Notes

Syntheses of 1,3-Disilaindanes, 1,4-Disilatetralines, and 1,3-Disila-1,3-dihydroisobenzofuranes Using Cobalt-Catalyzed [2+2+2] Cycloadditions

Leszek Doszczak and Reinhold Tacke*

Universität Würzburg, Institut für Anorganische Chemie, Am Hubland, D-97074 Würzburg, Germany

Received July 10, 2007

Summary: A simple catalytic system for [2+2+2] alkyne cycloadditions consisting of cobalt(II) iodide and zinc powder in acetonitrile was applied to the direct synthesis of hydroxyalkyl-substituted 1,3-disilaindanes, 1,4-disilatetralines, and 1,3disila-1,3-dihydroisobenzofuranes starting from silicon-containing diynes and unprotected propargyl alcohols. Siliconcontaining diynes were efficiently coupled with propargyl alcohols with a terminal or internal monoyne moiety. The method reported allows efficient, one-step syntheses of the title compounds.

Introduction

The catalytic [2+2+2] cyclotrimerization of alkynes is an attractive method for synthesizing polysubstituted benzene derivatives^{1,2} and is demonstrated here to be an efficient method for the synthesis of hydroxyalkyl-substituted 1,3-disilaindanes, 1,4-disilatetralines, and 1,3-disila-1,3-dihydroisobenzofuranes. As we have recently demonstrated, compounds with a 1,1,3,3-

* To whom correspondence should be addressed. E-mail: r.tacke@ mail.uni-wuerzburg.de. Phone: +49-931-888-5250. Fax: +49-931-888-4609.

Selected reviews: (a) Vollhardt, K. P. C. Angew. Chem. 1984, 96, 525-541; Angew. Chem., Int. Ed. Engl. 1984, 23, 539-556. (b) Schore, N. E. Chem. Rev. 1988, 88, 1081-1119. (c) Ojima, I.; Tzamarioudaki, M.; Li, Z.; Donovan, R. J. Chem. Rev. 1996, 96, 635-662. (d) Saito, S.; Yamamoto, Y. Chem. Rev. 2000, 100, 2901-2915. (e) Varela, J. A.; Saá, C. Chem. Rev. 2003, 103, 3787-3801. (f) Kotha, S.; Brahmachary, E.; Lahiri, K. Eur. J. Org. Chem. 2005, 4741-4767.

(2) Selected recent contributions: (a) Tanaka, K.; Nishida, G.; Wada, A.; Noguchi, K. Angew. Chem. 2004, 116, 6672-6674; Angew. Chem. Int. Ed. 2004, 43, 6510-6512. (b) Saino, N.; Kogure, D.; Okamoto, S. Org. Lett. 2005, 7, 3065-3067. (c) Tanaka, K.; Nishida, G.; Ogino, M.; Hirano, M.; Noguchi, K. Org. Lett. 2005, 7, 3119-3121. (d) Hilt, G.; Hess, W.; Vogler, T.; Hengst, C. J. Organomet. Chem. 2005, 690, 5170-5181. (e) Chang, H.-T.; Jeganmohan, M.; Cheng, C.-H. Chem. Commun. 2005, 4955-4957. (f) Cadierno, V.; García-Garrido, S. E.; Gimeno, J. J. Am. Chem. Soc. 2006, 128, 15094-15095. (g) Tekavec, T. N.; Zuo, G.; Simon, K.; Louie, J. J. Org. Chem. 2006, 71, 5834-5836. (3) (a) Montana, J. G.; Fleming, I.; Tacke, R.; Daiss, J. (Amedis

