Water-Soluble Ethylene Complex with Platinum: Water Stability and Reaction with Diethylamine

Ruslan S. Pryadun and Jim D. Atwood*

Department of Chemistry, University at Buffalo, Buffalo, New York 14260-3000

Received May 9, 2007

A water-soluble ethylene complex of platinum, cis-PtCl₂(TPPTS)(C₂H₄), is prepared and characterized by spectroscopic methods in comparison to the PPh₃ analogue. The ethylene complex is stable in water from pH 0 to 9. At pH 10.5 the complex decomposes to C₂H₅OH and CH₃CHO over a few days. Reaction of cis-PtCl₂(TPPTS)(C₂H₄) with NHEt₂ in DMF gives cis-PtCl₂(TPPTS)(CH₂CH₂NHEt₂), which was characterized by NMR. Thus the water-soluble ethylene complex, which is stable in water to pH 9, is susceptible to nucleophilic attack.

A number of articles and reviews point to the potential environmental benefits of water as a solvent to replace organic solvents in organometallic and catalytic reactions.^{1,2} In addition to environmental benefits, several studies have shown that water as a solvent accelerates reactions, providing a kinetic benefit to water as a solvent.^{1–3}

From Zeiss's time,⁴ platinum complexes have had a special role in understanding ethylene as a ligand. With the industrial use of the Wacker process, catalyzed by palladium salts in water, many studies focused on platinum and palladium reactions with C_2H_4 in water.⁵ The following reactions illustrate different products from similar platinum complexes reacting in water with ethylene.⁶ These reactions show a range of organic products

$$PtCl_{3}(C_{2}H_{4})^{-} \xrightarrow{H_{2}O} CH_{3}CHO + 2HCl + Cl^{-}$$
(1)

(1) Cornils, B., Herrmann, W. A., Horváth, I. T., Leitner, W., Mecking, S., Olivier-Bourbigou, H., Vogt, D., Eds. *Multiphase Homogeneous Catalysis*; Wiley-VCH: 2005, Vol. 1, especially Chapter 2 and references therein.

$$2PtCl_{4}^{2^{-}} + 4C_{2}H_{4} \xrightarrow{H_{2}O} Pt_{2}(C_{2}H_{4})_{2}(C_{2}H_{5})_{2}(\mu-Cl)_{2} + 2HO^{-} + 2Cl^{-} (2)$$

$$PtCl_{3}(C_{2}H_{4})^{-} \xrightarrow{H_{2}O} PtCl_{3}(C_{2}H_{4}OH)^{2-} \xrightarrow{\text{oxidation}} HOCH_{2}CH_{2}OH (3)$$

from similar reactants and indicate the diverse reactions that may be expected for alkenes in aqueous solution.

Pt(0) complexes with alkenes are readily prepared and are reasonably stable.⁷ Pt(II) complexes, other than the commonly used starting complexes Pt(cod)X₂, are less stable, frequently undergoing additional reactions.⁸ Five-coordinate alkene complexes of Pt(II) have been studied.⁹ The one class of square-planar Pt(II) alkene complexes, other than Zeiss's salt, that have reasonable stability and have been examined are PtCl₂L(η^2 -alkene),^{10–14} where L = phosphine or N-donor. Primarily, these were structural studies with the only reported reactions being alkene displacement^{10,14} and diethylamine attack.^{10,11} Only for aminoacid complexes¹³ were the complexes examined in water.

In this article we prepare and spectroscopically characterize a water-soluble Pt(II) alkene complex, PtCl₂(TPPTS)(C₂H₄), TPPTS = P(m-C₆H₄SO₃Na)₃. This complex is stable in H₂O from pH 0 to 9; reactions at pH 10.5 and with NHEt₂ are described.

^{(2) (}a) Kuo, L. T.; Weakley, T. J. R.; Awana, K.; Hsia, C. Organometallics 2001, 4969. (b) Gladysz, J. A. Chem. Rev. 2002, 102, 3215. (c) Cole-Hamilton, D. J. Science 2003, 299, 1702. (d) Pinault, N.; Bruce, D. W. Coord. Chem. Rev. 2003, 241, 1. (e) Dloumaev, V. K.; Bullock, R. M. Nature 2003, 424, 530. (f) Himeda, Y.; Onozawa-Komatsuzaki, N.; Sugihara, H.; Kasuga, K. Organometallics 2007, 26, 702. (g) Süss-Fink, G.; Therrien, B. Organometallics 2007, 26, 0000. (h) Huang, R.; Shaughnessy, K. H. Organometallics 2006, 25, 4105. (i) Shelden, R. A. Green Chem. 2005, 7, 267.

