Ethylene Dimerization by Cationic Palladium(II) Alkyl Complexes that Contain Bis(heterocycle)methane Ligands

Christopher T. Burns and Richard F. Jordan*

Department of Chemistry, The University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637

Received July 29, 2007

The catalytic ethylene dimerization reactions of $(N^N)PdMe(L)^+$ species that contain bidentate nitrogen donor ligands were studied $(N^N = (1-Me-imidazol-2-yl)_2CH_2(\mathbf{a}); (1-Me-imidazol-2-yl)_2CH(C_6H_{13})(\mathbf{b}), 1,1'-di(triphenylmethyl)-4,4'-biimidazole (c), (5-Me-pyridin-2-yl)_2CH_2 (d), (pyrazol-1-yl)_2CH_2 (e), (3,5-Me_2-pyrazol-1-yl)_2CH_2 (f), (4-Me-C_6H_4)N=CMeCMe=N(4-Me-C_6H_4) (g), and <math>(2,6^-iPr_2-C_6H_3)N=CMeCMe=N(2,6^-iPr_2-C_6H_3)$ (h)). $(N^N)PdMe_2$ (**2a**-e,g) and $(N^N)Pd(Me)Cl$ (**3f**-h) complexes were converted to $[(N^N)Pd\{C(=O)Me\}CO][B(C_6F_5)_4)]$ (**7a,c-h**), $[(N^N)Pd(Me)(H_2C=CH_2)][B(C_6F_5)_4)]$ (**8a**-g), and $[(N^N)Pd(Me)(H_2C=CH_2)][B(C_6F_5)_4)]$ (**8a**-g), and $[(N^N)Pd(Me)(H_2C=CH_2)][SbF_6]$ (**8f**'). The v_{CO} values for **7a,c**-f show that there is weak back-bonding in these species, the donor ability of the N^N ligand varies in the order imidazole > pyridine > pyrazole, and variation of the chelate ring size does not strongly affect the electron density at Pd. **8a,c**-g and **8f**' dimerize ethylene by an insertion/ β -H elimination mechanism. The catalyst resting state is (N^N) -Pd(Et)(H_2C=CH_2)⁺ (**9a,c-g**). First-order rate constants for ethylene insertion of **8a**-g and **8f**' ($k_{\text{insert,Me}}$ and **9a,c**-g ($k_{\text{insert,Et}}$) were determined by NMR. The $k_{\text{insert,Me}}$ and $k_{\text{insert,Et}}$ values for analogous (N^N) Pd(R)(H_2C=CH_2)⁺ species are similar. Increasing the electrophilic character and the steric bulk of the (N^N) Pd unit leads to moderate increases in ethylene insertion rates.

Introduction

A wide variety of $(N^N)PdR^+$ olefin oligomerization and polymerization catalysts that contain neutral bidentate nitrogen donor ligands (N^N) have been developed.¹⁻⁴ Brookhart and co-workers showed that the dimerization of ethylene by the (phen)PdR⁺ system (phen = phenanthroline) proceeds by an insertion/ β -H elimination mechanism and that the ethyl ethylene complex (phen)Pd(Et)(H₂C=CH₂)⁺ is the catalyst resting state.⁵ Brookhart and co-workers also developed the chemistry of (ArN=CRCR=NAr)PdR⁺ α -diimine catalysts, which produce

(3) (a) Britovsek, G. J. P.; Gibson, V. C.; Wass, D. F. Angew. Chem., Int. Ed. 1999, 38, 428. (b) Ittel, S. D.; Johnson, L. K.; Brookhart, M. Chem. Rev. 2000, 100, 1169. (c) Mecking, S. Coord. Chem. Rev. 2000, 203, 325.
(d) Mecking, S. Angew. Chem., Int. Ed. 2001, 40, 534. (e) Gibson, V. C.; Spitzmesser, S. K. Chem. Rev. 2003, 103, 283.

(4) (a) Cherian, A. E.; Lobkovsky, E. B.; Coates, G. W. Chem. Commun.
2003, 2566. (b) Camacho, D. H.; Salo, E. V.; Ziller, J. W.; Guan, Z. Angew.
Chem., Int. Ed. 2004, 43, 1821. (c) Popeney, C.; Guan, Z. Organometallics
2005, 24, 1145. (d) Cherian, A. E.; Rose, J. M.; Lobkovsky, E. B.; Coates, G. W. J. Am. Chem. Soc. 2005, 127, 13770. (e) Meinhard, D.; Rieger, B. Chem. Asian J. 2007, 2, 386. (f) Meinhard, D.; Wegner, M.; Kipiani, G.; Hearley, A.; Reuter, P.; Fischer, S.; Marti, O.; Rieger, M. J. Am. Chem. Soc. 2007, 129, 9182. (g) Desjardins, S. Y.; Way, A. A.; Murray, M. C.; Adirim, D.; Baird, M. C. Organometallics 1998, 17, 2382. (h) Liu, W.; Malinoski, J. M.; Brookhart, M. Organometallics 2002, 21, 2836. (i) Daugulis, O.; Brookhart, M. Organometallics 2002, 21, 5926. (j) Malinoski, J. M.; Brookhart, M. Organometallics 2003, 22, 5324.

high molecular weight polymers from ethylene, α -olefins, internal olefins, and cyclic olefins when the N-aryl rings contain ortho substituents.⁶ A key development in this area was understanding that chain transfer in these oligomerization/polymerization reactions proceeds by associative olefin exchange. The orthogonal orientation of the N-aryl rings with respect to the metal square plane in (α -diimine)Pd species positions the ortho substituents above and below the axial coordination sites, which inhibits associative ligand exchange processes and thus disfavors chain transfer.

In previous work, we studied { $R_2C(pz)_2$ }Pd(R)($H_2C=CH_2$)⁺ complexes that contain bis(pyrazolyl)methane ligands (pz = pyrazolyl).⁷ These species catalytically oligomerize ethylene to C_8-C_{24} internal olefins. However, ethylene insertion of { $Me_2(pz)_2$ }PdMe($H_2C=CH_2$)⁺ is much slower than for (phen)PdMe($H_2C=CH_2$)⁺ or (diimine)PdMe($H_2C=CH_2$)⁺ complexes. Canty, Trofimenko, and others prepared a variety of other { $R_2C(pz)_2$ }Pd complexes, including { $R_2C(pz)_2$ }PdMe2 and { $R_2C(pz)_2$ Pd(allyl)⁺.^{8,9} The (N^N)Pd chelate rings in these compounds adopt boat conformations and may undergo inver-

(7) Tsuji, S.; Swenson, D. C.; Jordan, R. F. Organometallics 1999, 18, 4758.

(8) Byers, P. K.; Canty, A. J. Organometallics 1990, 9, 210.

(9) (a) Byers, P. K.; Canty, A. J.; Honeyman, R. T. Adv. Organomet. Chem. 1992, 34, 1. (b) Trofimenko, S. J. Am. Chem. Soc. 1970, 92, 5118.

^{*} Corresponding author. E-mail: rfjordan@uchicago.edu.

 ⁽a) Keim, W. Angew. Chem., Int. Ed. Engl. 1978, 17, 466.
 (b) Peuckert, M.; Keim, W. Organometallics 1983, 2, 594.
 (c) Keim, W. Angew. Chem., Int. Ed. Engl. 1990, 19, 235.
 (d) Skupinska, J. Chem. Rev. 1991, 91, 613.

^{(2) (}a) Killian, C. M.; Johnson, L. K.; Brookhart, M. Organometallics **1997**, *16*, 2005. (b) Svejda, S. A.; Brookhart, M. Organometallics **1999**, *18*, 65. (c) Daugulis, O.; Brookhart, M.; White, P. S. Organometallics **2002**, *21*, 5935. (d) Salo, E. V.; Guan, Z. Organometallics **2003**, *22*, 5033. (e) Heinicke, J.; Köhler, M.; Peulecke, N.; Kindermann, M. K.; Keim, W.; Köckerling, M. Organometallics **2005**, *24*, 344. (f) Doherty, M. D.; Trudeau, S.; White, P. S.; Morken, J. P.; Brookhart, M. Organometallics **2007**, *26*, 1261. (g) Ledford, J.; Shultz, C. S.; Gates, D. P.; White, P. S.; DeSimone, J. P.; Brookhart, M. Organometallics **2001**, *20*, 5266.

^{(5) (}a) Rix, F. C.; Brookhart, M. J. Am. Chem. Soc. 1995, 117, 1137.
(b) Rix, F. C.; Brookhart, M.; White, P. S. J. Am. Chem. Soc. 1996, 118, 4746.

^{(6) (}a) Johnson, L. K.; Killian, C. M.; Brookhart, M. J. Am. Chem. Soc. 1995, 117, 6414. (b) Mecking, S.; Johnson, L. K.; Wang, L.; Brookhart, M. J. Am. Chem. Soc. 1998, 120, 888. (c) Mclain, S. J.; Feldman, J.; McCord, E. F.; Gardner, K. H.; Teasley, M. F.; Coughlin, E. B.; Sweetman, K. J.; Johnson, L. K.; Brookhart, M. Macromolecules 1998, 31, 6705. (d) Gates, D. P.; Svejda, S. A.; Oñate, E.; Killian, C. M.; Johnson, L. K.; White, P. S.; Brookhart, M. Macromolecules 2000, 33, 2320. (e) Temple, D. J.; Johnson, L. K.; Huff, R. L.; White, P. S.; Brookhart, M. J. Am. Chem. Soc. 2000, 122, 6686. (f) Gottfried, A. C.; Brookhart, M. Macromolecules 2001, 34, 1140. (g) Shultz, L. H.; Temple, D. J.; Brookhart, M. J. Am. Chem. Soc. Soc. 2001, 123, 11539.

sion, which results in exchange of the axial and equatorial CR_2 substituents.^{10,11}

In the present work we have explored the chemistry of $(N^N)PdR(L)^+$ complexes that contain a wider range of bis(heterocyclic) N^N ligands, in order to probe how the electronic and steric properties of the heterocycle influence the ethylene insertion reactivity.

Results and Discussion

N^{\wedge}N Ligands. The N^{\wedge}N ligands **1a**–**h** in Chart 1 were prepared by literature routes.^{12–20} Ligands **1a**–**h** were chosen for synthetic convenience and to enable investigation of how differences in donor properties, chelate ring size, and steric effects influence the rate of ethylene insertion in (N^{\wedge}N)Pd-(R)(H₂C=CH₂)⁺ species.

