Hemilabile Pincer-Type Hydride Complexes of Iridium

Aldjia Choualeb,[†] Alan J. Lough,[‡] and Dmitry G. Gusev^{*,†}

Department of Chemistry, Wilfrid Laurier University, Waterloo, Ontario, N2L 3C5 Canada, and Department of Chemistry, University of Toronto, Toronto, Ontario, M5S 3H6 Canada

Received June 5, 2007

The ligand 'Bu₂PC₂H₄NHC₂H₄NEt₂ (PNHN) was synthesized starting from 2-(diethylamino)ethyl chloride hydrochloride and ethanolamine. Reaction of PNHN with [IrCl(COE)₂]₂ under H₂ afforded the dihydride *cis*-IrH₂Cl(κ^3 -PNHN) (1) in excellent yield. Treatment of 1 with 'BuOK led to clean formation of the 16-electron amido complex IrH₂(κ^3 -PNN) (2). Hydrogenation of 2 in toluene or ethyl acetate produced the trihydride *mer*-IrH₃(κ^3 -PNHN) (3). This complex was unstable and dimerized to give [IrH₂-(κ^2 -PNHN)]₂(μ -H)₂ (4) with uncoordinated NEt₂ groups. The structures of 1 and 4 were established by X-ray crystallography. Complex 2 demonstrated good catalytic activity for transfer hydrogenation of acetophenone, cyclohexanone, and butanone.

Introduction

A good number of competent transition metal catalysts are now available for homogeneous hydrogenation of ketones.¹ One example prepared in our laboratory is the pincer-type complex *mer*-IrH₃(PNHP) (PNHP = HN($C_2H_4P^iPr_2)_2$), which catalyzes transfer hydrogenation of a typical substrate, acetophenone, with S/C ratios of up to 10⁵ and conversions exceeding 90% in 2-propanol at 80 °C.² Interestingly, IrH₃(PNHP) is not active for hydrogenation under hydrogen because of a relatively slow rate of H_2 addition to the intermediate $IrH_2(PNP)$ (Scheme 1) and slow regeneration of the catalyst, IrH₃(PNHP). This behavior is not exceptional; in fact, Noyori and co-workers recently noted that most of the existing ketone hydrogenation catalysts are effective for only one of the two reactions, i.e., for either transfer hydrogenation or hydrogenation under H2.1h Exact reasons for such selectivity are not clear since both types of ketone hydrogenation are linked mechanistically and are believed to involve formation of amido intermediates under catalytic conditions. Perhaps only one catalyst, the Ru triflate complex $Ru(OTf){(S,S)-Ts-dpen}(p-cymene)$, is known to operate as a transfer hydrogenation catalyst under basic conditions in 2-propanol and is also active for H₂ hydrogenation under acidic conditions in methanol.1h

Transfer hydrogenation is a convenient method for preparation of gram quantities of alcohols in laboratory settings, yet hydrogenation of neat ketons under H_2 , when possible, is an attractive alternative for large-scale industrial applications. Therefore, development of versatile ketone hydrogenation catalysts is an important fundamental and practical challenge.

In this project, we decided to explore the effect of a modification of $IrH_3(PNHP)$ aimed at enabling partial dissociation of the coordinated pincer ligand in order to facilitate H₂ addition to Ir under catalytic conditions. To this end, we thought of modifying the original PNHP ligand by substituting a NEt₂ group for a PⁱPr₂ group; the product, PNHN = R₂PC₂H₄NHC₂H₄NEt₂, was expected to give rise to a hemilabile complex, IrH₃(PNHN), containing a weakly coordinated NEt₂ group.

It may be instructive to consider calculated structures of the model systems $IrH_3[HN(C_2H_4PMe_2)_2]$ and $IrH_3[Me_2PC_2H_4-NHC_2H_4NMe_2]$, presented in Figure 1 along with atomic charges on the hydrides calculated according to three different definitions. The Ir-N2 bond is longer than the Ir-P bond (2.220 vs 2.187 Å, respectively) in $IrH_3[Me_2PC_2H_4NHC_2H_4NMe_2]$, in agreement with the expected hemilabile nature of the system. In both complexes in Figure 1, the *trans*-hydrides H2 and H3 form long polarized bonds to Ir, whereas Ir-H4 is a nonpolar covalent bond. Atoms H2 and H3 are more hydridic in $IrH_3[Me_2-PC_2H_4NHC_2H_4NMe_2]$, and it appears that the Ir center in the former complex is more "electron-rich".³ An exact relationship between the catalyst's hydricity and the rate of transfer hydrogenation is not known;

^{*} Corresponding author. E-mail: dgoussev@wlu.ca.

[†] Wilfrid Laurier University.

[‡] University of Toronto.

^{(1) (}a) Noyori, R. Angew. Chem., Int. Ed. 2002, 41, 2008. (b) Backvall, J.-E. J. Organomet. Chem. 2002, 652, 105. (c) Genet, J.-P. Acc. Chem. Res. 2003, 36, 908. (d) Blaser, H.-U.; Malan, C.; Pugin, B.; Spindler, F.; Steiner, H.; Studer, M. Adv. Synth. Catal. 2003, 345, 103. (e) Clapham, S. E.; Hadzovic, A.; Morris, R. H. Coord. Chem. Rev. 2004, 248, 2201. (f) Bullock, R. M. Chem.-Eur. J. 2004, 10, 2366. (g) Ikariya, T.; Murata, K.; Noyori, R. Org. Biomol. Chem. 2006, 4, 393. (h) Sandoval, C. A.; Ohkuma, T.; Utsumi, N.; Tsutsumi, K.; Murata, K.; Noyori, R. Chem. Asian J. 2006, 1–2, 102. (i) Lundgren, R. J.; Rankin, M. A.; McDonald, R.; Schatte, G.; Stradiotto, M. Angew. Chem., Int. Ed. 2007, 46, 4732.