^{(3) (}a) Gajewski, J. J.; Brichford, N. L. J. Am. Chem. Soc. **1994**, *116*, 3165. (b) Sanz, S.; Jones, L. A.; Mohr, F.; Laguna, M. Organometallics **2007**, *26*, 952. (c) Rossin, A.; Kovács, G.; Ujaque, G.; Lledós, A.; Joó, F. Organometallics **2006**, *25*, 5010. (d) Phillips, A. D.; Gonsalvi, L.; Romerosa, A.; Vissa, F.; Peruzzini, M. Coord. Chem. Rev. **2004**, *248*, 955. (e) Li, X.; Wu, X.; Chen, W.; Hancock, F. E.; King, F.; Xiao, J. Org. Lett. 2004, **6**, 3321.

⁽⁴⁾ Zeise, W. C. Ann. Phys. 1827, 9, 932.

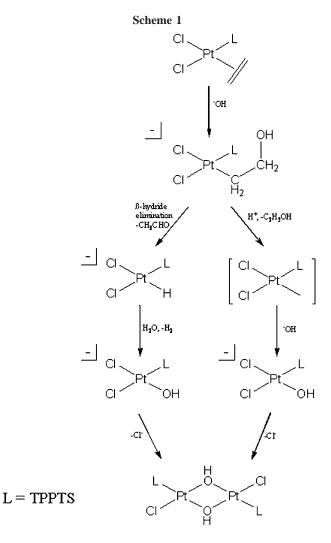
⁽⁵⁾ Helfer, D. S.; Atwood, J. D. Organometallics 2004, 23, 2412, and references therein.

^{(6) (}a) Henry, P. M. Palladium Catalyzed Oxidation of Hydrocarbons; Reidel Publishing, 1980; Chapter 2. (b) Basiches, N.; Huston, A. C.; Sen, A.; Yap, G. P. A.; Rheingold, A. Organometallics **1996**, *15*, 4116. (c) Huston, A. C.; Lin, M.; Basickes, N.; Sen, A. J. Organomet. Chem. **1995**, *504*, 69. (d) Luinstra, G. A.; Wang, L.; Stahl, S. S.; Labinger, J. A.; Bercaw, J. E. J. Organomet. Chem. **1995**, *504*, 75.

^{(7) (}a) Tromp, D. S.; Duin, M. A.; Kluwer, A. M.; Elsevier, C. J. *Inorg. Chim. Acta* **2002**, *327*, 90, and references therein. (b) van Asselt, R.; Elsevier, C. J.; Smeets, W. J. J.; Spek, A. L. *Inorg. Chem.* **1994**, *33*, 1521. (c) de Felice, V.; de Renze, A.; Ruffo, F.; Tesauro, D. *Inorg. Chim. Acta* **1994**, *219*, 169. (d) Kundu, A.; Buffin, B. P. *Organometallics* **2001**, *20*, 3635.

⁽⁸⁾ Szuromi, E.; Slarp, P. R. Organometallics 2006, 25, 558.

⁽⁹⁾ Fanizzi, F. P.; Intini, F. P.; Maresca, L.; Natile, G.; Lanfranchi, M.; Tiripicchio, A. J. Chem. Soc., Dalton Trans. **1991**, 1007, and references therein.


⁽¹⁰⁾ Pryadun, R. S.; Gerlits, O. O.; Atwood, J. D. J. Coord. Chem. 2006, 59, 85.

⁽¹¹⁾ Pryadun, R.; Sukumaran, D.; Bogadi, R.; Atwood, J. D. J. Am. Chem. Soc. 2004, 126, 12414, and references therein.

⁽¹²⁾ Price, D. W.; Drew, M. G. B.; Hii, K. K.; Brown, J. M. Chem.-Eur. J. 2000, 6, 4587, and references therein.

⁽¹³⁾ Erickson, L. E.; Brower, D. C. *Inorg. Chem.* **1982**, *21*, 838.

⁽¹⁴⁾ Ling, S. S. M.; Puddephatt, R. J. J. Chem. Soc., Chem. Commun. 1982, 412.