Synthesis of $(N^N)PdMe_2$ Complexes (2a-e,g). The $(N^N)PdMe_2$ compounds 2a-e,g were synthesized by ligand substitution reactions of $[(pyridazine)PdMe_2]_n, (cod)PdMe_2 (cod)PdMe_2]_n$

(12) $(N^N) = (1-Me-imidazol-2-yl)_2CH_2$ (1a, $(mim)_2CH_2)$, (1-Me-imidazol-2-yl)_2CH(C₆H₁₃) (1b, $(mim)_2CH(n-hexyl)$), 1,1'-di(triphenyl-methyl)-4,4'-biimidazole (1c, biTim), (5-Me-pyridin-2-yl)_2CH_2 (1d, (5-Mepy)_2CH_2), (pyrazol-1-yl)_2CH_2 (1e, (pz)_2CH_2), (3,5-Me_2-pyrazol-1-yl)_2CH_2 (1f, (3,5-Me_2-pz)_2CH_2), (4-Me-C_6H_4)N=CMeCMe=N(4-Me-C_6H_4) (1g, p-tolyldimine), and (2,6-¹Pr_2-C_6H_3)N=CMeCMe=N(2,6-¹Pr_2-C_6H_3) (1h, 2.6-¹Pr-dimine).

(13) Gorun, S. M.; Papaefthymiou, G. C.; Frankel, R. B.; Lippard, S. J. J. Am. Chem. Soc. **1987**, 109, 4244.

(14) Braussaud, N.; Ruther, T.; Cavell, K. J.; Skelton, B. W.; White, A. H. Synthesis 2001, 626.

(15) Burns, C. T.; Shen, H.; Jordan, R. F J. Organomet. Chem. 2003, 683, 240.

(16) Cliff, M. D.; Pyne, S. G. Synthesis 1994, 681.

(17) Li, X.; Gibb, C. L. D.; Kuebel, M. E.; Gibb, B. C. Tetrahedron 2001, 57, 1175.

(18) Jameson, D. L.; Castellano, R. K.; Reger, D. L.; Collins, J. E.; Tolman, W. B.; Tokar, C. J. *Inorg. Synth.* **1998**, *32*, 51.

(19) Joshi, V. S.; Sarkar, A.; Rajamohanan, P. R. J. Organomet. Chem. 1991, 409, 240.

(20) Alcazar, J.; Begrup, M.; de la Hoz, A. J. Chem. Soc., Perkin Trans. 1 1995, 2467.

= cyclooctadiene), or $(Me_2S)_2PdMe_2$ as shown in Scheme 1.^{8,21} In the solid state, **2e**,**g** decompose within minutes (**2e**) or hours (**2g**) at 25 °C. In CD₂Cl₂ solution, **2d**,**e**,**g** decompose to free N^N ligand, CH₄, C₂H₆, and Pd⁰ within minutes (**2e**) or hours (**2d**,**g**) at 25 °C.⁸ Complexes **2b**,**c** are more thermally stable, but decompose photochemically in CD₂Cl₂ to (N^N)PdCl₂.¹⁵

Synthesis of $(N^N)Pd(Me)Cl$ Complexes (3f-h). The $(N^N)Pd(Me)Cl$ complexes 3f-h were prepared by the reaction of (cod)Pd(Me)Cl with 1f-h (Scheme 2).^{6a,d,22} Compounds 3f-h are more thermally stable than 2a-e,g. However, 3g decomposes slowly (days) in the solid state at 25 °C.

NMR and Dynamic Properties. Complexes 2a,b,d,e and 3f likely have boat conformations, as shown for 2e in Scheme 3, similar to those observed for the analogous complexes {1,3-dioxolane)C(py)₂}PdCl₂, {Me₂C(pz)₂}PdCl₂, {Ph₂C(pz)₂}PdCl₂, and { $(n-hexyl)HC(mim)_2$ }PdCl₂.^{7,15,23–25} Previously, Canty observed a singlet for the methylene bridge hydrogens in the ¹H NMR spectrum of 2a down to -70 °C, consistent with rapid inversion of the (N^N)Pd chelate ring.⁸ In contrast, slower ring inversion is observed for 2d,e, and 3f. The variable-temperature ¹H NMR spectra (δ 6.9–5.8 region) for 2e are shown in Figure

(23) Newkome, G. R.; Gupta, V. K.; Theriot, K. J.; Ewing, J. C.; Wicelinski, S. P.; Huie, W. R.; Fronczek, F. R.; Watkins, S. F. Acta Crystallogr., Sect. C: Cryst. Struct. Commun. **1984**, C40, 1352.

(24) Minghetti, G.; Cinellu, M. A.; Bandini, A. L.; Banditelli, G.; Demartin, F.; Manassero, M. J. Organomet. Chem. **1986**, 315, 387.

(25) (a) Canty, A. J.; Minchin, N. J.; Skelton, B. W.; White, A. H. Aust. J. Chem. **1992**, 45, 423. (b) Newkome, G. R.; Gupta, V. K.; Taylor, H. C. R.; Fronczek, F. R. Organometallics **1984**, 3, 1549.

⁽¹⁰⁾ Jalón, F. A.; Manzano, B. R.; Otero, A.; Rodriguez-Perez, M. C. J. Organomet. Chem. **1995**, 494, 179.

^{(11) (}a) Brown, D. G.; Byers, P. K.; Canty, A. J. Organometallics 1990, 9, 1231.
(b) Byers, P. K.; Canty, A. J.; Honeyman, R. T. J. Organomet. Chem. 1990, 385, 417.

⁽²¹⁾ Foley, S. R.; Stockland, R. A., Jr.; Shen, H.; Jordan, R. F. J. Am. Chem. Soc. 2003, 125, 4350.

⁽²²⁾ Rülke, R. E.; Ernsting, J. M.; Spek, A. L.; Elsevier, C. J.; van Leeuwen, P. W. N. M.; Vrieze, K. *Inorg. Chem.* **1993**, *32*, 5769.

Figure 1. Variable-temperature ¹H NMR spectra (δ 6.9–5.8 region) of {H₂C(pz)₂}PdMe₂ (**2e**) in CD₂Cl₂ solution. The chemical shift scale is in δ units. NMR spectra were not obtained above -10 °C due to the thermal instability of **2e**. The broadening of the {H₂C(pz)₂}Pd resonances is due to chelate ring inversion.

1. At -60 °C, two doublets at δ 6.61 (H_{ax}) and 6.11 (H_{eq}) are observed for the methylene bridge hydrogens, which indicates that inversion of the chelate ring is slow on the NMR time scale at this temperature.²⁶ However, as the temperature is raised to -10 °C, the H_{ax} and H_{eq} resonances broaden selectively, indicating that inversion occurs. ¹H NMR spectra of **2e** could not be obtained above -10 °C due to the thermal instability of this species. The spectra of **2e** contain one set of pyrazole H3, H4, and H5 resonances and one PdMe resonance at all temperatures, consistent with the expected C_s-symmetric structure.

The ring inversion in **2e** most likely occurs by a nondissociative process via a planar transition state as shown in Scheme 3.¹⁰ The free energy barrier for ring inversion in **2e**, estimated from the line broadening of the H_{ax} and H_{eq} resonances, is ΔG^{\pm} = 12.4(1) kcal/mol at -20 °C.²⁷ Similar results were observed for **2d** and **3f**. The inversion barrier for **2d** ($\Delta G^{\pm} = 13.1(1)$ kcal/mol at -20 °C) is similar to that for **2e**, while that for **3f** is ca. 3 kcal/mol higher ($\Delta G^{\pm} = 15.6(1)$ kcal/mol at 25 °C). Ring inversion in **3f** may be inhibited by the 3,5-Me₂ substituents on the pyrazole rings, which would crowd the Pd-Me and Pd-Cl groups in the planar transition state (cf. Scheme 3).

One conformer is observed for **2b** at both -60 and 25 °C. It is likely that the *n*-hexyl group occupies the axial position as

observed for the analogous dichloride complex, { $(n-hexyl)HC(mim)_2$ }PdCl₂.¹⁵ Complexes **2c** and **3g** likely have planar conformations, similar to the analogous complexes {2,2'-bipyridine}PdCl₂, (2,6-ⁱPr-BIAN)PdCl₂ (2,6-ⁱPr-BIAN = bis{2,8-(2,6-di-isopropylphenylimino)}acenaphthene), and (*p*-MeO-BIAN)PdCl₂ (*p*-MeO-BIAN = bis{2,8-(4-methoxy-phenylimino)}acenaphthene).²⁸

Generation of $(N^N)PdMe(NMe_2Ph)^+$ Species (5a-e,g). The $(N^N)PdMe_2$ complexes 2a-e,g can be converted to $(N^N)PdMe(L)^+$ species in a variety of ways.^{3b} The $(N^N)^-$ PdMe(L)⁺ species described here are insufficiently thermally stable to isolate and therefore were characterized in situ by NMR. Complexes 2a-e,g were reacted with [HNMe_2Ph]-[B(C₆F₅)₄] in CD₂Cl₂ at -60 °C to produce [$(N^N)PdMe(NMe_2Ph)$][B(C₆F₅)₄] (5a-e,g; Scheme 4) in near quantitative yield. Complexes 5a-e,g are quite stable at low temperature (-60 °C) but decompose slowly at 25 °C to yield black solutions and NMe₂Ph; the fate of the $(N^N)PdMe^+$ unit was not determined.

The -60 °C ¹H NMR spectra of **5a–e,g** show that in each case the sides of the N^N ligand are inequivalent and one NMe₂Ph ligand is present. The NMe₂Ph resonances are strongly deshielded compared to the resonances of free NMe₂Ph by coordination to the (N^N)PdMe⁺ unit.²⁹ In **5a–e**, one heterocycle ring resonance (H4 in (mim)₂CH₂ and (mim)₂CH(*n*-hexyl); H2 in biTim; H6 in (5-Me-py)₂CH₂; H3 in (pz)₂CH₂) appears at a higher field ($\delta \leq 5.95$) compared to the other ring resonances due to anisotropic shielding by the NMe₂Ph ring.

^{(26) (}a) The assignment of the bridge methylene hydrogen resonances is based on Canty's results for {MeHC(py)₂}PdMe₂, which exists as a 1/1 mixture of conformers at -10 °C (see ref 8). In this case, two doublets were observed for the bridge CH in the ¹H NMR spectrum at -10 °C. The downfield CH resonance was assigned the conformer in which the C-H is in the axial position. The downfield shift was ascribed to the proximity of H_{ax} to Pd. (b) Deeming, A. J.; Rothwell, I. P.; Hursthouse, M. B.; New, L. J. Chem. Soc., Dalton Trans. **1978**, 1490. (c) Polyakov, V. A.; Ryabov, A. D. J. Chem. Soc., Dalton Trans. **1986**, 589.

⁽²⁷⁾ gNMR, v. 4.1.2; Adept Scientific: Letchworth, 2000.

