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Summary: The yttrium dialkyl complex [(L)Y(CH2SiMe3)2] (1,
L ) 1,4,6-trimethyl-N-(2-pyrrolidin-1-ylethyl)-1,4-diazepan-6-
amine), actiVated by [PhNMe2H][B(C6F5)4], catalytically dimer-
izes a range of (hetero)aromatic alkynes to Z-enynes with 100%
selectiVity and high rates. Catalyst turnoVers up to 2000 were
readily achieVed in preparatiVe scale (5–10 mmol) reactions.
For comparison, the related E-enynes were produced with a
permethyl lanthanocene catalyst.

Catalytic coupling of terminal alkynes is the most conceptu-
ally straightforward and atom-efficient way to synthesize
conjugated enyne motifs, which can be found in a variety of
biologically active compounds1 and synthetic conjugated poly-
mers developed for optoelectronic applications.2 Many orga-
nometallic catalysts, employing early3 or late transition4 metals
or rare-earth metals,5 have been reported to catalyze this
reaction. Nevertheless, it is difficult to find catalysts that can
combine high catalyst activity, selectivity, and substrate scope.
Rare-earth metal catalysts show good activities,5a,b,g but het-
eroatom-containing substrates have barely been studied.6 Al-
though these metals are hard Lewis acids, their high kinetic
lability provides interesting opportunities for the conversion of
functionalized substrates.7 Here we report a new and highly
efficient cationic yttrium catalyst for the head-to-head dimer-

ization of (hetero)aromatic alkynes to Z-enynes. The corre-
sponding E-enynes were prepared with the known permethyl
lanthanocene Cp*2LaCH(SiMe3)2 (2).8

The new tetradentate ancillary ligand 1,4,6-trimethyl-N-(2-
pyrrolidin-1-ylethyl)-1,4-diazepan-6-amine (HL) is derived from
the tridentate 1,4,6-trimethyl-1,4-diazepan-6-amine ligand moi-
ety recently employed by us on Sc and Y organometallics.9 It
is prepared from 6-amino-1,4,6-trimethyl-1,4-diazepine in three
steps (Scheme 1). 2-Chloro-N-(1,4,6-trimethyl-1,4-diazepin-6-
yl)acetamide (A) was prepared by the reaction of 6-amino-1,4,6-
trimethyl-1,4-diazepine with chloroacetyl chloride under basic
conditions. Reaction of A with pyrrolidine and a catalytic
amount of NaI yielded 2-pyrrolidin-1-yl-N-(1,4,6-trimethyl-1,4-
diazepin-6-yl)acetamide (B). This was reduced by LiAlH4 in
di-n-butyl ether followed by aqueous workup to give HL as a
colorless oil in 81% yield after Kugelrohr distillation.

Yttrium complex 1 was obtained in 72% yield by reacting
HL with Y(CH2SiMe3)3(THF)2 in toluene (Scheme 1) followed
by recrystallization from n-hexane. The pendant pyrrolidinyl
group in 1 is coordinated to the metal, even in the Lewis basic
solvent THF-d8, as its R-H resonances are diastereotopic at
ambient temperature, as are the alkyl methylene protons.
Reaction of 1 with [PhNMe2H][B(C6X5)4] (X ) H, F) in the
same solvent cleanly generates the corresponding monoalkyl
cation (13C NMR Y-CH2: δ 28.9 ppm, JCH ) 97.8 Hz, JYC )
38.8 Hz vs 1: δ 27.9 ppm, JCH ) 100.6 Hz, JYC ) 36.2 Hz).

The ionic catalyst system 1/[PhNMe2H][B(C6F5)4] in the
weakly coordinating polar solvent bromobenzene proved to be
highly effective for the Z-selective head-to-head alkyne dimer-
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ization, with a high tolerance to heteroatom functionalities
(Scheme 2). A range of (hetero)aromatic terminal alkynes were
tested as substrates, and the results are summarized in Table 1.
For substrates 3a-f the reactions essentially go to completion
with full selectivity for the Z-enyne, and the Lewis basic anisyl
or thienyl groups pose no problems. Only the use of 3g, with
the 2-pyridyl substituent, results in complete deactivation of the
catalyst. Deprotonation reactions and insertion reactions of
pyridines with organo rare-earth compounds are known10 and
might lead to catalyst deactivation.