Experimental Section

Materials. The following chemicals were used in the syntheses: K_2PtCl_4 and $H_2PtCl_6 \cdot H_2O$ were purchased from Strem Chemicals; PPh₃ was purchased from Aldrich Chemical Co. and recrystallized from ethanol. $PtCl_2^{15}$ and $TPPTS^{16,17}$ were synthesized by literature procedures. Deuterated solvents, dimethylformamide (C₃D₇ON), and methanol (CD₃OD) were purchased from Aldrich Chemical Co. Triply distilled H₂O was available from Dr. G. Nancollas's lab. Ar and N₂ were purchased from Matheson. All solvents were purchased from Aldrich Chemical Co. and used as received without further purification.

Instrumentation. ¹H, ³¹P, and ¹⁹⁵Pt spectra were recorded using a Varian VXR 400 MHz NMR spectrometer. ³¹P NMR spectra were ¹H decoupled and referenced to an external sample of 85% H₃PO₄ in D₂O (reference was set to 0.00 ppm). ¹⁹⁵Pt NMR spectra were referenced to an external sample of 0.2 M K₂PtCl₄ (in 0.4 KCl/ D₂O), in which the reference was set to -1627.00 ppm.¹⁸ All ¹H spectra were referenced to TMS (reference set to 0.00 ppm). Aromatic protons in the region of 7–8 ppm were excluded from discussion for simplicity. All chemical shifts are reported in parts per million (ppm), and all coupling constants (*J*) are in Hz.

Table 1.	NMR	Characterization	of	cis-PtCl ₂ L	$L(C_2H_4)$
----------	-----	------------------	----	-------------------------	-------------

	$L = TPPTS^{a}$	$L = PPh_3^{10} b$
³¹ P	14.7 ppm ($J_{P-Pt} = 3294 \text{ Hz}$)	14.6 ppm $(J_{P-Pt} = 3295 \text{ Hz})$
¹ H ^c	4.1 (br)	4.1 (br)
¹⁹⁵ Pt	4048 ppm ($J_{P-Pt} = 3294 \text{ Hz}$)	4048 $(J_{P-Pt} = 3295 \text{ Hz})$

^{*a*1}H NMR spectrum was taken in CD₃OD. ^{*b*1}H NMR spectrum was taken in CDCl₃. ^{*c*} Aromatic resonances were also observed.

Whenever possible ¹H and ³¹P spectra were integrated and relative abundance for each species present in a given sample was assigned.

cis-PtCl₂(TPPTS)(C₂H₄). Equimolar amounts of PtCl₂ (0.96 mmol, 0.29 g) and TPPTS (0.96 mmol, 0.55 g) were dissolved in 20 mL of DMF. The reactants were placed into a 50 mL lipless beaker, which was pressurized in a Parr apparatus with 500 psi of ethylene. The reaction mixture was stirred under ethylene pressure for 5 days. Afterward the bomb was depressurized and the solution was filtered on a fine grade frit. The solution was transferred from a filter flask to a 500 mL beaker. Precipitation of the product was collected on a medium grade frit and exhibited a paste-like consistency and was further washed with copious amounts of pentane. The white solid was dried *in vacuo* overnight and stored under Ar. Overall yield of 48% was achieved.

³¹P{¹H} NMR (D₂O; δ (ppm)): 14.72 (s, ¹*J*_{P-Pt} = 3294). ¹H NMR (D₂O; δ (ppm)): 4.05 (br, 4H). ¹⁹⁵Pt NMR (D₂O; δ (ppm)): 4047.5 (d, ¹*J*_{P-Pt} = 3294).

cis-PtCl₂(TPPTS)(C₂H₄NHEt₂). A 20 mL Schlenk flask was loaded with 0.104 g (0.11 mmol) of *cis*-PtCl₂(TPPTS)(C₂H₄) and 4 mL of DMF, capped with a rubber septum, and backfilled with N₂. The flask was placed in an acetone bath cooled with dry ice, and the temperature of -35 ± 5 °C was maintained throughout the reaction. A 2-fold excess of diethylamine in dichloromethane was added via syringe into a light brown solution of platinum complex. The reaction was stirred for 45 min, at which point 10 mL of acetone was added and the brown solution turned milky gray. The reaction mixture was allowed to reach room temperature, and the solution was filtered through a fine sintered frit. The gray solid was washed with 5 × 30 mL portions of ice-cold acetone and left to dry *in vacuo* overnight.