^{(28) (}a) Canty, A. J.; Skelton, B. W.; Traill, P. R.; White, A. H. *Aust. J. Chem.* **1992**, *45*, 417. (b) Coventry, D. N.; Batsanov, A. S.; Goeta, A. E.; Howard, J. A. K.; Marder, T. B. *Polyhedron* **2004**, *23*, 2789.

^{(29) (}a) NMR data for free NMe₂Ph: ¹H NMR (CD₂Cl₂): δ 7.20 (m, 2H, *o*-Ph), 6.72 (m, 2H, *m*-Ph), 6.67 (t, *J* = 7, 1H, *p*-Ph), 3.03 (s, 6H, Me). ¹³C{¹H} NMR (CD₂Cl₂): δ 151.1 (C1), 129.3 (C2), 116.6 (C4), 112.8 (C3), 40.7 (Me). ¹H NMR (CD₂Cl₂, -60 °C): δ 7.18 (m, 2H, *o*-Ph), 6.67 (m, 2H, *m*-Ph), 6.63 (t, *J* = 7, 1H, *p*-Ph), 2.88 (s, 6H, Me). ¹³C{¹H} NMR (CD₂Cl₂, -60 °C): δ 150.2 (C1), 128.7 (C2), 115.8 (C4), 111.9 (C3), 40.3 (Me). (b) If excess [HNMe₂Ph][B(C₆F₅)₄] is used in the generation of **5a**-**e** and **5g**, and the NMe₂Ph is then displaced from **5a**-**e** and **5g** by another ligand, the excess HNMe₂Ph⁺ undergoes fast H⁺ exchange with free NMe₂Ph ad a single set of NMe₂Ph/HNMe₂Ph⁺ resonances at the weighted average of the chemical shifts of these species is observed.

Table 1. Pd–CO ^{13}C NMR Chemical Shifts and ν_{CO} Values for (N^N)Pd{C(=O)Me}CO^+ Complexes in CD_2Cl_2 Solution

complex	$N \land N$ ligand	δ^{13} C Pd-CO	$v_{\rm CO}~({\rm cm}^{-1})$
7a	(mim) ₂ CH ₂	173.8 ^a	2122 ^a
7c	biTim	173.5 ^b	2123 ^a
7d	(5-Me-py) ₂ CH ₂	173.1 ^b	2128 ^a
7e	$(pz)_2CH_2$	$175.0 (br)^{c}$	2133 ^a
7f	(3,5-Me ₂ -pz) ₂ CH ₂	171.7^{d}	2132 ^a
7g	p-tolyldiimine	172.4^{d}	2130 ^a
7h	2,6- ⁱ Pr ₂ -diimine		2132 ^a

^{*a*} 23 °C. ^{*b*} -40 °C. ^{*c*} -20 °C. ^{*d*} -60 °C.

Similarly, in **5g**, one of the aryl resonances appears at high field (δ 6.24) due to anisotropic shielding by the NMe₂*Ph* ring.

The amine ligand of **5a–e**,**g** is easily displaced by olefins or other ligands.^{7,30} The displaced NMe₂Ph has no effect on subsequent chemistry, but can be used as an internal standard for NMR integration.^{29b}

 $(N^N)Pd\{C(=O)Me\}CO^+$ Species (7a,c-h). The acyl carbonyl complexes $[(N^N)Pd\{C(=O)Me\}CO][B(C_6F_5)_4]$ (7a,c-h) were prepared by two routes, as shown in Scheme 4. Exposure of frozen CD₂Cl₂ solutions of **5a**,c-e to CO followed by brief warming to 25 °C yields **7a**,c-e quantitatively. The reaction of **3f**-h with 1 equiv of $[Li(Et_2O)_{2.8}][B(C_6F_5)_4]$ in CD₂Cl₂ in the presence of CO at 25 °C affords **7f**-h quantitatively. Complexes **7a**,c-h are stable at low temperatures (-78 to -40 °C) but decompose at 25 °C over the course of several hours.

Complexes **7a,c–h** were characterized by NMR at 23 °C (**7a**) or low temperature (**7c–h**) in the presence of excess CO. The Pd-CO ¹³C NMR chemical shifts of **7a,c–g** are listed in Table 1. The Pd-CO signals fall within a small range (δ 171.4 to 175.0) and are shifted upfield from the free CO resonance (δ 184.0).³¹ The acyl carbon signals appear in the range δ 209 to 217. These values are similar to those for (phen)Pd{C(=O)Me}CO⁺ (δ 173.0 (Pd–CO), 216.5 (acyl)).⁵ Separate Pd–CO and free CO resonances are observed for **7a** (25 °C) and **7c–h** (low temperature), indicating that CO exchange is slow on the NMR time scale.³²

The ν_{CO} and ν_{acyl} values for **7a,c–h** were determined by solution IR spectroscopy and are listed in Table 1. Complexes **7a,c–h** exhibit high ν_{CO} values (2122–2133 cm⁻¹; cf. 2139 cm⁻¹ for free CO in CD₂Cl₂) characteristic of minimal d– π * backbonding and electrophilic metal centers.^{5,31,33} Comparison of the ν_{CO} values for **7a,c–f** shows that the donor ability of the heterocycles varies in the order imidazole > pyridine > pyrazole.^{8,34} Comparison of the ν_{CO} values for **7e** and **7f**, and of **7g** and **7 h**, shows that the addition of alkyl groups does not strongly affect the donor property of the ligand. Comparison of the ν_{CO} values of **7a** and **7c**, and of **7d** and (phen)Pd-

(33) Foley, S. R.; Shen, H.; Qadeer, U. A.; Jordan, R. F. Organometallics 2004, 23, 600.

(34) Canty, A. J.; Lee, C. V. Organometallics 1982, 1, 1063.

(COMe)(CO)⁺ ($\nu_{CO} = 2128 \text{ cm}^{-1}$), shows that chelate ring size does not dramatically affect the electron density at the Pd(II) center.⁵ The high ν_{CO} values of **7g** and **7h** indicate that the α -diimines **1g** and **1h** are weak donor ligands.³⁵

Generation of $[(N^N)PdMe(H_2C=CH_2)][B(C_6F_5)_4]$ Species (8a–g). The methyl ethylene complexes $[(N^N)PdMe-(H_2C=CH_2)][B(C_6F_5)_4]$ (8a–g) were prepared by two routes, as shown in Scheme 4. Reaction of 5a–e,g with ethylene at -60 °C yields 8a–e,g by associative displacement of NMe₂Ph by ethylene. The reaction of 3f with 1 equiv of $[Li(Et_2O)_{2.8}][B(C_6F_5)_4]$ in the presence of ethylene yields 8f. Complexes 8a–g are stable in CD_2Cl_2 solution at -60 °C for long periods of time, but undergo insertion at higher temperatures (above ca. -40 °C for 8g and ca. -20 °C for 8a–f), as described below.

Complexes 8a-g were characterized by NMR at -60 °C in CD₂Cl₂. Consistent with the displacement of NMe₂Ph by ethylene, the heterocycle ring and aryl resonances that were shifted upfield in 5a-e,g by anisotropic shielding by the NMe₂Ph ring appear in their normal regions for 8a-g.

Intermolecular exchange of free and coordinated ethylene is fast on the NMR chemical shift time scale for 8a,c-e,g at -60 °C in the presence of excess ethylene (ca. 1-9 equiv). This exchange is stereospecific in the sense that the incoming ethylene occupies the same coordination site as the departing ethylene, so that the sides of the N^N ligand remain inequivalent under fast exchange conditions. It is presumed that ethylene exchange occurs by a standard associative mechanism.^{5,6a,36} In contrast, the $-60 \,^{\circ}\text{C}^{-1}\text{H}$ NMR spectra of **8b**,**f** in the presence of excess ethylene contain separate resonances for bound (AA'BB' pattern) and free ethylene (δ 5.37), indicating that intermolecular ethylene exchange is slow on the NMR chemical shift time scale in these cases.³⁷ For **8b**, the axial *n*-hexyl substituent may inhibit access to the axial coordination sites of the metal. For 8f, the steric crowding and enhanced boating of the chelate ring due to methyl substituents of the 3,5-Me₂-pz rings inhibit associative ligand exchange processes.

Generation of [{H₂C(3,5-Me₂-pz)₂}PdMe(H₂C=CH₂)][SbF₆] (8f'). The reaction of 3f with Ag[SbF₆] in Et₂O at 23 °C affords [{H₂C(3,5-Me₂-pz)₂}PdMe(OEt₂)][SbF₆] (6f', Scheme 5) in near quantitative yield.^{38,39} Complex 6f' is quite stable at low temperature (-60 °C), and the labile Et₂O is easily displaced by olefins or other ligands. The reaction of 6f' with ethylene at

(37) At 0 $^{\circ}$ C, the bound ethylene resonance of **8b** is broadened by exchange. The linewidth is greater at higher free ethylene concentrations, consistent with an associative exchange mechanism.

(38) Johnson, L. K.; Killian, C. M.; Arthur, S. D.; Feldman, J.; McCord, E. F.; McLain, S. J.; Kreutzer, K. A.; Bennett, M. A.; Coughlin, E. B.; Ittel, S. D.; Parthasarathy, A.; Tempel, D. J.; Brookhart, M. (E. I. Du Pont de Nemours & Co.). WO Patent 9623010, 1996 *Chem. Abstr.* **1996**, *125*, 222773. ¹H NMR (CD₂Cl₂): δ 7.29 (d, J = 8, 2H, Ar H3), 7.26 (d, J = 8, 2H, Ar H3'), 6.89 (d, J = 8, 2H, Ar H2), 6.82 (d, J = 8, 2H, Ar H2'), 2.39 (s, 6H, ArMe), 2.15 (s, 3H, N=CMe), 2.04 (s, 3H, N=CMe), 0.44 (s, 3H, PdMe).

(39) McCord, E. F.; McLain, S. J.; Nelson, L. T. J.; Arthur, S. D.; Coughlin, E. B.; Ittel, S. D.; Johnson, L. K.; Tempel, D.; Killian, C. M.; Brookhart, M. *Macromolecules* **2001**, *34*, 362.

⁽³⁰⁾ Wu, F.; Foley, S. R.; Burns, C. T.; Jordan, R. F. J. Am. Chem. Soc. 2005, 127, 1841.

^{(31) (}a) Guo, Z.; Swenson, D. C.; Guram, A. S.; Jordan, R. F. *Organometallics* **1994**, *13*, 766. (b) Lupinetti, A. J.; Strauss, S. H.; Frenking, G. *Prog. Inorg. Chem.* **2001**, *49*, 1. (c) Willner, H.; Aubke, F. *Organometallics* **2003**, *22*, 3612.