(3) (a) Montana, J. G.; Fleming, I.; Tacke, R.; Daiss, J. (Amedis Pharmaceuticals Ltd.), PCT Int. Pat. Appl. WO 2004/045625 A1, June 3, 2004. (b) Montana, J. G.; Showell, G. A.; Fleming, I.; Tacke, R.; Daiss, J. (Amedis Pharmaceuticals Ltd.), PCT Int. Pat. Appl. WO 2004/048390 A1, June 10, 2004. (c) Montana, J. G.; Showell, G. A.; Tacke, R. (Amedis Pharmaceuticals Ltd.), PCT Int. Pat. Appl. WO 2004/048391 A1, June 10, 2004. (d) Daiss, J. O.; Burschka, C.; Mills, J. S.; Montana, J. G.; Showell, G. A.; Fleming, I.; Gaudon, C.; Ivanova, D.; Gronemeyer, H.; Tacke, R. *Organometallics* 2005, 24, 3192–3199. (e) Miller, D. J.; Showell, G. A.; Conroy, R.; Daiss, J.; Tacke, R.; Tebbe, D. (Amedis Pharmaceuticals Ltd.), PCT Int. Pat. Appl. WO 2005/005443 A1, January 20, 2005. (f) Büttner, M. W.; Burschka, C.; Daiss, J. O.; Ivanova, D.; Rochel, N.; Kammerer, S.; Peluso-Iltis, C.; Bindler, A.; Gaudon, C.; Germain, P.; Moras, D.; Gronemeyer, H.; Tacke, R. *ChemBioChem* 2007, *8*, 1688–1699.

tetramethyl-1,3-disilaindane or 1,1,4,4-tetramethyl-1,4-disila-1,2,3,4-tetrahydronaphthalene skeleton are of great interest because of their potential application as pharmaceuticals³ or fragrances,⁴ and 1,3-disila-1,3-dihydroisobenzofuranes have been reported to be valuable reagents in the generation of benzynes.⁵

Recently, we have shown that cobalt(II) iodide in the presence of zinc powder in acetonitrile can efficiently catalyze arene syntheses by [2+2+2] cycloaddition of monoynes with diynes,⁶ and neither additional zinc iodide nor additional ligands are necessary for this reaction (in this context, see also ref 2d). In these syntheses, an alkynylborolane or THP-protected propargyl alcohols were used as the monoynes. In the present study we demonstrate that non-protected propargyl alcohols can also be used in these [2 + 2 + 2] cycloadditions (in this context, see also ref 7), and the protection/deprotection steps^{6a} can be omitted.

Results and Discussion

As shown in Scheme 1 and Table 1, a series of cobaltcatalyzed [2+2+2] cycloaddition reactions of the diynes 1a-cwith the alcohols 2a-d were performed to give compounds 3al. A detailed procedure for the synthesis of 3a and analytical data (¹H, ¹³C, and ²⁹Si NMR; C,H analyses) for 3a, 3e, and 3iare reported in the Experimental Section.

The reactions proceeded very fast and were complete within ca. 5 min. The products were isolated in satisfying yields (44– 66%, not yet optimized), although they are lower compared to those obtained with the respective THP-protected substrates.^{6a} Because of their relatively high polarity, the products **3a**–**1** could be easily separated from the byproducts by column chromatography.⁸ Both terminal (**2a**, **2d**) and internal monoynes (**2b**, **2c**) could be used in these syntheses. The yields of compounds **3a**–**d** (1,3-disilaindane skeleton; Table 1, entries 1–4) and **3i–l**

(4) (a) Büttner, M. W.; Penka, M.; Doszczak, L.; Kraft, P.; Tacke, R. Organometallics 2007, 26, 1295–1298. (b) Büttner, M. W.; Burschka, C.; Junold, K.; Kraft, P.; Tacke, R. ChemBioChem 2007, 8, 1447–1454. (5) (a) Kitamura, T.; Meng, Z.; Fujiwara, Y. Tetrahedron Lett. 2000,

(7) (a) Fatland, A. W.; Eaton, B. E. *Org. Lett.* **2000**, *2*, 3131–3133. (b) Saino, N.; Amemiya, F.; Tanabe, E.; Kase, K.; Okamoto, S. *Org. Lett.* **2006**, *8*, 1439–1442.

(8) Diyne "dimers" and "trimers" were typical byproducts of the [2+2+2] cycloadditions described in this paper.

^{(5) (}a) Kitamura, T.; Meng, Z.; Fujiwara, Y. *Tetrahedron Lett.* **2000**, *41*, 6611–6614. (b) Chen, Y.-L.; Zhang, H.-K.; Wong, W.-Y.; Lee, A. W. M. *Tetrahedron Lett.* **2002**, *43*, 2259–2262.