³¹P{¹H} NMR (CD₃OD; δ (ppm)): 14.11 (s, ¹*J*_(P-Pt) = 4383). ¹H NMR (CD₃OD; δ (ppm)): 0.51 (m, *J*_(H-Pt) = 82.79, *J*_(H-P) = 2.79, and *J*_(H-H) = 7.39, 2H Pt*CH*₂), 4.31 (t, *J*_(H-H) = 7.59, 2H, PtCH₂*CH*₂), 2.94 (m, 4H), 1.59 (m, 6H).

Results and Discussion

The water-soluble C_2H_4 complex *cis*-PtCl₂(TPPTS)(C_2H_4) could be prepared by two procedures, direct reaction of equimolar quantities of PtCl₂ and TPPTS in DMF followed by pressurization with C_2H_4 ,

$$PtCl_{2} + TPPTS \xrightarrow{C_{2}H_{4} (500 \text{ psi})}_{DMF} cis-PtCl_{2}(TPPTS)(C_{2}H_{4})$$
(4)

or by C_2H_4 displacement of DMSO from PtCl₂(TPPTS)(DMSO) under pressure. The former gave a better yield and is the preferred synthesis. In reaction 4 any solvent other than DMF gave a mixture of products.

As with many TPPTS complexes, cis-PtCl₂(TPPTS)(C₂H₄) does not readily crystallize. This complex was characterized spectroscopically, based on comparison to the structurally characterized analogue cis-PtCl₂(PPh₃)(C₂H₄).^{10,11} Table 1 provides the ¹H, ³¹P, and ¹⁹⁵Pt NMR comparisons of cis-PtCl₂-(TPPTS)(C₂H₄) and cis-PtCl₂(PPh₃)(C₂H₄). The characterization data provide strong support for the complex. Especially

⁽¹⁵⁾ Kerr, G. T.; Schweizer, A. E. Inorg. Synth. 1980, 20, 48.

⁽¹⁶⁾ Hermann, W. A.; Kohlpainter, C. W. Inorg. Synth. **1998**, 32, 14.

 ⁽¹⁷⁾ Bhandage, B. M.; Divekar, S. S.; Deshpande, R. M.; Chaudhari, R. V. Org. Process Res. Dev. 2000, 4, 342.

⁽¹⁸⁾ Bodenhausen, G.; Ruben, D. J. Chem. Phys. Lett. 1980, 69, 185.

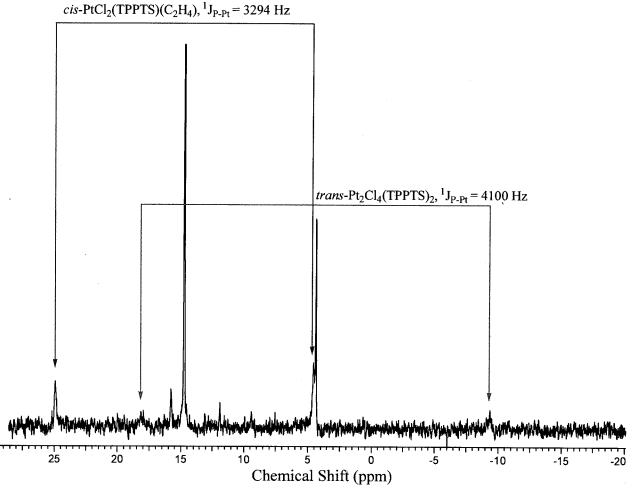


Figure 1. ³¹P spectrum of cis-PtCl₂(TPPTS)(C₂H₄) (14.7 ppm) showing some of the dimer Pt₂(Cl)₂(TPPTS)₂(μ -Cl)₂ at 4.3 ppm.

significant are the doublet for ¹⁹⁵Pt indicating a single coordinated TPPTS and the magnitude of the J_{Pt-P} coupling.

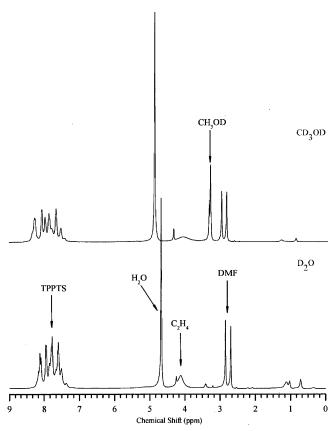
The only phosphorus-containing contaminant is binuclear Pt_2 - $Cl_4(TPPTS)_2$, observed if sufficient reaction time under C_2H_4 pressure is not allowed.¹¹

$$cis$$
-PtCl₂(TPPTS)(C₂H₄) $\xrightarrow{D_2O_2 > 24 \text{ h}}_{-C_2H_4}$ trans-Pt₂Cl₄(TPPTS)₂
(5)

Figure 1 shows the ${}^{31}P$ spectrum of a sample of *cis*-PtCl₂-(TPPTS)(C₂H₄) containing a small amount of the binuclear species.