⁽³²⁾ For **7e** at -10 °C, the Pd–*C*O and free CO ¹³C resonances are broad, indicating that CO exchange is faster in this case. CO exchange by a normal associative mechanism should occur stereospecifically without permutation of the sides of the (pz)₂CH₂ ligand. However, the ¹H NMR (-20 °C) and ¹³C NMR (-10 °C) spectra of **7e** in the presence of free CO contain one set of pz resonances, indicating that the sides of the (pz)₂CH₂ ligand are equivalent on the NMR time scale. Also, the ¹H NMR spectrum of **7f** (25 °C) contains one sharp set of 3,5-Me₂-pz signals, indicating that permutation of the sides of the (3,5-Me₂-pz)₂CH₂ ligand occurs. These results suggest that reversible decomplexation of the pz rings occurs.

^{(35) (}a) Gasperini, M.; Ragaini, F.; Cenini, S. *Organometallics* **2002**, *21*, 2950. (b) Zhong, H. A.; Labinger, J. A.; Bercaw, J. E. J. Am. Chem. Soc. **2002**, *124*, 1378.

^{(36) (}a) The $-CPh_3$ groups of **8c** are too remote from the Pd to strongly influence the associative ethylene exchange. For comparison, in $[Cu(\mu-\eta^1-NO_3)(NO_3)(biTim)]_2$, the distance between the $-CPh_3$ carbon and the Cu atom is 5.59 Å and the shortest H–Cu distance between the $-CPh_3$ groups and the Cu atom is 5.28 Å. The Cu–N distances are similar to Pd–N distances in related Pd compounds. See: Aromi, G.; Gamez, P.; Kooijman, H.; Spek, A. L.; Driessen, W. L.; Reedijk, J. *Eur. J. Inorg. Chem.* **2003**, 1394. (b) Jiang, A.; Krüger, C.; Pfeil, B. Watkins, S. F. Acta Crystallogr., Sect. C: Cryst. Struct. Commun. **1987**, C43, 2334.

-60 °C yields the ethylene complex **8f'**. The ¹H NMR spectrum of **8f'** is identical to that of the corresponding $B(C_6F_5)_4^-$ salt **8f**. As for **8f**, associative ethylene exchange is slow on the NMR time scale for **8f'**. This route to (N^N)PdMe⁺ species avoids the use of thermally sensitive (N^N)PdMe₂ precursors.

Catalytic Ethylene Dimerization by (N^N)PdMe(H₂C= $(\mathbf{H}_2)^+$ (8a–g,8f'). Complexes 8a–g and 8f' catalytically dimerize ethylene to a mixture of butenes. The mechanism for this reaction is shown in Scheme 6 and is directly analogous to that established by Brookhart for ethylene dimerization by (phen)PdMe(H₂C=CH₂)^{+.5} Ethylene insertion into the Pd-Me bond of **8** followed by β -H elimination forms intermediate Pd hydride propylene complex **B**. Subsequent exchange of the coordinated propylene by ethylene yields intermediate C. Ethylene insertion of C followed by ethylene coordination forms ethyl ethylene complex 9, which is the catalyst resting state. Complex 9 inserts ethylene to form a Pd butyl cation (**D**), which undergoes β -H elimination to form Pd hydride 1-butene complex E. Intermediate E can undergo olefin exchange with ethylene to liberate 1-butene and re-form C, or undergo 2,1 insertion of 1-butene to form Pd sec-butyl complex **F**. β -H elimination of F followed by olefin exchange yields C and *cis*- or *trans*-2butene.

Table 2. First-Order Rate Constants ($k_{\text{insert,Me}}$) for Ethylene Insertion of (N^N)PdMe(H₂C=CH₂)⁺ Complexes in CD₂Cl₂ at -10 °C

compound	N [^] N ligand	$k_{\text{insert,Me}} (10^{-4} \text{ s}^{-1})$
8a	(mim) ₂ CH ₂	1.2(1)
8b	(mim) ₂ CH(n-hexyl)	1.6(1)
8c	biTim	1.0(1)
8d	(5-Me-py) ₂ CH ₂	9.0(9)
8e	$(pz)_2CH_2$	3.6(3)
8f	(3,5-Me ₂ -pz) ₂ CH ₂	13(1)
8f'	(3,5-Me ₂ -pz) ₂ CH ₂	12(1)
8g	<i>p</i> -tolyldiimine	39(4)
8g (−30 °C)	<i>p</i> -tolyldiimine	3.9(4)
8 h (-30 °C)	2,6- ⁱ Pr ₂ -diimine	17^{a}

^a Data from ref 6a.

Consistent with Scheme 6, NMR monitoring of the reaction of **8a–g** with ethylene shows that as **8** is consumed, propylene and **9** form, and that **9** subsequently produces a mixture of 1-butene and *cis-* and *trans-2-*butene.⁴⁰ Complex **9** is the only major Pd species present in solution until all the ethylene is consumed, at which point Pd^0 formation is observed. Once the ethylene is consumed, the butenes are oligomerized by an unknown mechanism.

Characterization of $[(N^N)PdEt(H_2C=CH_2)][B(C_6F_5)_4]$ (9a,c-g). Complexes 9a,c-g were characterized by ¹H NMR at low temperature. The ¹H NMR spectra of **9a,c,g** contain quartets for the PdCH₂CH₃ methylene hydrogens, which are coupled to triplets for the PdCH₂CH₃ hydrogens. The ¹H NMR spectra of 9d,e contain two signals (pentets for 9d, multiplets for 9e) for the PdCH₂CH₃ hydrogens and a triplet for the PdCH₂CH₃ methyl group; in these cases the PdCH2 hydrogens are inequivalent due to slow inversion of the $(N^N)Pd$ chelate ring. The ¹H NMR spectrum of 9f at -60 °C contains a triplet at δ 0.67 for the PdCH₂CH₃ group, which is slightly upfield of the corresponding resonance for 9e. The $PdCH_2CH_3$ signals of 9f were not observed at -60 °C due to broadening and overlap with other resonances. However, the spectrum contains two doublets for the $(3,5-Me_2-pz)_2CH_2$ hydrogens, which implies that chelate ring inversion is slow, as observed for 3f, 6f', 7f, and 8f.

The ¹H NMR spectra of **9a,c–e** and **9g**, at -60 °C in the presence of excess ethylene, contain one resonance for free and coordinated ethylene, indicating ethylene exchange is fast on the NMR time scale under these conditions. In all cases the sides of the N^NN donor ligands are inequivalent, consistent with the expected stereospecific exchange mechanism. In contrast, for **9f** separate resonances are observed for free and coordinated ethylene, indicating ethylene exchange is slow on the NMR time scale under these conditions for this case.

Kinetics of Ethylene Insertion into the Pd–Me Bond of 8a–g and 8f' The rate of ethylene insertion of 8a–g and 8f' at -10 °C was measured by ¹H NMR by monitoring the disappearance of the Pd–Me resonance. These studies show that the rate of ethylene insertion is zero-order in ethylene and firstorder in palladium. The first-order rate constants for insertion of the Pd–Me cations ($k_{\text{insert,Me}}$) are listed in Table 2. The $k_{\text{insert,Me}}$ values for 8f and 8f' are identical, which shows that the difference in noncoordinating anion (B(C₆F₅)₄⁻ vs SbF₆⁻) has no effect on the insertion rate.

Kinetics of Ethylene Insertion into the Pd–Et Bond of 9a,c–g. Since complex 9 is the resting state for the ethylene dimerization process in Scheme 6, the rate of ethylene insertion

⁽⁴⁰⁾ The 1-butene/2-butene ratios were as follows: **8a**: 1/7; **8c**: 1/9; **8d**: 1/4; **8e**,**f**: 1/7; **8g**: 1/6. The *cis/trans* 2-butene ratios were as follows: **8a-e**: ca. 1/1; **8f**: 1/1.5; **8g** 1/2.

Table 3. First-Order Rate Constants ($k_{insert,Et}$) for Ethylene Insertion of (N^N)PdEt(H₂C=CH₂)⁺ Complexes in CD₂Cl₂ at -10 °C

compound	N [^] N ligand	$k_{\text{insert,Et}} (10^{-4} \text{ s}^{-1})$
9a	(mim) ₂ CH ₂	1.0(1)
9c	biTim	0.48(5)
9d	(5-Me-py) ₂ CH ₂	2.0(2)
9e	$(pz)_2CH_2$	2.0(2)
9f	(3,5-Me ₂ -pz) ₂ CH ₂	7.0(7)
9g	p-tolyldiimine	12(1)

into the Pd–Et bond is equal to the rate of butene formation. The rate of butene formation by **9a,c–g** at -10 °C was measured by ¹H NMR. These experiments show that the rate of butene formation and hence ethylene insertion into the Pd–Et bond is zero-order in ethylene and first-order in palladium. First-order rate constants for ethylene insertion, $k_{\text{insert,Et}}$, are listed in Table 3.

Reactivity Trends in $(N^N)Pd(R)(H_2C=CH_2)^+$ species ($\mathbf{R} = \mathbf{Me}, \mathbf{Et}$). The k_{insert} values in Tables 2 and 3 provide an initial picture of how N^N ligand properties influence the insertion reactivity of $(N^N)Pd(R)(H_2C=CH_2)^+$ species. The $k_{\text{insert,Me}}$ values for **8a** and **8c** are essentially identical, which shows that the chelate ring size does not dramatically affect the rate of ethylene insertion. Ethylene insertion of 8e is 3 times faster than for 8a. Since 8e and 8a have very similar structures, this difference can be attributed to greater electrophilic character at Pd in 8e versus 8a, which results from the difference in donor ability of the pyrazole and imidazole ligands (cf. Table 1). Ethylene insertion of 8f is ca. 3 times faster than for 8e, which may reflect the steric crowding generated by the methyl substituents of the 3,5-Me₂-pz rings of 8f. Ethylene insertion of 8d is 8 times faster than for 8a, due to the combination of the poorer donor ability and the larger ring size and concomitant greater steric crowding of the pyridine unit compared to the imidazole unit in the N^N ligands. Thus, increasing the electrophilic character and the steric bulk of the {bis(heterocycle)methane}Pd unit leads to moderate (up to ca. 10-fold) increases in ethylene insertion rates. The $k_{\text{insert,Et}}$ values for 9a,c-g are somewhat lower than $k_{\text{insert,Me}}$ values for the corresponding Pd–Me complexes 8a,c–g.

Interestingly, the insertion rate of **8f**, which is the most reactive of the {bis(heterocycle)methane}Pd(R)(ethylene)⁺ species studied here, is 3 to ca. 12 times slower than those of the (α -diimine)Pd(R)(ethylene)⁺ species **8g** and **8h**. As the electronic properties of **8f**-h are quite similar (based on the ν_{CO} data in Table 1), this difference must result from differences in the steric properties and perhaps the degree of rigidity of the (N^N)Pd units in these systems.