⁽²⁾ Clarke, Z. E.; Maragh, P. T.; Dasgupta, T. P.; Gusev, D. G.; Lough, A. J.; Abdur-Rashid, K. *Organometallics* **2006**, *25*, 4113.

⁽³⁾ In agreement with this, our calculations on model iridium carbonyl complexes show that the $\nu_{CO} = 2019.0 \text{ cm}^{-1}$ in IrCp(CO)(NMe₃) is lower than $\nu_{CO} = 2028.3 \text{ cm}^{-1}$ in IrCp(CO)(P'Bu₃).

Figure 1. Calculated structures of *mer*-IrH₃[HN($C_2H_4PMe_2$)₂] and *mer*-IrH₃[Me₂PC₂H₄NHC₂H₄NMe₂]. Most of the hydrogen atoms are not shown for clarity. Selected distances (Å) and angles (deg): (left) Ir-H2 1.673, Ir-H3 1.673, Ir-H4 1.582, Ir-N1 2.248, Ir-P 2.258, H2-Ir-H3 175.0, N1-Ir-H4 179.6; (right) Ir-H2 1.680, Ir-H3 1.677, Ir-H4 1.586, Ir-N1 2.217, Ir-P 2.187, Ir-N2 2.220, H2-Ir-H3 176.1, N1-Ir-H4 178.5.

however, it is commonly assumed that the outer-sphere (also called "bifunctional") hydrogenation mechanism requires a properly polarized catalyst incorporating a protic and a hydridic hydrogen atom.¹

Results and Discussion

The new PNHN ligand ${}^{\prime}Bu_2PC_2H_4NHC_2H_4NEt_2$ was synthesized employing conventional organic reactions diagramed in Scheme 2. One complication encountered in this part of the project was the relatively fast self-alkylation of ClC₂H₄N-(SiMe₃)C₂H₄NEt₂, which produced 1-diethyl-4-(trimethylsilyl)piperazinium chloride. Both compounds apparently reacted with LiP'Bu₂ to give 'Bu₂PC₂H₄N(SiMe₃)C₂H₄NEt₂. This, after hydrolysis, afforded the PNHN ligand as a colorless oil.

Dissolving equivalent amounts of the PNHN ligand and [IrCl-(COE)₂]₂ in toluene under argon resulted in displacement of cyclooctene and formation of a new complex containing coordinated PNHN (³¹P NMR: δ 38.5 vs 23.2 for free PNHN). Continued stirring of this solution under 1 atm of H₂ finally afforded the dihydride *cis*-IrH₂Cl(κ ³-PNHN) (1) (Scheme 3) in excellent yield. The NEt₂ group is weakly coordinated in 1, and we noted that when the PNHN ligand was used in excess, a *trans*-diphosphine species formed along with 1, characterized by a large ²J_{PP} = 319 Hz. The ³¹P{¹H} NMR spectrum of 1 showed a singlet at δ 53.3, while the ¹H NMR spectrum

Figure 2. ORTEP and atom-labeling scheme for **1** with the ellipsoids at 30%. Most of the hydrogen atoms are omitted for clarity. Selected bond distances (Å) and angles (deg): Ir-P 2.2108-(18), Ir-N1 2.155(5), Ir-N2 2.235(5), Ir-C1 2.5453(17), P-Ir-N2 161.32(14), N1-Ir-N2 82.41(19), N1-Ir-C1 83.06(15), N2-Ir-C1 86.07(15), N1-Ir-P 85.63(14), P-Ir-C1 106.70(6).

exhibited the hydride resonances at δ -19.34 and -26.66 as doublets of doublets. The observation of two CH₃ resonances of the NEt₂ group (δ 1.05, 0.77) confirmed Ir-NEt₂ bonding in solution. The symmetry of **1** is *C*₁; thus, the 'Bu groups on phosphorus and all CH₂ protons of the NEt₂ group are magnetically inequivalent in this complex. The IR spectrum of **1** showed a strong band at 3195 cm⁻¹ due to the N-H stretch and two strong bands at 2290 and 2084 cm⁻¹ for the Ir-H vibrations.

The X-ray diffraction structure of **1** (Figure 2) exhibits a distorted octahedral geometry for the most part similar to those of the crystallographically characterized complexes $IrH_2Cl[HN-(C_2H_4P'Pr_2)_2]^2$ and $IrH_2Cl[HN(SiMe_2CH_2PPh_2)_2]$.^{4a} The molecules of **1** form hydrogen-bonded pairs in the solid state where the intermolecular and intramolecular Cl····H1c distances are similar: ca. 2.6 and 2.7 Å, respectively. The chloride of **1** is noticeably bent toward N2, away from the bulky phosphorus group: $\angle P-Ir-Cl = 106.7^\circ$, $\angle N2-Ir-Cl = 86.1^\circ$. The PNHN ligand of **1** is coordinated in a pincer-type *mer* fashion. The P'Bu₂ and NEt₂ groups are *trans* and are slightly bent toward the NH. The Ir-N2 bond must be weak since it is very long, 2.235(5) Å, compared to the Ir-P (2.2108(18) Å) and Ir-N1 (2.155(5) Å) distances.