^{(6) (}a) Doszczak, L.; Fey, P.; Tacke, R. *Synlett* **2007**, 753–756. (b) Büttner, M. W.; Nätscher, J. B.; Burschka, C.; Tacke R. *Organometallics* **2007**, *26*, 4835–4838.

Table 1. Yields of the Arenes 3 Obtained in the Reaction ofthe Diynes 1 with the Propargyl Acohols 2 in AcetonitrileUsing a CoI_2/Zn System for Catalysis^{a,b}

entry	diyne	Х	monoyne	R	R′	product (%) ^c
1	1 a	CH ₂	2a	Н	Н	3a (65)
2	1a	CH_2	2b	Me	Н	3b (60)
3	1a	CH_2	2c	Et	Н	3c (58)
4	1a	CH_2	2d	Н	Me	3d (63)
5	1b	CH_2CH_2	2a	Н	Н	3e (44)
6	1b	CH_2CH_2	2b	Me	Н	3f (51)
7	1b	CH ₂ CH ₂	2c	Et	Н	3g (50)
8	1b	CH ₂ CH ₂	2d	Н	Me	3h (47)
9	1c	0	2a	Н	Н	3i (64)
10	1c	0	2b	Me	Н	3j (52)
11	1c	0	2c	Et	Н	3k (62)
12	1c	0	2d	Н	Me	3l (59)

^{*a*} Ratio of reagents: **1** (mmol)/**2** (mmol)/CoI₂ (mmol)/Zn (mmol)/MeCN (mL): 1/1.4/0.025/0.1/2. ^{*b*} Reaction required cooling in a water or an ice bath (depending on the scale) to keep the temperature below 40 °C. ^{*c*} Isolated yield.

(1,3-disila-1,3-dihydroisobenzofurane skeleton; Table 1, entries 9–12) are higher than those of compounds 3e-h (1,4-disilatetralin skeleton; Table 1, entries 5–8) as in the case of the THP-protected substrates.^{6a}

In summary, we have discovered that a simple catalytic system consisting of commercially available cobalt(II) iodide and zinc powder can efficiently catalyze [2+2+2] cycloadditions of unprotected propargyl alcohols, containing terminal or internal monoyne moieties, with diynes. The reactions can be performed under mild conditions, and a relatively low (2.5%) catalyst load gives almost complete consumption of the starting materials in a very short time. Moreover, the reaction does not need to be performed at high dilution, and the workup and isolation are straightforward.

Experimental Section

General Procedures. All syntheses were carried out under dry nitrogen. Acetonitrile was dried and purified according to standard procedures and stored under dry nitrogen. The ¹H, ¹³C, and ²⁹Si NMR spectra were recorded at 22 °C on a Bruker Avance 400 NMR spectrometer (¹H, 400.1 MHz; ¹³C, 100.6 MHz; ²⁹Si, 79.5 MHz), and CDCl₃ was used as the solvent. Chemical shifts (ppm) were determined relative to internal CHCl₃ (¹H, δ 7.24), internal CDCl₃ (¹³C, δ 77.0), or external TMS (²⁹Si, δ 0). Assignment of the ¹H NMR data was supported by ¹H, ¹H gradient-selected COSY, ¹³C, ¹H gradient-selected HMQC and gradient-selected HMBC, and ²⁹Si, ¹H gradient-selected HMQC experiments (optimized for ²J_{SiH} = 7 Hz). Assignment of the ¹³C NMR data was supported by DEPT 135 and the aforementioned ¹³C, ¹H correlation experiments.