The kinetics of the dimerization of 3a and 3e was studied,
revealing zero-order dependence in substrate concentration (see
Supporting Information). In a 10 mmol scale reaction, 2000
equiv of phenylacetylene (3a) was converted within 2.5 h to
give 99% isolated yield of pure 1,1′-(1Z)-but-1-en-3-yne-1,4-
diyldibenzene (4a). In a 5 mmol scale reaction, 1000 equiv of
3-ethynylthiophene (3e) was converted within 4 h to give pure
3,3′-(1Z)-but-1-en-3-yne-1,4-diyldithiophene (4e) as bright yel-
low crystals in 94% isolated yield after recrystallization from
methanol. Thus 1/[PhNMe2H][B(C6F5)4] is a catalyst that
provides Z-selective alkyne dimerization capability at TONs that
would allow practical application in synthesis.

The lanthanocene alkyl complex Cp*2LaCH(SiMe3)2 (2) is
known to catalyze the oligomerization of alkynes to form
E-dimers as the dominant products.5g We have applied this

catalyst to the (hetero)aromatic alkyne substrates 3a-g (Scheme
3), and the results are summarized in Table 2. For all the
substrates, the main products formed are the E-enynes, but side
products are present. Apart from the ortho-substituted substrates
(which form significant amounts of the head-to-tail dimer,
especially for the anisyl derivative 3c), the selectivity for the
E-enynes is >97%. Remarkably, the 2-pyridyl-substituted
substrate 3g readily forms the E-enyne 5g with perfect selectiv-
ity. With this neutral catalyst, the pyridyl group only slows down
the catalysis relative to the less strongly basic substrates.

Because in the alkyne dimerizations with the lanthanocene
catalyst a certain amount of trimer is formed,5f,g the scaling up
of these reactions should take this side-product formation into
account. For the E-selective dimerization of phenylacetylene
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Scheme 1

Scheme 2

Table 1. Head-to-Head Z-Dimerization of (Hetero)aromatic
Terminal Alkynes by Cationic Yttrium Complexa

a Reaction conditions: catalyst 1 (10 µmol), [PhMe2NH][B(C6F5)4]
(10 µmol), [Y] ) 18.2 mM, substrate (0.5 mmol), solvent: C6D5Br, 80
°C. bDetermined by in situ 1H NMR spectroscopy.

Scheme 3

Table 2. Dimerization of (Hetero)aromatic Terminal Alkynes by
Lanthanocene Complex 2a

a Reaction conditions: [2] ) 4.1–4.4 mM, substrate (50 equiv),
solvent: C6D6, 25 °C. bDetermined by in situ 1H NMR spectroscopy.
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(3a), an increase in substrate concentration from 0.2 to 1.6 M
leads to an increased trimer formation (from 2% to 11%).
Nevertheless, dimerization of 3a on a 5 mmol scale (500 equiv)
in 0.5 mL of solvent could be performed with 97% selectivity
for 1,1′-(1E)-but-1-en-3-yne-1,4-diyldibenzene (5a) when the
substrate was added dropwise over a period of 30 min.

In conclusion, a new, highly efficient cationic yttrium catalyst
for the head-to-head dimerization of (hetero)aromatic alkynes
to Z-enynes has been found. It shows significantly higher
turnover frequencies (up to 800 TO h-1) than other catalysts
for this transformation and was successfully applied on a
preparative scale with proven turnover numbers up to 2000. The
complementary E-enyne producs can be prepared using the
permethyl lanthanocene catalyst. As the reaction route leading

to Z-enyne products is still not well-established (the most recent
proposal involves a dimeric catalytic species5b), we are currently
addressing the mechanistic issues that determine the selectivity
for Z- or E-products.
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