Dehydrochlorination of **1** with potassium *tert*-butoxide in THF cleanly afforded the amido complex $IrH_2(\kappa^3-PNN)$ (**2**) (Scheme 4), which was isolated as a viscous oil. The product was well soluble in hexane, and we were unable to obtain crystalline samples for X-ray and elemental analyses. NMR spectra of **2** are provided with the Supporting Information. The ¹H NMR and ¹³C{¹H} NMR spectra indicate an effective *C_s* symmetrical structure in solution where the PNN atoms define the mirror

^{(4) (}a) Fryzuk, M. D.; MacNeil, P. A.; Rettig, S. J. J. Am. Chem. Soc. **1987**, *109*, 2803. (b) Fryzuk, M. D.; MacNeil, P. A. Organometallics **1983**, 2, 682.

Figure 3. Calculated structure of 2. Most of the hydrogen atoms are omitted for clarity. Selected bond distances (Å) and angles (deg): Ir-P 2.231, Ir-N1 1.994, Ir-N2 2.224, Ir-H1 1.581, Ir-H2 1.595, $H1\cdots H2 1.697$, P-Ir-N1 84.6, P-Ir-N2 165.4, N1-Ir-N2 80.9, N1-Ir-H1 147.2, N1-Ir-H2 148.1.

plane. Thus, the two hydrides, two 'Bu, and two Et groups are pairwise equivalent in the NMR spectra of **2**, as well as the hydrogens of the CH₂ groups of the PNN ligand backbone. The IrH₂ resonance is seen at δ -22.14 as a doublet of quintets (²J_{HP} = 12.9, ⁴J_{HH} = 3.1 Hz) exhibiting unusual long-range coupling to two CH₂ groups of the PNN ligand. Similar ¹H chemical shifts, -22.35 and -24.86 ppm, were reported for the related dihydrides IrH₂Cl[HN(C₂H₄PⁱPr₂)₂]² and IrH₂Cl[HN-(SiMe₂CH₂PPh₂)₂], respectively.^{4b} The ³¹P{¹H} NMR spectrum of **2** shows a singlet at 85.3 ppm, representing a downfield shift of about 30 ppm relative to **1**.

The molecular geometry of **2** could not be established experimentally; therefore, we determined the structure of this complex with the help of DFT calculations. The optimized geometry of **2** is presented in Figure 3 and shows a distorted trigonal-bipyramidal structure. The molecule of **2** is Y-shaped in the equatorial part, where $\angle H-Ir-H = 64.6^{\circ}$ is strongly reduced compared to the 120° angle expected in the ideal trigonal-bipyramidal geometry. This type of distortion works to strengthen π -bonding between the nitrogen and iridium, resulting in a short Ir–N bond, 1.99 Å. The electronic factors have been discussed in detail for a related iridium dihydride, IrH₂Cl(PPh'Bu₂)₂, which has $\angle H-Ir-H = 72.7^{\circ}$ in the structure determined by neutron diffraction.⁵ The smaller H–Ir–H angle in **2** can be attributed to a stronger π -donor ability of the amido nitrogen compared to that of chloride.

Stirring solutions of **2** under 1 atm of H₂ afforded the expected trihydride *mer*-IrH₃(κ^3 -PNHN) (**3**) (Scheme 5). Formation of **3** was monitored by ³¹P NMR and appeared to be relatively slow in benzene and toluene, where a small amount of **2** was observable 15 min after the preparation of the samples. In ethyl acetate, the spectrum recorded 10 min after the sample preparation showed quantitative hydrogenation of **2** and clean formation of **3**. Complex **3** proved to be unstable in all solvents and dimerized within hours to give a new species **4**, which will be discussed below. Among the salient spectroscopic features of **3** are three 1:1:1 ¹H NMR resonances at δ -20.08, -9.44, and

Figure 4. ORTEP and atom-labeling scheme for **4a** with the ellipsoids at 30%. Most of the hydrogen atoms are omitted for clarity. The positional and isotropic displacement parameters of the three unique hydride ligands have been refined. Selected bond distances (Å) and angles (deg): Ir1–N1 2.231(4), Ir1–P1 2.2431-(14), Ir–Ir 2.7325(7), N1–Ir1–P1 83.76(11).

-8.17. The latter two can be assigned to the *trans*-hydrides in **3** on the basis of the characteristically large ${}^{2}J_{\rm HH} = 12.0$ Hz.⁶ The observation of two triplets at δ 1.06 and 0.99 for inequivalent methyl groups of NEt₂ proves retention of Ir-NEt₂ bonding in solution. The ${}^{31}P{}^{1}H{}$ NMR spectrum of **3** exhibits a singlet at 70.8 ppm.

Formation of **4** from **3** proceeded slowly in benzene and ethyl acetate; however it was fast when **1** was treated with 'BuOK in 2-propanol, where **3** presumably was formed but apparently dimerized too rapidly to be detected by NMR. Spectroscopic characterization of **4** was complicated by isomerization of the complex in solution. The ${}^{31}P{}^{1}H{}$ NMR spectra showed single resonances of **4a** and **4b** at 82.6 and 81.7 ppm, respectively. In nonpolar benzene, the ratio **4a**/4**b** was 3:1; this changed to 12:1 in the more polar dichloromethane, and only a trace of **4b** was observed in 2-propanol. The structure of **4a** was eventually established by X-ray diffraction.