Example: Synthesis of 5-(Hydroxymethyl)-1,1,3,3-tetramethyl-1,3-disilaindane (3a). Bis(ethynyldimethylsilyl)methane (1a) (902 mg, 5.00 mmol), prop-2-yn-1-ol (2a) (392 mg, 6.99 mmol), and cobalt(II) iodide (39 mg, 125 µmol) in acetonitrile (630 μ L) were added one after another to a stirred suspension of zinc (33 mg, 505 μ mol) in acetonitrile (10 mL). When the reaction mixture started to warm up (after ca. 1 min), it was cooled in an ice bath. After 5 min, the cooling bath was removed, and triethylamine (100 μ L) was added. The solvent was removed under reduced pressure, and the residue was purified by column chromatography on silica gel (63–200 μ m; eluent, *n*-pentane/diethyl ether (1/1 (v/v)) to afford **3a** (769 mg, 65%) as a white solid. ¹H NMR: $\delta - 0.04$ (s, 2 H, SiCH₂Si), 0.275 (s, 6 H, SiCH₃), 0.282 (s, 6 H, SiCH₃), 1.64 (t, ${}^{3}J_{HH} = 6.0$ Hz, 1 H, OH), 4.70 (d, ${}^{3}J_{HH} = 6.0$ Hz, 2 H, CH₂OH), 7.35–7.38 (m, 1 H, HC-6), 7.54–7.58 (m, 2 H, *H*C-4, *H*C-7). ¹³C NMR: δ –2.4 (Si*C*H₂Si), 0.53 (2 C, Si*C*H₃), 0.54 (2 C, SiCH₃), 65.7 (CH₂OH), 127.5 (HC-6), 130.2 (HC-4), 132.0 (HC-7), 140.9 (C-5), 150.0 and 151.1 (C-3a, C-7a). ²⁹Si NMR: δ 8.7, 8.9. Anal. Calcd for C₁₂H₂₀O₂Si₂: C, 60.95; H, 8.53. Found: C 60.5; H 8.4.

Analytical Data for 6-(Hydroxymethyl)-1,1,4,4-tetramethyl-1,4-disila-1,2,3,4-tetrahydronaphthalene (3e). ¹H NMR: δ 0.21 (s, 6 H, SiCH₃), 0.22 (s, 6 H, SiCH₃), 0.99 (s, 4 H, SiCH₂C), 1.60 (t, ³J_{HH} = 6.0 Hz, 1 H, OH), 4.67 (d, ³J_{HH} = 6.0 Hz, 2 H, CH₂-OH), 7.32-7.35 (m, 1 H, HC-7), 7.46-7.48 (m, 1 H, HC-5), 7.48-7.51 (m, 1 H, HC-8). ¹³C NMR: δ -1.52 (2 C, SiCH₃), -1.49 (2 C, SiCH₃), 7.49 (SiCH₂C), 7.53 (SiCH₂C), 65.6 (CH₂OH), 126.8 (HC-7), 131.9 (HC-5), 133.8 (HC-8), 140.3 (C-6), 145.3 and 146.3 (C-4a, C-8a). ²⁹Si NMR: δ -7.0, -6.9. Anal. Calcd for C₁₃H₂₂-OSi₂: C, 62.34; H, 8.85. Found: C, 62.0; H, 8.7.

Analytical Data for 5-(Hydroxymethyl)-1,1,3,3-tetramethyl-1,3-disila-2-oxaindane (3i). ¹H NMR: δ 0.34 (s, 6 H, SiCH₃), 0.35 (s, 6 H, SiCH₃), 1.74 (t, ³J_{HH} = 5.7 Hz, 1 H, OH), 4.72 (d, ³J_{HH} = 5.7 Hz, 2 H, CH₂OH), 7.38–7.43 (m, 1 H, HC-6), 7.54–7.59 (m, 2 H, HC-4, HC-7). ¹³C NMR: δ 0.99 (4 C, SiCH₃), 65.5 (CH₂-OH), 127.9 (HC-6), 129.4 (HC-4), 131.2 (HC-7), 141.4 (C-5), 147.5 and 148.7 (C-3a, C-7a). ²⁹Si NMR: δ 15.4, 15.5. Anal. Calcd for C₁₁H₁₈O₂Si₂: C, 55.41; H, 7.61. Found: C, 55.1; H, 7.3.

Acknowledgment. Financial support of this work by Givaudan Schweiz AG, Dübendorf, Switzerland, is gratefully acknowledged.

OM700684J