Conclusions

Cationic {bis(heterocycle)methane}PdR⁺ species catalyze the dimerization of ethylene by an insertion/ β -H elimination mechanism. The catalyst resting state is the {bis(heterocycle)-methane}Pd(Et)(ethylene)⁺ complex. Increasing the electrophilic character (heterocycle = pyrazole > pyridine > imidazole) and the steric bulk of the {bis(heterocycle)methane}Pd unit leads to moderate (up to ca. 10-fold) increases in ethylene insertion rates of {bis(heterocycle)methane}Pd(R)(ethylene)⁺ species.

Experimental Section

General Procedures. All manipulations were performed under N_2 or vacuum using standard Schlenk or high-vacuum techniques or in a N_2 -filled drybox. Nitrogen was purified by passage through

columns containing activated molecular sieves and Q-5 oxygen scavenger. Pentane, hexanes, toluene, and benzene were purified by passage through columns of activated alumina and BASF R3-11 oxygen scavenger. Diethyl ether and tetrahydrofuran were distilled from Na/benzophenone ketyl. Dichloromethane was refluxed for 24 h over CaH₂ and distilled. CDCl₃ and CD₂Cl₂ were dried over CaH₂ for 24 h, degassed by freeze-pump-thaw cycles, and vacuum transferred to a storage vessel. Acetone- d_6 was dried over 4 Å molecular sieves and then distilled onto 4 Å molecular sieves. CO and ¹³CO were purchased from Aldrich and used as received. Ethylene (research grade) was obtained from Matheson and used as received. [HNMe2Ph][B(C6F5)4] and [Li(Et2O)2.8]- $[B(C_6F_5)_4]$ were obtained from Boulder Scientific and used as received. The Et₂O content of the $[Li(Et_2O)_{2,8}][B(C_6F_5)_4]$ salt was determined by ¹H NMR with C₆Me₆ as internal standard. (cod)PdCl₂ and Ag[SbF₆] were obtained from Strem and used as received. The compounds $(pz)_2CH_2$ (1e),¹⁸ (mim)₂CO,¹⁴ (mim)₂CH₂ (1a),¹⁴ (mim)₂CH(*n*-hexyl) (1b),¹⁵ (5-Me-py)₂CO,¹⁷ 1,1'-di(triphenylmethyl)-4,4'-biimidazole (1c),¹⁶ (5-Me-py)₂CH₂ (1d),¹⁴ (3,5-Me₂ $pz_{2}CH_{2}$ (1f),¹⁹ (4-Me-C₆H₄)N=CMeCMe=N(4-Me-C₆H₄) (1g),²⁰ (cod)Pd(Me)Cl,²² (cod)PdMe₂,²¹ (pyridazine)PdMe₂,⁸ {H₂C(mim)₂}-CMeCMe=N(4-Me-C₆H₄)}Pd(Me)Cl (**3g**),³⁸ { $(2,6^{-i}Pr_2-C_6H_3)N=$ CMeCMe=N(2,6-ⁱPr₂-C₆H₃)}Pd(Me)Cl (3h),^{6d} [{H₂C(mim)₂}- $PdMe(NMe_2Ph)][B(C_6F_5)_4]$ (5a),³⁰ and $[{H_2C(5-Me-py)_2}PdMe (NMe_2Ph)][B(C_6F_5)_4]$ (5d)³⁰ were prepared by literature procedures. All other chemicals were purchased from Aldrich and used without further purification. Elemental analyses were performed by Midwest Microlabs (Indianapolis, IN). Infrared spectra were obtained at 25 °C under an N2 atmosphere using a Nicolet NEXUS 470 FT-IR spectrometer. GC-MS analyses were performed on a HP-6890 instrument with a HP-5973 mass selective detector.

NMR spectra were recorded in flame-sealed or Teflon valve tubes on Bruker AMX-360, AMX-400, or AMX-500 spectrometers at ambient probe temperature unless otherwise indicated. ¹H and ¹³C chemical shifts are reported versus SiMe₄ and were determined by reference to the residual ¹H and ¹³C solvent peaks. ¹⁹F and ¹¹B chemical shifts were referenced to external neat CFCl₃ and BF₃•Et₂O respectively. Coupling constants are reported in Hz. NMR probe temperatures were calibrated by a MeOH thermometer.⁴¹

The NMR spectra of cationic Pd compounds contained signals of the free B(C₆F₅₎₄⁻ anion. ¹³C{¹H} NMR (CD₂Cl₂, -60 °C): δ 147.5 (dm, J = 241, C2), 137.8 (dm, J = 238, C4), 135.8 (dm, J = 249, C3), 123.6 (br, C1). ¹¹B NMR (CD₂Cl₂, -60 °C): δ – 16.9 (s). ¹⁹F NMR (CD₂Cl₂, -60 °C): δ –133.7 (br s, 2F, *o*-F), -163.0 (t, J = 23, 1F, *p*-F), -167.0 (t, J = 19, 2F, *m*-F). NMR spectra of **7a,c-e**, **8a-e,g**, and **9a,c-e** and species derived from these species contain resonances for free NMe₂Ph.²⁹ Samples of CD₂Cl₂ solutions of cationic species generated in situ from the reaction of **3f-h** and [Li(Et₂O)_{2.8}][B(C₆F₅)₄] contain LiCl. Samples of CD₂Cl₂ solutions of cationic species generated in situ from the reaction of **3f** and Ag[SbF₆] contain AgCl.

Atom-labeling schemes for the ligands $(mim)_2CH_2$, biTim, (5-Me-py)₂CH₂, and $(pz)_2CH_2$ and complexes derived from these ligands are given in Chart 2.

{(*n*-Hexyl)HC(mim)₂}PdMe₂ (2b). A slurry of (cod)PdMe₂ (0.218 g, 0.893 mmol) and (mim)₂CH(*n*-hexyl) (0.197 g, 0.759 mmol) in pentane (30 mL) was stirred for 30 min at -78 °C. The mixture was warmed to 0 °C and stirred for 1 h. The white solid was isolated by cannula filtration at 0 °C, washed with pentane (30 mL) at 0 °C, and dried under vacuum at 0 °C (0.100 g, 33%). **2b** was stored at -35 °C. ¹H NMR (CD₂Cl₂): δ 7.05 (s, 2H, mim H4/H5), 6.83 (s, 2H, mim H4/H5), 4.08 (t, *J* = 8, 1H, CH), 3.66 (s, 6H, mim NMe), 2.31 (q, *J* = 8, 2H, CH₂), 1.24 (m, 8H,

⁽⁴¹⁾ Van Geet, A. L. Anal. Chem. 1970, 42, 679.

CHCH₂(*CH*₂)₄CH₃), 0.84 (t, J = 4, 3H, CH₂C*H*₃), -0.03 (s, 6H, Pd*Me*). ¹H NMR (CD₃COCD₃): δ 6.99 (s, 2H, mim H4/H5), 6.94 (s, 2H, mim H4/H5), 4.50 (t, J = 8, 1H, *CH*), 3.83 (s, 6H, mim N*Me*), 2.33 (m, 2H, *CH*₂), 1.24 (m, 8H, CHCH₂(*CH*₂)₄CH₃), 0.83 (t, J = 7, 3H, CH₂C*H*₃), -0.40 (s. 6H, Pd*Me*). ¹³C{¹H} NMR (CD₃COCD₃): δ 145.6 (mim C2), 125.8 (mim C4/C5), 120.3 (mim C4/C5), 37.0, 32.9, 32.6, 31.3, 26.6, 22.1, 13.3, -10.3 (Pd*Me*). One signal unobserved due to overlap with acetone-*d*₆. Anal. Calcd for C₁₇H₃₀N₄Pd: C, 51.44; H, 7.61; N, 14.11. Found: C, 51.15; H, 7.43; N, 13.90.

{1,1'-Di(triphenylmethyl)-4,4'-biimidazole}PdMe₂ (2c). In the dark, a flask was charged with (pyridazine)PdMe₂ (0.108 g, 0.498 mmol) and 1,1'-di(triphenylmethyl)-4,4'-biimidazole (0.309 g, 0.499 mmol), and CH₂Cl₂ (20 mL) was added by syringe. The solution was stirred for 5 min in the dark at 23 °C, and the color changed from orange to yellow. The solution was poured into pentane (180 mL), and a white solid precipitated. The solid was collected by filtration, rinsed with acetone (5 mL), Et₂O (10 mL), and pentane (30 mL), and dried under vacuum to yield {1,1'-di(triphenylmethyl)-4,4'-biimidazole}PdMe₂ as a white solid (0.258 g, 68%). ¹H NMR (CD₂Cl₂, -60 °C): δ 7.50 (s, 2H, imidazole H2), 7.34 (m, 18H, trityl H3 and H4), 7.16 (m, 12H, trityl H2), 6.83 (s, 2H, imidazole H5), -0.18 (s, 6H, PdMe). ¹³C NMR (CD₂Cl₂, -60 °C): δ 141.0 (imidazole C2 and trityl C4), 136.2 (imidazole C4), 135.0 (trityl ipso C), 129.4 (trityl C2/C3), 128.2 (trityl C2/C3), 115.7 (imidazole C5), 75.7 ($C(C_6H_5)_3$), -13.5 (PdMe). 2c was stored at -35 °C due to its thermal instability and is insufficiently stable for elemental analysis.

{H₂C(5-Me-py)₂}PdMe₂ (2d). A flask was charged with (pyridazine)PdMe₂ (0.217 g, 1.00 mmol) and (5-Mepy)₂CH₂ (0.218 g, 1.10 mmol), and Et₂O (30 mL) was added by syringe. An offwhite precipitate formed within 15 min. The mixture was stirred at 23 °C for a total of 30 min The solid was collected by filtration, rinsed with Et₂O (2 \times 20 mL), and dried under vacuum to yield $\{H_2C(5-Me-py)_2\}PdMe_2$ as a white solid (0.185 g, 55%). ¹H NMR $(CD_2Cl_2, -60 \text{ °C}): \delta 8.33 \text{ (s, 2H, py H6)}, 7.50 \text{ (d, } J = 8, 2H, py H6)$ H4), 7.25 (d, J = 8, 2H, py H3), 4.65 (d, J = 14, 1H, CH₂ H_{ax}), 4.03 (d, J = 14, 1H, CH₂ H_{eq}), 2.24 (s, 6H, py 5-Me), 0.00 (s, 6H, PdMe). ¹H NMR (CD₂Cl₂, -40 °C): δ 8.36 (s, 2H, py H6), 7.50 (d, *J* = 8, 2H, py H4), 7.25 (d, *J* = 8, 2H, py H3), 4.69 (d, *J* = 13, 1H, CH₂ H_{ax}), 4.03 (d, J = 13, 1H, CH₂ H_{eq}), 2.26 (s, 6H, py 5-Me), 0.02 (s, 6H, PdMe). ¹H NMR (CD₂Cl₂, -20 °C): δ 8.38 (s, 2H, py H6), 7.50 (d, J = 8, 2H, py H4), 7.25 (d, J = 8, 2H, py H3), 4.61 (br d, 1H, CH₂ H_{ax}), 4.03 (br d, 1H, CH₂ H_{ea}), 2.27 (s, 6H, py 5-Me), 0.05 (s, 6H, PdMe). ${}^{13}C{}^{1}H$ NMR (CD₂Cl₂, -60 °C): δ 152.4 (py C2), 150.1 (py C6), 137.8 (py C4), 132.8 (py C5), 123.3 (py C3), 45.4 (CH₂), 17.8 (py 5-Me), -7.4 (PdMe). 2d was stored at -35 °C due to its thermal instability and is insufficiently stable for elemental analysis.