The X-ray study revealed the dimeric bioctahedral structure $[IrH_2(\kappa^2-PNHN)]_2(\mu-H)_2$ (Figure 4), in which the halves of the molecule are related by an inversion center and the PNHN ligand is bidentate. Ir–Ir dimers bridged solely by hydrides are uncommon.⁷ The Ir–Ir separation of 2.73 Å is consistent with Ir–Ir bonding;⁸ furthermore, in related 32-electron complexes of Ir(III) the Ir–Ir distances of 2.71–2.72 Å were interpreted as Ir=Ir double bonds.⁹ An interesting feature of **4a** is two very short IrH····HN contacts of only 1.90 Å, consistent with the presence of "dihydrogen" bonding.¹⁰

⁽⁵⁾ Albinati, A.; Bakhmutov, V. I.; Caulton, K. G.; Clot, E.; Eckert, J.; Eisenstein, O.; Gusev, D. G.; Grushin, V. V.; Hauger, B. E.; Klooster, W. T.; Koetzle, T. F.; McMullan, R. K.; O'Loughlin, T. J.; Pélissier, M.; Ricci, J. S.; Sigalas, M. P.; Vymenits, A. B. *J. Am. Chem. Soc.* **1993**, *115*, 7300.

^{(6) (}a) Laporte, C.; Büttner, T.; Rüegger, H.; Geier, J.; Schönberg, H.; Grützmacher, H. *Inorg. Chim. Acta* **2004**, *357*, 1931. (b) Choualeb, A.; Lough, A. J.; Gusev, D. G. *Organometallics* **2007**, *26*, 3509.

⁽⁷⁾ Thewissen, S.; Reijnders, M. D. M.; Smits, J. M. M.; de Bruin, B. Organometallics **2005**, *24*, 5964.

^{(8) (}a) Linck, R. C.; Pafford, R. J.; Rauchfuss, T. B. J. Am. Chem. Soc. **2001**, *123*, 8856. (b) Arif, A. M.; Heaton, D. E.; Jones, R. A.; Kidd, K. B.; Wright, T. C.; Whittlesey, B. R.; Atwood, J. L.; Hunter, W. E.; Zhang, H. *Inorg. Chem.* **1987**, *26*, 4065.

^{(9) (}a) Hanasaka, F.; Fujita, K.; Yamaguchi, R. *Organometallics* **2005**, 24, 3422. (b) Fujita, K.; Nakaguma, H.; Hanasaka, F; Yamaguchi, R. *Organometallics* **2002**, 21, 3749.

Knowing the structure of 4a facilitated interpretation of the NMR spectra of the molecule. The C_i symmetry of 4a is responsible for the observation of single chemical shifts for H1ir, H2ir, H3ir, and P1 atoms. Assignment of the hydride resonances in 4a was done with the help of an NOE experiment where the NH resonance was irradiated at 4.88 ppm (CD₂Cl₂). This produced a 3.7% NOE at δ -9.75, a 15.5% NOE at δ -21.68, and no NOE at δ -22.94, assigned to H1ir, H3ir, and H2ir, respectively, on the basis of the H····H distances in 4a. The chemically equivalent hydride and phosphorus spins are magnetically nonequivalent in each pair and comprise a non-firstorder system AA'MM'NN'XX' (A = H1ir, M = H3ir, N = H2ir, X = P). This explains why the ¹H NMR spectra of 4a feature complicated patterns for H2ir and H3ir; only the bridging hydrides H1ir appear as a doublet due to large trans coupling to phosphorus (${}^{2}J_{\rm HP} = 79.2$ Hz).

To get insights into the structure of the second isomer, **4b**, we studied this complex in C_6D_6 . In the hydride region, **4b** shows four resonances in a 1:1:2:2 ratio. The bridging hydrides are inequivalent at $\delta - 8.68$ and -9.27, and the latter resonance is a triplet with a large ${}^2J_{\rm HP} = 72.4$ Hz. Pairwise chemical equivalence of the terminal hydrides ($\delta - 20.56$ and -20.95) and the phosphorus groups in **4b** is consistent with an overall C_2 symmetrical structure diagramed in Scheme 6.

It is interesting to note that 3 dimerizes to give 4, whereas 1 is stable in solution, although dimers analogous to 4 with bridging chlorides are a conceivable and reasonable structural alternative. It is clear that the instability of 3 is only partly due to the hemilabile nature of the PNHN ligand. The other reason behind formation of 4 might be the destabilization caused by the *trans* disposition of two hydrides in 3.

The new complexes 2-4 were tested for hydrogenation of representative ketones using ¹H NMR to monitor the reactions. Complex 2 reacted with neat ketones to give a mixture of unidentified iridium species, and no hydrogenation was observed under 1 atm of H_2 even upon heating. Also, when complex 3 was prepared from 2 and H_2 in ethyl acetate, it did not catalyze hydrogenation of either acetophenone or the solvent under 1 atm of H₂. Complex 2 efficiently catalyzed transfer hydrogenation in 2-propanol at 85 °C. With S:C = 1000 for acetophenone and butanone and with S:C = 1200 for cyclohexanone, the turnover frequencies at 50% conversion to the corresponding alcohols were TOF = 1500, 1850, and 1600 mol/h, respectively.¹¹ These reactions apparently involved mixtures of iridium complexes since 2 reacts with 2-propanol to give 4 (via 3) and with ketones to give unidentified species. Complex 4 itself showed moderate catalytic activity in 2-propanol, where a TOF = 360 mol/h at 50% conversion was observed for hydrogenation

Scheme 7

of cyclohexanone at 85 °C. Several species implicated in the transfer hydrogenation reactions are included in the catalytic cycle in Scheme 7. It cannot be excluded that complex 4 dissociates at 85 °C to produce some $IrH_3(PNHN)$ in solution. It is also conceivable that 4 can directly hydrogenate 2 equiv of a ketone and dissociate to give 2.

