzene4a in
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68% yield. Aryllithium 1 also reacted with dihalosilanes such
as Me2SiCl2 (1.1 molar equiv)10 and Ph2SiF2 (1.1 molar equiv),
giving 4b and 4c in 63% and 82% yields, respectively. Such
unsymmetrical, silicon-halogenatedo-disilylbenzenes are dif-
ficultly accessible by conventional methods,5 and 4a-c were
synthesized for the first time by the present method.7 These
silicon-halogenated disilylbenzenes could serve not only as the
precursors of disilanylene-phenylene polymers4 but also as
bidentate Lewis acids.5b Unexpectedly,1 did not react with

Me3SiCl, which is more sterically demanding than the halo-
silanes employed above. Instead, LiF elimination occurred and
the dimerized product3 was formed in 68% yield. In contrast,
the reaction of1 with a less sterically demanding dihalosilane,
HMeSiCl2, produced bis[o-(fluorosilyl)phenyl]silane5 in 93%
yield (based on2).7

The multinuclear NMR spectra of1 were observed at-80
°C. The7Li{1H} NMR spectra of1 exhibited a singlet atδ )
2.3,11,12 which lies in the range of the reported7Li shifts of
aryllithiums in ethereal solvents.13 The19F resonance was found
at δ ) -162.4 as a singlet.12 The 29Si{1H} NMR spectrum
showed a doublet atδ ) 24.0, and the Si-F coupling constant
(1JSi-F ) 259 Hz) was reduced relative to that of2 (1JSi-F )
278 Hz).

In order to obtain further insights into the structure of1, we
performed DFT calculations and NMR shift prediction with the
GIAO method.14,15DFT calculations displayed the five-membered-
ring fluorine-chelated structure16 I (Li ‚‚‚F distance is 1.831 Å)
as an energy minimum, as shown in Figure 1. The computed
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Figure 1. Calculated structures and GIAO NMR shiftsδ (ppm) of I , II , andIII .

Scheme 1. Preparation and Reactions of 1
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NMR shifts of I (δ(7Li) calcd ) 4.2; δ(19F)calcd ) -162.9;
δ(29Si)calcd ) 40.5) are in agreement with the experimental19F
NMR value, but not with the7Li NMR or 29Si NMR value.
Thus, coordinating solvents were included in the optimization.
Solvation ofI with two dimethyl ether molecules producedII ,
which is stabilized by 26 kcal/mol relative toI and retains the
Li ‚‚‚F interaction (Li‚‚‚F distance is 1.988 Å) (Figure 1). The
calculated NMR shifts (δ(7Li) calcd ) 2.6; δ(19F)calcd ) -162.9;
δ(29Si)calcd) 29.6) are in good agreement with the experimental
values. The aggregation ofI should also be considered. Plausible
dimer structureIII ,1717,18 having a pseudoinversion center in
the C2Li2 core, was also calculated, as was the NMR shift
(Figure 1). The formation ofIII with the release of two
molecules of Me2O is energetically preferable by 5 kcal/mol
compared to the two molecules of monomerII . The computed
NMR shifts (δ(7Li) calcd) 3.2;δ(19F)calcd) -157.8;δ(29Si)calcd

) 27.8) were in moderate agreement with the experimental
values. Thus, chelated, monosolvated dimerIII as well as
chelated, bis-solvated monomerII could be the plausible
structure of1 in Et2O. We also mention that elongation of the

Si-F bond in II and III (1.691 Å in II ; 1.683 Å in III )
compared to that in the calculated structure of2 (1.630 Å)16 is
consistent with the reduction of1JSi-F in 1 mentioned above.

In conclusion, we have shown thato-(fluorosilyl)phenyl-
lithium 1 is prepared by the bromine-lithium exchange reaction
of aryl bromide2 in high yield at low temperature and that1
reacts with chlorosilanes to give unsymmetrical, silicon-
halogenatedo-disilylbenzenes. NMR and computational studies
suggest that1 adopts the five-membered-ring fluorine-chelated
structure. Further study on the structure and reactivity of1 is
in progress at our laboratory.
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