{(4-Me-C₆H₄)N=CMeCMe=N(4-Me-C₆H₄)}PdMe₂ (2g). A suspension of *trans*-PdCl₂(SMe₂)₂ (0.75 g, 2.5 mmol) in Et₂O (140 mL) was cooled to -78 °C, and MeLi (1.5 M in Et₂O, 3.6 mL, 5.5 mmol) was added via syringe. The mixture was stirred for 1 h, during which time most of the orange solid disappeared. The solution was warmed to -50 °C and stirred for 3 h, to afford a clear, colorless solution. A solution of (4-Me-C₆H₄)N=CMeCMe=N(4-

Me-C₆H₄) (0.66 g, 2.5 mmol) in Et₂O (80 mL) was added via cannula, and a red solid immediately precipitated. The red suspension was warmed to -10 °C, and H₂O (1.5 mL) was added by syringe to quench any remaining MeLi. The mixture was filtered immediately to afford a red solid. The solid was rinsed with Et₂O $(3 \times 10 \text{ mL})$ and dried under vacuum. The solid was transferred to a 100 mL Schlenk flask, cooled to -20 °C, and dissolved in CH_2Cl_2 (50 mL). The red solution was filtered through a plug of Celite (LiCl removal) into a Schlenk flask kept at -78 °C. The clear red filtrate was warmed to 0 °C, and the solvent was removed under vacuum. The resulting red solid was suspended in Et₂O (20 mL), stirred for 5 min, filtered, rinsed with Et₂O (2×5 mL), and dried under vacuum (0.64 g, 64%). ¹H NMR (CD₂Cl₂, -60 °C): δ 0.7.22 (d, J = 8, 4H, Ar), 6.74 (d, J = 8, 4H, Ar), 2.33 (s, 6H, 4-Me), 2.01 (s, 6H, N=CMe), -0.40 (s, 6H, PdMe₂). ¹³C{¹H} NMR (CD₂Cl₂, -60 °C): δ 170.3 (N=Me), 144.3, 135.1, 129.0, 120.4, 20.7, 19.7, -5.9 (PdMe₂). **2g** is insufficiently stable for elemental analysis.

{H₂C(3,5-Me₂-pz)₂}Pd(Me)Cl (3f). A flask was charged with (cod)Pd(Me)Cl (0.530 g, 2.00 mmol) and (3,5-Me₂-pz)₂CH₂ (0.413 g, 2.02 mmol), and Et₂O (30 mL) was added by syringe. A white precipitate formed rapidly. The mixture was stirred at 23 °C for 4 h. The white solid was collected by filtration, rinsed with Et₂O $(4 \times 10 \text{ mL})$ and pentane $(3 \times 10 \text{ mL})$, and dried under vacuum for 1 h to yield {H₂C(3,5-Me₂-pz)₂}Pd(Me)Cl as a white solid (0.706 g, 97%). ¹H NMR (CD₂Cl₂): δ 7.14 (br d, J = 14, 1H, CH_{eq}), 6.00 (br d, J = 14, 1H, CH_{ax}), 5.95 (s, 1H, pz H4/H4'), 5.82 (s, 1H, pz H4/H4'), 2.37 (s, 6H, pz Me), 2.33 (s, 3H, pz Me), 2.32 (s, 3H, pz Me), 0.82 (s, 3H, PdMe). ¹H NMR (CD₂Cl₂, -20 °C): δ 7.08 (d, J = 15, 1H, CH_{eq}), 5.97 (d, J = 15, 1H, CH_{ax}), 5.95 (s, 1H, pz H4/H4'), 5.82 (s, 1H, pz H4/H4'), 2.36 (s, 3H, pz Me), 2.35 (s, 3H, pz Me), 2.30 (s, 6H, pz Me), 0.77 (s, 3H, PdMe). ¹H NMR (CD₂Cl₂, -60 °C): δ 7.03 (d, J = 15, 1H, CH_{ea}), 5.95 (d, J= 15, 1H, CH_{ax}), 5.94 (s, 1H, pz H4/H4'), 5.81 (s, 1H, pz H4/ H4'), 2.33 (s, 3H, pz Me), 2.30 (s, 3H, pz Me), 2.27 (s, 3H, pz Me), 2.25 (s, 3H, pz Me), 0.71 (s, 3H, Pd*Me*). ¹H NMR (CD₂Cl₂, -80 °C): δ 7.01 (d, J = 15, 1H, CH_{eq}), 5.94 (d, J = 15, 1H, CH_{ax}), 5.95 (s, 1H, pz H4/H4'), 5.81 (s, 1H, pz H4/H4'), 2.34 (s, 3H, pz Me), 2.32 (s, 3H, pz Me), 2.28 (s, 3H, pz Me), 2.27 (s, 3H, pz Me) 0.67 (s, 3H, PdMe). ¹³C{¹H} NMR (CD₂Cl₂): δ 153.0 (3/3'-pz), 152.2 (3/3'-pz), 141.0, (5/5'-pz), 140.0 (5/5'-pz), 108.4 (4/4'-pz), 107.5 (4/4'-pz), 58.0 (CH), 14.6 (pz Me), 13.6, (pz Me), 11.6 (pz Me), 11.0 (pz Me), -7.5 (PdMe). ${}^{13}C{}^{1}H{}$ NMR (CD₂Cl₂, -80°C): δ 151.4 (3/3'-pz), 150.6 (3/3'-pz), 140.5, (5/5'-pz), 139.3 (5/ 5'-pz), 107.2 (4/4'-pz), 106.4 (4/4'-pz), 57.0 (CH), 14.1 (pz Me), 12.9, (pz Me), 11.2 (pz Me), 10.6 (pz Me), -7.7 (PdMe). 3f was stored at -35 °C due to its thermal instability and is insufficiently stable for elemental analysis.

Generation of [{(n-Hexyl)HC(mim)₂}PdMe(NMe₂Ph)]- $[B(C_6F_5)_4]$ (5b). A valved NMR tube was charged with {(nhexyl)HC(mim)₂}PdMe₂ (0.0123 g, 0.0310 mmol) and [HNMe₂Ph][B(C₆F₅)₄] (0.0247 g, 0.0310 mmol), and CD₂Cl₂ (0.7 mL) was added by vacuum transfer at -78 °C. The tube was shaken at -78 °C until both solids had dissolved to produce a clear yellow solution. The tube was kept at -78 °C and transferred to an NMR probe that had been precooled to -60 °C, and NMR spectra were recorded. Complete conversion to 5b was observed. ¹H NMR $(CD_2Cl_2, -60 \ ^{\circ}C): \delta \ 7.81 \ (d, J = 8.0, 2H, o-Ph), \ 7.42 \ (t, J = 8, 0, 2H)$ 2H, m-Ph), 7.28 (t, J = 8, 1H, p-Ph), 6.87 (s, 1H, mim H4/H5), 6.86 (s, 1H, mim H4/H5), 6.53 (s, 1H, mim H4/H5), 4.85 (s, 1H, mim H4), 4.08 (t, J = 8, 1H, CH), 3.63 (s, 3H, mim NMe), 3.54 (s, 3H, mim NMe), 3.03 (s, 3H, NMe), 2.82 (s, 3H, NMe), 2.67 (m, 1H, CH₂), 1.29 (m, 1H, CH₂), 1.18 (br s, 8H, CHCH₂(CH₂)₄CH₃), 0.79 (br s, 6H, CH₂CH₃ and PdMe). ${}^{13}C{}^{1}H{}$ NMR (CD₂Cl₂, -60 °C): δ 153.1 (ipso-Ph), 145.6 (mim C2/C2'), 144.9 (mim C2/C2'), 129.4 (o-Ph), 127.6 (p-Ph), 127.2, 125.6, 122.2

Cationic Palladium(II) Alkyl Complexes

Generation of [**{1,1'-Di(triphenylmethyl)-4,4'-biimidazole}**-**PdMe(NMe₂Ph)][B(C₆F₅)₄] (5c).** This compound was generated quantitatively from **2c** and [HNMe₂Ph][B(C₆F₅)₄] using the procedure for **5b**. ¹H NMR (CD₂Cl₂, $-60 \,^{\circ}$ C): δ 7.61 (s, 1H, imidazole H5/H5'), 7.52 (d, J = 8, o-Ph), 7.33 (m, 18H, trityl H3 and H4), 7.08 (d, J = 8, 6H, trityl H2), 6.90 (d, J = 8, 6H, trityl H2), 6.80 (s, 1H, imidazole H2), 6.73 (t, J = 8, 1H, p-Ph), 5.30 (s, 1H, imidazole H2'), 3.01 (s, 3H, NMe), 2.98 (s, 3H, NMe), 0.82 (s, 3H, PdMe). ¹³C NMR (CD₂Cl₂, $-60 \,^{\circ}$ C): 153.4, 140.4, 140.2, 136.8 (imidazole C4/C4'), 136.6 (imidazole C4/C4'), 135.0 (imidazole C2/C2'), 132.4 (imidazole C2/C2'), 129.3, 129.0, 128.5, 128.4, 128.2, 128.1, 126.5, 116.4 (imidazole C5/C5'), 116.1 (imidazole C5/C5'), 76.8 (C(C₆H₅)₃), 75.8 (C(C₆H₅)₃), 52.1 (NMe₂Ph), 0.04 (PdMe).