Concluding Remarks. This study looked into the effects of hemilability on catalytic hydrogenation of ketones. Apparently, hemilability is relatively unimportant for ketone hydrogenation, and successful bifunctional hydrogenation catalysts can be thermally robust species, such as IrH₃(PNHP), which is stable in 2-propanol/acetone. This is different from the conventional homogeneous catalysts, where availability of a vacant coordination site is crucial and hemilability can often be an advantageous property.

Experimental Section

General Considerations. All preparations and manipulations were carried out under hydrogen, nitrogen, or argon atmospheres with the use of standard Schlenk, vacuum line, and glovebox techniques in dry, oxygen-free solvents. Deuterated solvents were degassed and dried before use. Potassium *tert*-butoxide, di-*tert*-butylchlorophosphine, ethanolamine, chlorotrimethylsilane, and ketones were supplied by Aldrich. 2-Diethylaminoethyl chloride hydrochloride was supplied by Alfa. NMR spectra were recorded on a Varian Unity Inova 300 MHz spectrometer. All ³¹P chemical shifts are reported relative to 85% H₃PO₄. ¹H and ¹³C chemical shifts were measured relative to the solvent peaks but are reported relative to TMS. The infrared spectra were obtained on a Perkin-Elmer Spectrum BXII FT IR spectrometer. The elemental analyses were performed by Midwest Microlab, LLC (Indianapolis, IN).

Et₂NC₂H₄NHC₂H₄OH·HCl. A solution of 2-diethylaminoethyl chloride hydrochloride (40 g, 0.232 mol) in ethanolamine (102 g, 1.664 mol) was stirred for 2 h, and then excess ethanolamine was removed by vacuum distillation. The viscous residue was triturated with 140 mL of CH₂Cl₂ to precipitate ethanolamine hydrochloride; the solid was filtered and extracted with 4 × 20 mL of CH₂Cl₂. The solution was evaporated to give Et₂NC₂H₄NHC₂H₄OH·HCl (40 g, 0.203 mol, 88%) as a pale yellow solid containing at least 90% of the product, and it was used without further purification. ¹H NMR (methanol-*d*₄): δ 3.68 (t, ³*J*_{HH} = 5.6, 2H, C*H*₂O), 3.06 (t, ³*J*_{HH} = 7.3, 4H, NC*H*₂), 1.11 (t, ³*J*_{HH} = 7.3, 6H, C*H*₃). ¹³C{¹H} NMR (methanol-*d*₄): δ 59.3 (s, CH₂O), 51.2 (s, CH₂N), 50.5 (s, CH₂N), 48.3 (s, CH₂N), 45.0 (s, CH₂N), 10.6 (s, CH₃).

 $Et_2NC_2H_4NHC_2H_4Cl\cdot 2HCl.$ A solution of SOCl₂ (16.93 g, 0.142 mol) in 20 mL of CH₂Cl₂ was added dropwise to a vigorously stirred suspension of $Et_2NC_2H_4NHC_2H_4OH\cdot HCl$ (20 g, 0.102 mol) in 120

⁽¹⁰⁾ For recent reviews on dihydrogen bonding, see: (a) Belkova, N.
V.; Shubina, E. S.; Epstein, L. M. Acc. Chem. Res. 2005, 38, 624. (b) Epstein, L. M.; Shubina, E. S. Coord. Chem. Rev. 2002, 231, 165. (c) Custelcean, R.; Jackson, J. E. Chem. Rev. 2001, 101, 1963. (d) Calhorda, M. J. Chem. Commun. 2000, 801.

⁽¹¹⁾ Complex 2 was added to solutions of the ketones in 2-propanol, and the hydrogenation was monitored by ^{1}H NMR.

mL of CH₂Cl₂ cooled at 0 °C. The ice bath was removed and stirring continued for 1 h. Then the mixture was refluxed for 1 h. After cooling, the suspension was filtered and the product was washed with 2 × 20 mL of CH₂Cl₂ to give a colorless solid of Et₂NC₂H₄-NHC₂H₄Cl·2HCl (20 g, 79.48 mmol, 78%). ¹H NMR (methanold₄): δ 4.03 (t, ³J_{HH} = 6.1, 2H, CH₂Cl), 3.68 (br s, 4H, CH₂NH), 3.61 (t, ³J_{HH} = 5.7, 2H, Et₂NCH₂), 3.38 (q, ³J_{HH} = 7.3, 4H, CH₃CH₂), 1.43 (t, ³J_{HH} = 7.3, 6H, CH₃). ¹³C{¹H} NMR (methanold₄): δ 50.8 (s, NCH₂), 49.3 (s, NCH₂), 48.5 (s, NCH₂), 43.2 (s, NCH₂), 40.2 (s, CH₂Cl), 9.4 (s, CH₃).