Broadening in the ¹H resonance of bound C_2H_4 has been well studied, ¹⁹ including for the PPh₃ analogue, ²⁰ *cis*-PtCl₂(PPh₃)-(C₂H₄), as rotation of the alkene about the platinum bond. Changing from PPh₃ to TPPTS has little effect on the broadening. We note that the aqueous solution of *cis*-PtCl₂(TPPTS)-(C₂H₄) is a bit sharper at 25 °C than the MeOH solution, suggesting more rapid rotation by the ethylene in water. The spectra are shown in Figure 2.

The NMR data in Table 1 were taken in CD_3OD , but little change occurs for aqueous solution. As an illustration, the proton


spectrum in D_2O is shown in Figure 2; the ³¹P spectrum in D_2O shows a small shift to about 13.2 ppm.

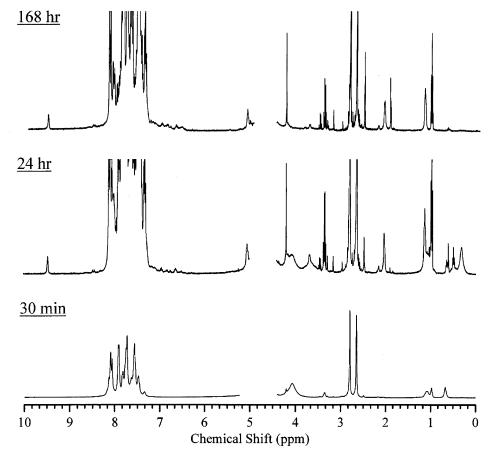
The ethylene complex is unusually stable in water between pH 0 and 9 (examined in 0.5 pH increments). Dissolving cis-PtCl₂(TPPTS)(C₂H₄) in 20% HBF₄ showed no change in the ¹H and ³¹P spectra. However, at pH 10.5 in D₂O in a sealed NMR tube the C₂H₄ was converted to ethanol and acetaldehyde in an approximate 1:1 ratio. Figure 3 presents ¹H NMR spectra at 30 min, 24 h, and 168 h. The ¹H NMR spectrum at 30 min shows some formation of C₂H₅OH (0.95 and 3.38 ppm) and the hydrate of acetaldehyde at 1.12 ppm.^{5,21} The coordinated C_2H_4 resonance at 4.1 is still dominant, consistent with the ³¹P spectrum, which shows mainly cis-PtCl₂(TPPTS)(C₂H₄). After 24 h there is some C_2H_4 complex remaining; the C_2H_5OH has become clear with appropriate coupling and the acetaldehyde and hydrate (2.04 and 1.12 ppm) are both observed. In addition, resonances between 0 and 0.8 ppm are probably from PtCH2-CH₂OH species, but lack clarity that would allow full assignment. The ³¹P spectrum after 24 h shows the starting ethylene complex, a probable dinuclear product (at 1.8 ppm), and two other species. All four are of approximately the same intensity and singlets. After 168 h the ³¹P NMR spectrum is dominated by the dimer and the ¹H NMR shows the resonances above 0.8 ppm have disappeared. Ethanol, acetaldehyde, and its hydrate

⁽¹⁹⁾ Mann, B. E. In *Comprehensive Organometallic Chemistry*; Wilkinson, G., Stone, F. G. A., Abel, E. W., Eds.; Pergamon Press: Oxford, 1982; Vol. 3, Chapter 2, p 89.

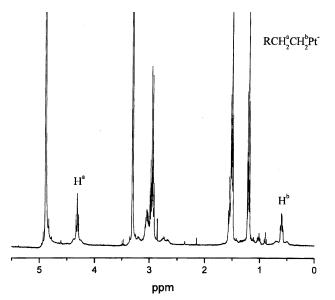
⁽²⁰⁾ Ashley-Smith, J.; Douek, I.; Johnson, B. F. G.; Lewis, J. J. Chem. Soc., Dalton Trans. 1972, 1776.