Generation of [{H₂C(pz)₂}PdMe(NMe₂Ph)][B(C₆F₅)₄] (5e). This compound was generated quantitatively from 2e and [HNMe₂Ph][B(C₆F₅)₄] using the procedure for 5b. ¹H NMR (CD₂Cl₂, -60 °C): δ 7.79 (d, J = 8, 2H, o-Ph), 7.71 (d, J = 3, 1H, 5-pz), 7.59 (d, J = 2, 1H, 5'-pz), 7.56 (d, J = 2, 1H, 3-pz), 7.47 (t, J = 8, 2H, *m*-Ph), 7.34 (t, J = 8, 1H, *p*-Ph), 6.87 (d, J = 14, 1H, CH_{ax}), 6.41 (t, J = 2, 1H, 4-pz), 6.15 (d, J = 14, 1H, CH_{eq}), 6.05 (t, J = 2, 1H, 4'-pz), 5.27 (d, J = 2, 1H, 3'-pz), 3.19 (s, 3H, NMe), 2.83 (s, 3H, NMe), 1.09 (s, 3H, PdMe). ¹³C NMR (CD₂Cl₂, -60 °C): δ 152.0, 143.5, 141.9, 132.4, 132.0, 129.3, 127.3, 121.7, 108.2, 107.5, 63.3 (CH₂), 55.5 (NMe), 49.6 (NMe), 4.9 (PdMe).

Generation of $[(p\text{-Tolyldiimine})PdMe(NMe_2Ph)][B(C_6F_5)_4]$ (*p*-tolyldiimine = (4-Me-C₆H₄)N=CMeCMe=N(4-Me-C₆H₄)) (5g). This compound was generated quantitatively from 2g and [HNMe₂Ph][B(C₆F₅)₄] using the procedure for 5b. ¹H NMR (CD₂Cl₂, -60 °C): δ 7.27 (d, J = 8, 2H, Ar), 7.21 (m, 2H, NMe₂Ph), 7.16 (m, 3H, NMe₂Ph), 6.97 (d, J = 8, 2H, Ar), 6.79 (d, J = 8, 2H, Ar), 6.24 (d, J = 8, 2H, Ar), 2.61 (s, 6H, NMe₂Ph), 2.35 (s, 3H, 4-Me-C₆H₄), 2.29 (s, 3H, 4-Me-C₆H₄), 2.05 (s, 3H, N=CMe), 1.93 (s, 3H, N=CMe), 0.43 (s, 3H, PdMe). ¹³C NMR (CD₂Cl₂, -60 °C): δ 178.5 (N=CMe), 173.5 (N=CMe), 151.9, 143.9, 143.8, 137.3, 136.1, 130.2, 129.8, 129.0, 126.5, 120.7, 120.6, 118.5, 52.2 (NMe₂), 21.7, 20.7, 20.6, 20.1, 13.2 (PdMe).

Generation of [{H₂C(3,5-Me₂-pz)₂}PdMe(OEt₂)][SbF₆] (6f'). A valved NMR tube was charged with **3f** (0.0072 g, 0.020 mmol) and Ag[SbF₆] (0.0069 g, 0.020 mmol), and Et₂O (1.0 mL) was added by vacuum transfer at -78 °C. The tube was sealed, briefly warmed to 23 °C, and vigorously shaken for 10 min. A slurry of a fine white solid in a colorless supernatant was obtained. The volatiles were removed under vacuum. The tube was cooled to -78°C, and CD₂Cl₂ (0.7 mL) was added by vacuum transfer. The tube was kept at -78 °C and transferred to a precooled (-60 °C) NMR probe, and NMR spectra were recorded. The ¹H NMR spectrum established that 6f' had formed quantitatively. ¹H NMR (CD₂Cl₂, -60 °C): δ 6.78 (d, J = 15, 1H, CH₂ H_{ax}), 6.21 (d, J = 15, 1H, $CH_2 H_{eq}$, 6.07 (s, 1H, pz H4/H4'), 5.86 (s, 1H, pz H4/H4'), 3.70 (m, 4H, coord. Et₂O CH₂), 2.37 (s, 3H, pz Me), 2.33 (s, 3H. pz Me), 2.27 (s, 3H, pz Me), 2.14 (s, 3H, pz Me), 1.63 (t, J = 7, 6H, coord. Et₂O CH₃), 0.79 (s, 3H, PdMe). ¹³C{¹H} NMR (CD₂Cl₂, -60 °C): δ 152.7 (3/3'-pz), 150.6 (3/3'-pz), 142.3 (5/5'-pz), 140.7 (5/5'-pz), 108.1 (4/4'-pz), 106.9 (4/4'-pz), 71.8 (Et₂O CH₂), 57.2 (CH₂), 15.6 (Et₂O CH₃), 14.5, 12.9, 11.2, 10.6, -4.5 (PdMe). Resonances for free Et₂O were also present.

Generation of [{H₂C(mim)₂}Pd{C(=O)Me}(CO)][B(C₆F₅)₄] (7a). A solution of 5a in CD₂Cl₂ (0.7 mL) was generated in a valved NMR tube from 2a (0.0096 g, 0.031 mmol) and [HNMe₂Ph][B(C₆F₅)₄] (0.025 g, 0.031 mmol) and cooled to -196°C. The tube was exposed to CO (5 atm), sealed, and warmed to -78 °C. The tube was briefly warmed to 23 °C and vigorously shaken. The tube was kept at -78 °C prior to NMR and IR analysis at ambient temperature. The ¹H NMR spectrum established that **7a** had formed quantitatively. ¹H NMR (CD₂Cl₂): δ 7.03 (br s, 2H, mim H4/H5), 6.86 (s, 1H, mim H4/H5), 6.83 (s, 1H, mim H4/H5), 4.14 (s, 2H, CH₂), 3.74 (s, 3H, mim NMe), 3.72 (s, 3H, mim NMe), 2.66 (s, 3H, COMe). ¹³C{¹H} NMR (CD₂Cl₂): δ 217.4 (C(O)Me), 173.7 (PdCO), 141.8, 140.4, 128.5, 127.5, 123.5, 123.2, 40.8 (COMe), 34.8 (mim NMe), 34.2, (mim NMe), 23.1 (CH₂). The ¹³C NMR assignments were confirmed by ¹³CO experiments. IR (CD₂Cl₂, cm⁻¹): 2121 (v_{CO}), 1734 (v_{acyl}).

Generation of [{1,1'-Di(triphenylmethyl)-4,4'-biimidazole}-Pd{C(=O)Me}(CO)][B(C₆F₅)₄] (7c). This compound was generated quantitatively from 2c, [HNMe₂Ph][B(C₆F₅)₄], and CO (5 atm) using the procedure for 7a. ¹H NMR (CD₂Cl₂, -40 °C): δ 7.57 (s, 1H, imidazole H), 7.38 (m, 19 H, trityl and imidazole H), 7.25 (d, *J* = 8, 12 H, trityl H2), 7.11 (s, 1H, imidazole H), 7.09 (s, 1H, imidazole H), 2.61 (s, 3H, COMe). ¹³C{¹H} NMR (CD₂Cl₂, -40 °C): δ 213.0 (C(O)Me), 173.5 (PdCO), 140.5, 140.1, 139.2 (imidazole C4/C4'), 138.5 (imidazole C4/C4'), 134.3 (imidazole C2/C2'), 132.4 (imidazole C2/C2'), 129.4 (2 C), 128.8, 128.7, 128.5, 128.4, 77.5, 77.1, 41.8 (COMe). IR (CD₂Cl₂, cm⁻¹): 2123 (ν_{CO}). The ν_{acyl} stretch was not observed due to overlap with a solvent stretch.

Generation of $[{H_2C(5-Me-py)_2}Pd{C(=O)Me}(CO)][B (C_6F_5)_4$] (7d). This compound was generated quantitatively from 2d, $[HNMe_2Ph][B(C_6F_5)_4]$, and CO (5 atm) using the procedure for 7a. ¹H NMR (CD₂Cl₂, -40 °C): δ 8.23 (s, 1H, py H6/H6'), 8.12 (s, 1H, py H6/H6'), 7.74 (d, J = 8, 1H, py H4/H4'), 7.68 (d, J = 8, 1H, py H4/H4'), 7.47 (d, J = 8, 1H, py H3/H3'), 7.44 (d, J= 8, 1H, py H3/H3'), 4.71 (d, J = 15, 1H, CH₂ H_{ax}), 4.30 (d, J =15, 1H, CH₂ H_{ea}), 2.64 (s, 3H, COMe) 2.33 (s, 3H, py 5-Me), 2.30 (s, 3H, py 5-Me). ${}^{13}C{}^{1}H$ NMR (CD₂Cl₂, -40 °C): δ 218.0 (C(O)Me), 173.0 (PdCO), 151.9 (py C2/C2'), 151.1 (py C6/C6'), 150.8 (py C2/C2'), 148.7 (py C6/C6'), 142.3 (py C4/C4'), 141.5 (py C4/C4'), 135.3 (py C5/C5'), 135.1 (py C5/C5'), 125.7 (py C3/ C3'), 125.4 (py C3/C3'), 45.7 (COMe), 40.9 (CH₂) 18.1 (py 5-Me), 17.8 (py 5-Me). IR (CD₂Cl₂, cm⁻¹): 2128 (v_{CO}), 1741 (v_{acyl}).

Generation of $[{H_2C(pz)_2}Pd{^{13}C(=O)Me}{^{13}CO}][B(C_6F_5)_4]$ (7e). This compound was generated quantitatively from 2e, [HNMe₂Ph][B(C₆F₅)₄], and ¹³CO (1 atm) using the procedure for 7a. ¹H NMR (CD₂Cl₂, -20 °C): δ 7.81 (br s, 2H, pz H5/H5'), 7.64 (br s, 2H, pz H3/H3'), 6.39 (br s, 2H, pz H4/H4'), 6.39 (br s, 2H, CH₂), 2.76 (d, J_{C-H} = 6, 3H, COMe). ¹³C{¹H} NMR (CD₂Cl₂, -10 °C): δ 209.8 (C(O)Me), 175.0 (br s, PdCO),144.5 (br s, pz C5/C5'), 129.2 (pz C3/C3'), 109.1 (pz C4/C4'), 63.7 (CH₂), 40.0 (d, J_{C-C} = 32, COMe). IR (CD₂Cl₂, cm⁻¹): 2133 (v_{CO}), 1756 (v_{acyl}).