'Bu₂PC₂H₄NHC₂H₄NEt₂. The following reactions were carried out under an inert atmosphere. 'BuOK (17.7 g, 158.5 mmol) was added in portions to a solution of Et₂NC₂H₄NHC₂H₄Cl·2HCl (18.45 g, 73.32 mmol) in 30 mL of methanol cooled at 0 °C. The mixture was stirred at 0 °C for 25 min, then evaporated under vacuum, and Et₂NC₂H₄NHC₂H₄Cl was extracted with 20 mL of toluene and was immediately used in the following step. ¹H NMR (benzene-*d*₆): δ 3.22 (t, ³J_{HH} = 5.9, 2H, CH₂Cl), 2.60 (t, ³J_{HH} = 5.9, 2H, NCH₂), 2.40 (m, 2H, NCH₂), 2.34 (m, 2H, NCH₂), 2.31 (q, ³J_{HH} = 7.2, 4H, NCH₂), 1.73 (br, 1H, NH), 0.87 (t, ³J_{HH} = 7.2, 6H, CH₃). ¹³C-{¹H} NMR (benzene-*d*₆): δ 53.7 (s, NCH₂), 51.8 (s, NCH₂), 47.8 (s, NCH₂), 47.1 (s, NCH₂), 45.2 (s, CH₂Cl), 12.8 (s, CH₃).

Triethylamine (7.38 g, 73.18 mmol) was added to the toluene solution of Et₂NC₂H₄NHC₂H₄Cl. The mixture was cooled to 0 °C, and chlorotrimethysilane (6.82 g, 66.85 mmol) was added dropwise. The mixture was stirred at 0 °C for 1.5 h, then filtered and evaporated under vacuum to give Et₂NC₂H₄N(SiMe₃)C₂H₄Cl (7.64 g, 30.59 mmol) as a colorless oil. ¹H NMR (benzene-*d*₆): δ 3.24 (t, ³*J*_{HH} = 7.3, 2H, CH₂Cl), 2.98 (t, ³*J*_{HH} = 7.3, 2H, NCH₂), 2.71 (t, ³*J*_{HH} = 7.3, 2H, NCH₂), 2.31 (q, ³*J*_{HH} = 7.2, 4H, NCH₂), 2.26 (t, ³*J*_{HH} = 7.3, 2H, NCH₂), 0.92 (t, ³*J*_{HH} = 7.2, 6H, CH₃), 0.02 (s, 9H, CH₃). ¹³C{¹H} NMR (benzene-*d*₆): δ 55.3 (s, NCH₂), 51.0 (s, NCH₂), 48.3 (s, NCH₂), 47.2 (s, NCH₂), 43.7 (s, CH₂Cl), 12.3 (s, CH₃), 0.4 (s, CH₃).

A solution of 'Bu₂PLi (9.54 g, 62.88 mmol) in 50 mL of THF was added dropwise to a stirred solution of the freshly prepared Et₂NC₂H₄N(SiMe₃)C₂H₄Cl in 40 mL of THF at -70 °C. The cooling bath was removed, and the mixture was stirred for 2 h at room temperature to give Et₂NC₂H₄N(SiMe₃)C₂H₄P'Bu₂ ¹H NMR (benzene-*d*₆): δ 3.07 (m, 2H, NCH₂), 2.96 (t, ³J_{HH} = 7.0, 2H, NCH₂), 2.45 (m, 2H, NCH₂), 2.40 (q, ³J_{HH} = 6.7, 4H, NCH₂), 1.51 (m, 2H, PCH₂), 1.07 (d, ³J_{HP} = 11.0, 18 H, CH₃), 0.96 (t, ³J_{HH} = 6.8, 6H, CH₃), 0.20 (s, 9H, CH₃). ³¹P{¹H} NMR (benzene-*d*₆): δ 24.1. ¹³C{¹H} NMR (benzene-*d*₆): δ 54.8 (s, NCH₂), 49.8 (d, ²J_{CP} = 40.8, NCH₂), 48.6 (s, NCH₂), 46.6 (s, NCH₂), 31.4 (d, ¹J_{CP} = 22.7, PC), 30.2 (d, ²J_{CP} = 14.1, CH₃), 24.1 (d, ¹J_{CP} = 24.9, PCH₂), 13.1 (s, CH₃), 0.8 (s, CH₃).

Water (20 mL) was added to the THF solution of Et₂NC₂H₄N-(SiMe₃)C₂H₄P'Bu₂, and the mixture was stirred at room temperature for 1 h. The organic phase was separated and washed with 15 mL of water, a fresh portion of water (15 mL) was added, and the resulting biphasic mixture was stirred and refluxed for 3 h. After cooling to room temperature the organic phase was separated and washed with 15 mL of water and evaporated. The obtained yellow oil was diluted with 2 mL of hexane and passed through a short column with alumina $(2 \times 2 \text{ cm})$ and eluted with 20 mL of hexane. The volatiles were removed under vacuum to give the PNHN ligand as light yellow oil (3.0 g, 10.4 mmol, 34% based on Et₂NC₂H₄N-(SiMe₃)C₂H₄Cl). The product contained about 91% of the PNHN ligand and was used without further purification. The main impurity (ca. 5%) was identified as the dimer ${}^{t}Bu_2P-P{}^{t}Bu_2$ (δ ${}^{31}P$ 40.8).¹² ¹H NMR (benzene-*d*₆): δ 2.85 (m, 2H, NC*H*₂), 2.63 (m, NC*H*₂), 2.47 (t, ${}^{3}J_{\text{HH}} = 6.0$, 2H, NCH₂), 2.36 (q, ${}^{3}J_{\text{HH}} = 7.4$, 4H, NCH₂), 1.51 (m, 2H, PCH₂), 1.05 (d, ${}^{3}J_{HP} = 10.7$, 18 H, CH₃), 0.92 (t, ${}^{3}J_{\text{HH}} = 7.4, 6\text{H}, CH_{3}$). ${}^{31}\text{P}\{{}^{1}\text{H}\}$ NMR (benzene- d_{6}): δ 23.1. ¹³C{¹H} NMR (benzene-*d*₆): δ 53.9 (s, NCH₂), 51.8 (d, ²*J*_{CP} = 31.2, NCH₂), 48.8 (s, NCH₂), 47.9 (s, NCH₂), 31.5 (d, ¹*J*_{CP} = 22.5, PC), 30.2 (d, ²*J*_{CP} = 14.1, CH₃), 23.4 (d, ¹*J*_{CP} = 21.9, PCH₂), 12.9 (s, CH₃).