⁽²¹⁾ Schuchmann, M. N.; von Sonntag, C. J. Am. Chem. Soc. 1988, 110, 5698.

Figure 2. ¹H NMR spectra of *cis*-PtCl₂(TPPTS)(C_2H_4) showing the broadening from rotation in D₂O and in CD₃OD.


are still present, and a new resonance at 1.9 ppm may be acetic acid from oxidation of acetaldehyde.

Thus the reaction of coordinated C₂H₄ at pH 10.5 for cis-PtCl₂(TPPTS)(C₂H₄) in D₂O leads to acetaldehyde (and its hydrate) and ethanol. Acetaldehyde would be expected,5 but ethanol through a hydration of C2H4 has not previously been observed on platinum. The NMR integration of the organic products shows deuterium incorporation in the methyl groups of ethanol and acetaldehyde to approximately the same extent, perhaps indicating a common intermediate; a β -hydroxy ethyl would be most likely. Usually deuterium incorporation into CH3-CHO is not observed,^{5,6a} but the reaction reported herein is quite slow and offers opportunities for deuterium incorporation. The primary platinum product (³¹P at 1.8 ppm, $J_{Pt-P} = 4256$ Hz) is not a known Pt(0) complex²² and is most likely a hydroxobridged dimer²³ such as $Pt_2(\mu$ -OH)_2X_2L_2 where $X = OH^-$ or Cl⁻, on the basis of the chemical shift and coupling constant. The very small amount of phosphine oxide observed in basic conditions excludes free TPPTS from a role.


Reaction of *cis*-PtCl₂(TPPTS)(C₂H₄) with NHEt₂ was examined in DMF at -35 °C.

$$cis-PtCl_{2}(TPPTS)(C_{2}H_{4}) + HNEt_{2} \xrightarrow{DMF, -35 \ ^{\circ}C} cis-PtCl_{2}(TPPTS)(C_{2}H_{4}NHEt_{2}) (6)$$

The color changed from colorless to yellow. Addition of copious amounts of Et₂O resulted in a precipitate, which was collected and characterized as *cis*-PtCl₂(TPPTS)(C₂H₄NHEt₂). The yield was 60%. The diagnostic feature¹¹ is in the ¹H NMR (CD₃OD)

Figure 3. ¹H NMR spectra of *cis*-PtCl₂(TPPTS)(C₂H₄) at 30 min, 24 h, and 168 h in D₂O at pH 10.5. The break at \sim 5 ppm corresponds to residual protons in D₂O. The two resonances at \sim 3.5 and 3.7 ppm are from DMF; resonances at \sim 8 ppm are aromatic (TPPTS). The resonances growing in are discussed in the text.

Figure 4. Partial ¹H NMR spectra of the amine reaction product, PtCl₂(TPPTS)(CH^b₂CH^a₂NHEt₂). H^a and H^b show the distinctive ¹⁹⁵Pt satellites and chemical shifts.

for the two methylenes, both of which exhibit Pt-H coupling, at 0.51 ppm (CH₂ bound to Pt) and 4.3 ppm (CH₂ bound to

NHEt₃) as shown in Figure 4. The ¹H NMR spectrum is nearly identical to that of *cis*-PtCl₂(PPh₃)(CH₂CH₂NHEt₂)¹¹ except for the presence of residual CD₃OD in the current spectrum. The ³¹P spectrum shows a single resonance at 14.1 ppm, $J_{P-Pt} = 4383$ Hz, very similar to the PPh₃ analogue.¹¹

A small resonance sometimes observed at 31 ppm is from the phosphine oxide, $OP(m-C_6H_4SO_3Na)_3$, formed under the basic conditions.

Conclusion

We have prepared a water-soluble platinum alkene complex, cis-PtCl₂(TPPTS)(C₂H₄), characterized it by comparison to the PPh₃ analogue, demonstrated its stability in water from pH 0 to 9, shown that at pH 10.5 both hydration and formation of acetaldehyde occur, and demonstrated nucleophilic attack on the C₂H₄ by NHEt₂ leading to an isolable complex, cis-PtCl₂(TPPTS)(CH₂CH₂NHEt₂).

Acknowledgment. R.S.P. acknowledges a Silbert Fellowship during his graduate studies.

OM700460E

⁽²²⁾ Helfer, D. S.; Atwood, J. D. Organometallics 2002, 21, 250.
(23) Francisco, L. W.; Moreno, D. A.; Atwood, J. D. Organometallics 2001, 20, 4237.