 $IrH_2Cl(\kappa^3-PNHN)$ (1). A mixture of $[IrCl(COE)_2]_2$ (0.5 g, 0.54 mmol) and 'Bu₂PC₂H₄NHC₂H₄NEt₂ (0.311 g, 1.08 mmol) was stirred in 15 mL of toluene for 15 min, under argon. Then, the flask was frozen, evacuated, and refilled with H₂, and the orange solution was stirred for 2 h. After evaporation, the residue was washed with 3×4 mL of hexane to give a beige solid (0.44 g, 0.85 mmol, 78%). Light yellow crystals were obtained at room temperature from a saturated toluene solution. Anal. Calcd for C₁₆H₃₉ClIrN₂P•1/7 C₇H₈: C, 38.43; H, 7.62; N, 5.27. Found: C, 38.32; H, 7.69; N, 5.53. IR (KBr, cm⁻¹): $v_{\rm NH} = 3195$ (s), $v_{\rm IrH} =$ 2290 (s), 2084 (vs). ¹H NMR (C₆D₆): δ 4.26 (br, 1H, NH), 3.82 (m, 1H, NEt₂), 3.26 (td, $J_{\rm HH} = 3.4$, $J_{\rm HH} = 13.3$, 1H), 3.04 (overlapped m, 2H, NEt₂), 2.92 (m, 2H), 2.64 (m, 1H, NEt₂), 2.36 (d, $J_{\rm HH} = 12.6, 1$ H), 2.17 (m, 1H), 1.68 (m, 3H), 1.41 (d, ${}^{3}J_{\rm HP} =$ 12.9, 9H, CH₃), 1.14 (d, ${}^{3}J_{HP} = 12.9$, 9H, CH₃), 1.05 (t, ${}^{3}J_{HH} =$ 7.6, 3H, CH₃), 0.77 (t, ${}^{3}J_{\text{HH}} = 7.6$, 3H, CH₃), -19.34 (dd, ${}^{2}J_{\text{HP}} =$ 18.1, ${}^{2}J_{HH} = 7.4$, 1H, Ir*H*), -26.66 (dd, ${}^{2}J_{HP} = 23.4$, ${}^{2}J_{HH} = 7.4$, 1H, IrH). ³¹P{¹H} NMR (C₆D₆): δ 53.3. ¹³C{¹H} NMR (C₆D₆): δ 60.4 (d, $J_{CP} = 2.2$, CH_2), 55.7 (s, CH_2), 53.8 (s, CH_2), 52.2 (s, CH_2), 49.6 (d, $J_{CP} = 1.7$, CH_2), 35.5 (d, $J_{CP} = 19.1$, PC), 31.5 (d, ${}^{2}J_{CP} = 4.2, CH_{3}$, 30.2 (d, ${}^{2}J_{CP} = 2.6, CH_{3}$), 29.6 (d, ${}^{1}J_{CP} = 23.3$, PCH₂), 11.8 (s, CH₃), 10.6 (s, CH₃).

 $IrH_2(\kappa^3$ -PNN) (2). KO'Bu (0.083 g, 0.74 mmol) was added to a solution of 1 (0.32 g, 0.617 mmol) in 5 mL of THF. The mixture was stirred for 1 h, then filtered and evaporated under vacuum. Extraction of the residue with 3 mL of hexane afforded 2 as a viscous, dark orange oil (0.25 g, 0.519 mmol, 84%). Due to the nature of 2, no sample was submitted for elemental analysis. IR (Nujol, cm⁻¹): $\nu_{IrH} = 2144$, 2087 (m). ¹H{³¹P} NMR (C₆D₆): δ 3.34 (m, 2H, NCH₂), 3.26 (m, 2H, NCH₂), 2.90 (dq, ${}^{2}J_{HH} = 13.1$, ${}^{3}J_{\text{HH}} = 7.2, 2\text{H}, \text{NEt}_{2}$, 2.67 (dq, ${}^{2}J_{\text{HH}} = 13.1, {}^{3}J_{\text{HH}} = 7.2, 2\text{H}$, NEt₂), 2.59 (t, ${}^{3}J_{HH} = 5.6$, 2H, CH₂NEt₂), 1.90 (t, ${}^{3}J_{HH} = 6.3$, 2H, CH_2P), 1.28 (s, 18H, CH_3), 0.99 (t, ${}^{3}J_{HH} = 7.2$, 6H, NEt_2), -22.14 (quintet, ${}^{4}J_{\text{HH}} = 3.1, 2\text{H}, \text{Ir}H_{2}$). ${}^{31}P{}^{1}\text{H}$ NMR (C₆D₆): δ 85.3 (s). ¹³C{¹H} NMR (C₆D₆): δ 63.7 (d, $J_{CP} = 2.6$, CH_2), 61.9 (d, $J_{CP} =$ 2.1, CH₂), 60.2 (s, CH₂), 54.2 (d, ${}^{3}J_{CP} = 2.2$, NEt₂), 34.5 (d, ${}^{1}J_{CP}$ = 25.4, PC), 29.8 (d, ${}^{2}J_{CP}$ = 4.4, CH₃), 28.9 (d, ${}^{1}J_{CP}$ = 24.7, PCH₂), 12.5 (s, CH₃).

IrH₃(κ^3 -**PNN**) (3). ¹H NMR (C₆D₆): δ 2.0–3.5 (overlapped m, CH₂ of the PNHN ligand), 1.45 (d, ³J_{HP} = 12.6, 9H, CH₃), 1.40 (d, ³J_{HP} = 12.6, 9H, CH₃), 1.06 (t, ³J_{HH} = 7.2, 3H, CH₃), 0.99 (t, ³J_{HH} = 7.2, 3H, CH₃), -8.19 (ddd, ²J_{HH} = 5.5, 12.0, ²J_{HP} = 11.1, 1H, IrH), -9.44 (ddd, ²J_{HH} = 4.8, 12.0, ²J_{HP} = 16.2, 1H, IrH), -20.08 (apparent dt, ²J_{HH} \approx 5.0, ²J_{HP} = 18.0, 1H, IrH). ³¹P{¹H} NMR (C₆D₆): δ 70.8.

 $[IrH_2(\kappa^2 - PNHN)]_2(\mu - H)_2$ (4). Complex 2 (0.19 g, 0.394 mmol) was stirred in 3 mL of 2-propanol for 6 h. The solvent was evaporated and the residue was washed with 2 mL of hexane to give a yellow powder of 4. The hexane solution was concentrated and an additional amount of 4 crystallized. Combined yield: 77 mg (0.159 mmol, 40%). Anal. Calcd for $C_{32}H_{80}Ir_2N_4P_2$ (967.4): C, 39.73; H, 8.34; N, 5.79. Found: C, 39.95; H, 9.15; N, 5.63. IR (KBr, cm⁻¹): $v_{\rm NH} = 3216$ (m), $v_{\rm IrH} = 2166$ (shoulder), 2085 (s). ¹H NMR (CD₂Cl₂): δ 4.88 (br, 1H, NH), 3.12 (m, 1H), 2.93 (m, 1H), 2.82 (m, 2H), 2.60 (m, 1H), 2.50 (m, 4H, CH₂, NEt₂), 2.30 (m, 1H), 1.77 (m, 2H, PC H_2) 1.33 (d, ${}^{3}J_{HP} = 12.3, 9H, CH_3$), 1.27 (d, ${}^{3}J_{\text{HP}} = 12.6$, 9H, CH₃), 0.96 (t, ${}^{3}J_{\text{HH}} = 6.9$, 6H, CH₃), -9.75 (d, ${}^{2}J_{HP} = 79.2$, 1H, μ -H), -21.68 (m, 1H, IrH), -22.93 (m, 1H, Ir*H*). ${}^{31}P{}^{1}H$ NMR (CD₂Cl₂): δ 81.3. ${}^{13}C{}^{1}H$ NMR (CD₂Cl₂): δ 56.2 (s, CH₂), 54.7 (d, J_{CP} = 3.8, CH₂), 53.4 (s, CH₂), 47.6 (s, CH₂, NEt₂), 34.1 (d, ${}^{1}J_{CP} = 25.4$, PC), 31.7 (d, ${}^{1}J_{CP} = 20.7$, PC), 30.5 (d, ${}^{2}J_{CP} = 4.7$, CH₃), 30.1 (d, ${}^{2}J_{CP} = 4.7$, CH₃), 24.1 (d, ${}^{1}J_{CP}$ $= 20.1, PCH_2$, 12.1 (s, CH_3).

Computational Details. The DFT calculations were carried out using Gaussian 03.¹³ All geometries were fully optimized without symmetry or internal coordinate constraints using the MPW1PW91 functional, which included the modified Perdew–Wang exchange

(13) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, Jr., J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03; Gaussian, Inc.: Wallingford, CT, 2004.

(14) (a) Adamo, C.; Barone V. J. Chem. Phys. **1998**, 108, 664. (b) Perdew, J. P.; Burke, K.; Wang, Y., Phys. Rev. B **1996**, 54, 16533. (c) Burke K.; Perdew, J. P.; Wang, Y. In *Electronic Density Functional Theory: Recent Progress and New Directions*; Dobson, J. F., Vignale, G., Das, M. P., Eds.; Plenum: New York, 1998.

and the Perdew–Wang 91 correlation.¹⁴ The basis sets employed in this work included SDD (associated with ECP) for Ir, 6-311+G-(d,p) for the P, Cl, and NH atoms and the hydrides, and 6-31G-(d,p) for the rest of the atoms.¹⁵ The nature of the stationary points was verified by frequency calculations.

Acknowledgment. We gratefully acknowledge the Natural Sciences and Engineering Research Council of Canada (NSERC) and the Ontario Government for funding.

Supporting Information Available: ¹H, ¹³C, and ³¹P NMR spectra of the PNHN ligand and complex **2**. CIF files for complexes **1** and **4**. This material is available free of charge via the Internet at http://pubs.acs.org.

OM700550X

(15) For more information about basis sets implemented in Gaussian 03 and further references see: Frish, A.; Frish, M. J.; Trucks, G. W. *Gaussian 03 User's Reference*; Gaussian, Inc.: Pittsburgh, PA, 2003. The basis sets are also available from the Extensible Computational Chemistry Environment Basis Set Database, which is developed and distributed by the Molecular Science Computing Facility, Environmental and Molecular Sciences Laboratory, which is part of the Pacific Northwest Laboratory, P.O. Box 999, Richland, WA 99352 (www.emsl.pnl.gov/forms/basisform. html).