Generation of $[{H_2C(3,5-Me_2-pz)_2}Pd{C(=O)Me}(CO)]$ - $[B(C_6F_5)_4]$ (7f). A valved NMR tube containing a CD₂Cl₂ (0.7 mL) solution of **3f** (0.0056 g, 0.016 mmol) and [Li(Et₂O)_{2.8}][B(C₆F₅)₄] (0.014 g, 0.016 mmol) was cooled to -196 °C and exposed to CO (5 atm). The tube was sealed and warmed to -78 °C. The tube was briefly warmed to 23 °C and vigorously shaken. A slurry of a fine white solid in a colorless supernatant was obtained. The tube was kept at -78 °C and transferred to a precooled (-60 °C) NMR probe, and NMR spectra were recorded. The ¹H NMR spectrum established that **7f** had formed quantitatively. ¹H NMR (CD₂Cl₂, -60 °C): δ 6.43 (d, J = 15, 1H, CH₂ H_{ax}), 6.05 (d, J = 15, 1H, CH₂ H_{ea}), 6.03 (s, 1H, pz H4/H4'), 5.97 (s, 1H, pz H4/H4'), 2.62 (s, 3H, (COMe)), 2.36 (s, 3H, pz Me), 2.34 (s, 3H. pz Me), 2.22 (s, 3H, pz Me), 2.11 (s, 3H, pz Me). ¹H NMR (CD₂Cl₂, 25 °C): δ 6.45 (br s, 1H, H_{ax}), 6.22 (br s, 1H, H_{eq}), 6.04 (s, 2H, pz H), 2.65 (s, 3H, COMe), 2.39 (s, 6H, pz Me), 2.22 (s, 6H, pz Me). ¹³C{¹H} NMR (CD₂Cl₂, -60 °C): δ 211.3 (C(O)Me), 171.7 (PdCO), 153.1 (3/3'-pz), 152.2 (3/3'-pz), 142.8 (5/5'-pz), 141.1 (5/5'-pz), 108.7 (4/4'-pz), 107.6 (4/4'-pz), 56.9 (CH₂), 40.4 (COMe), 13.9, 13.6, 11.0, 10.6. IR (CD₂Cl₂, cm⁻¹): 2132 (v_{CO}). The v_{acyl} band was not observed due to overlap with a solvent band.

Generation of $[(p-Tolyldiimine)Pd{C(=O)Me}(CO)][B(C_6F_5)_4]$ (7g). This compound was generated quantitatively from 3g, $[Li(Et_2O)_{2.8}][B(C_6F_5)_4]$, and CO (5 atm) using the procedure for **7f.** ¹H NMR (CD₂Cl₂, -40 °C): δ 7.29 (br d, 2H, Ar), 7.25 (br d, 2H, Ar), 6.89 (br d, 2H, Ar), 6.78 (br d, 2H, Ar), 2.35 (s, 6H, 4-*Me*-C₆H₄), 2.32 (s, 3H, *N* = *CMe*), 2.31 (s, 3H, N=*CMe*), 2.09 (s, 3H, CO*Me*). ¹³C{¹H} NMR (CD₂Cl₂, -40 °C): δ 212.3 (*C*(O)Me), 180.4 (N= *C*Me), 172.4 (PdCO and N=*C*Me), 143.7, 142.6, 131.3, 130.6, 130.5, 122.1, 120.2, 119.9, 36.4 (CO*Me*), 21.2, 20.9, 20.0. IR (CD₂Cl₂, cm⁻¹): 2130 (*v*_{CO}), 1752 (*v*_{acyl}).

Generation of [{(2,6-ⁱPr₂-C₆H₃)N=CMeCMe=N(2,6-ⁱPr₂-C₆H₃)}Pd{C(=O)Me}(CO)][B(C₆F₅)₄] (7h). ⁴² This compound was generated quantitatively from 3h, [Li(Et₂O)_{2.8}][B(C₆F₅)₄], and CO (5 atm) using the procedure for 7f. ¹H NMR (CD₂Cl₂, -40 °C): δ 7.41–7.27 (m, 6H, 2,6-ⁱPr₂-C₆H₃ Ar), 2.74 (m, J = 7, 4H, CHMe₂), 2.39 (s, 3H, N=CMe), 2.27 (s, 3H, N=CMe), 2.01 (s, 3H, COMe) 1.37 (d, J = 7, 12H, CHMe₂), 1.19 (d, J = 7, 6H, CHMe₂), 1.10 (d, J = 7, 6H, CHMe₂). IR (CD₂Cl₂, cm⁻¹): 2132 (ν _{CO}), 1757 (ν _{acyl}).

Generation of $[{H_2C(mim)_2}PdMe(H_2C=CH_2)][B(C_6F_5)_4]$ (8a). A solution of 5a (0.016 mmol) in CD₂Cl₂ (0.7 mL) was generated in a valved NMR tube from 2a (0.0048 g, 0.016 mmol) and [HNMe₂Ph][B(C₆F₅)₄] (0.012 g, 0.016 mmol), as described above, and cooled to -196 °C. The tube was exposed to ethylene (ca. 5 equiv) and sealed. The tube was warmed to -78 °C. The tube was kept at -78 °C and transferred to a precooled (-60 °C) NMR probe, and a ¹H NMR spectrum was recorded. The ¹H NMR spectrum established that 8a had formed (100% versus NMe₂Ph). Under these conditions (-60 °C), exchange of coordinated and free ethylene is fast on the NMR chemical shift time scale. Fast exchange was also observed when 2.5 equiv of ethylene was used. ¹H NMR (CD₂Cl₂, -60 °C): δ 7.04 (s, 1H, mim H4/H5), 7.00 (s, 2H, mim H4/H5), 6.65 (s, 1H, mim H4/H5), 5.22 (br s, free and coordinated H₂C=CH₂), 4.09 (s, 2H, CH₂), 3.73 (s, 3H, mim NMe), 3.67 (s, 3H, mim NMe), 0.55 (s, 3H, PdMe). ¹³C{¹H} NMR (CD₂Cl₂, -60 °C): δ 140.3 (mim C2/C2'), 138.9 (mim C2/C2'), 124.8, 122.8, 122.7, 121.9, 114.0 (br s, free and coord $H_2C=CH_2$), 34.3 (mim NMe), 33.8 (mim NMe), 22.5 (CH₂), 7.0 (PdMe).

Generation of [{(*n*-Hexyl)HC(mim)₂}PdMe(H₂C=CH₂)]-[B(C₆F₅)₄] (8b). This compound was generated quantitatively from 2b, [HNMe₂Ph][B(C₆F₅)₄], and ethylene (ca. 4 equiv) using the procedure for 8a. Under these conditions ($-60 \,^{\circ}$ C), exchange of coordinated and free ethylene (δ 5.37) is slow on the NMR chemical shift time scale. ¹H NMR (CD₂Cl₂, $-60 \,^{\circ}$ C): δ 6.99 (s, 1H, mim H4/H5), 6.96 (s, 1H, mim H4/H5), 6.92 (s, 1H, mim H4/H5), 6.68 (s, 1H, mim H4/H5), 4.86 (br s, 2H, H₂C=CH₂), 4.72 (br s, 2H, H₂C=CH₂), 4.21 (t, *J* = 7, 1H, C*H*), 3.73 (s, 3H, mim NM*e*), 3.67 (s, 3H, mim NM*e*), 2.09 (m, 2H, CH₂), 1.15 (br s, 8H, CHCH₂(CH₂)₄CH₃), 0.77 (br s, 3H, CH₂CH₃), 0.57 (s, 3H, PdM*e*).

Generation of [{1,1'-Di(triphenylmethyl)-4,4'-biimidazole}- $PdMe(H_2C=CH_2)$ [B(C₆F₅)₄] (8c). This compound was generated quantitatively from 2c, [HNMe₂Ph][B(C₆F₅)₄], and ethylene (ca. 10 equiv) using the procedure for **8a**. Under these conditions (-60)°C), exchange of coordinated and free ethylene is fast on the NMR chemical shift time scale. ¹H NMR (CD₂Cl₂, -60 °C): δ 7.62 (s, 1H, imidazole H2/H2'), 7.32 (m, 18H, trityl H3 and H4), 7.29 (s, 1H, imidazole H2/H2'), 7.11 (d, J = 8, 6H, trityl H2/ H2'), 7.07 (d, J = 8, 6H, trityl H2/ H2'), 7.00 (s, 1H, imidazole H5/H5'), 6.99 (s, 1H, imidazole H5/H5'), 5.31 (s, free and coordinated H₂C=CH₂), 0.57 (s, 3H, PdMe). ¹³C NMR (CD₂Cl₂, -60 °C): 140.4, 140.1, 136.1 (imidazole C4/C4'), 135.9 (imidazole C4/C4'), 135.0 (imidazole C2/C2'), 132.8 (imidazole C2/C2'), 129.3, 129.2, 128.6, 128.4, 128.3, 128.2, 119.9 (br s, free and coordinated H₂C=CH₂), 117.2 (imidazole C5/C5'), 116.8 (imidazole C5/C5'), 76.9 (C(C₆H₅)₃), 76.6 (C(C₆H₅)₃), 3.6 (PdMe).

Generation of $[{H_2C(5-Me-py)_2}PdMe(H_2C=CH_2)][B(C_6F_5)_4]$ (8d). This compound was generated quantitatively from 2d, [HNMe_2Ph][B(C_6F_5)_4], and ethylene (ca. 8 equiv) using the procedure for **8a**. Under these conditions (-60 °C), exchange of coordinated and free ethylene is fast on the NMR chemical shift time scale. ¹H NMR (CD₂Cl₂, -60 °C): δ 8.16 (s, 1H, py H6/H6'), 7.95 (s, 1H, py H6/H6'), 7.72 (d, J = 8, 1H, py H4/H4'), 7.63 (d, J = 8, 1H, py H4/H4'), 7.44 (d, J = 8, 1H, py H3/H3'), 7.39 (d, J = 8, 1H, py H3/H3'), 5.35 (br s, free and coordinated H₂C=CH₂), 4.71 (d, J = 14, 1H, CH₂ H_{ax}), 4.25 (d, J = 14, 1H, CH₂ H_{eq}), 2.33 (s, 3H, py 5-Me), 2.29 (s, 3H, py 5-Me), 0.71 (s, 3H, Pd*Me*). ¹³C{¹H} NMR (CD₂Cl₂, -60 °C): δ 151.8 (py C2/C2'), 150.6 (py C2/C2'), 149.8 (py C6/C6'), 147.4 (py C6/C6'), 141.1 (py C4/C4'), 140.5 (py C4/C4'), 134.9 (py C5/C5'), 134.8 (py C5/C5'), 122.9 (br s, exchanging H₂C=CH₂), 45.3 (CH₂), 17.8 (py 5-Me), 17.7 (py 5-Me), 9.0 (Pd*Me*).

Generation of [{H₂C(pz)₂}PdMe(H₂C=CH₂)][B(C₆F₅)₄] (8e). This compound was generated quantitatively from **2e**, [HNMe₂Ph][B(C₆F₅)₄], and ethylene (ca. 5 equiv) using the procedure for **8a**. Under these conditions (-60 °C), exchange of coordinated and free ethylene is fast on the NMR chemical shift time scale. ¹H NMR (CD₂Cl₂, -60 °C): δ 7.81 (br s, 1H, pz H), 7.71 (br s, 2H, pz H), 7.47 (br s, 1H, pz H), 6.54 (m, 1H, pz H4/H4'), 6.50 (d, *J* = 15, CH₂ *H_{ax}*), 6.43 (m, 1H, pz H4/H4'), 6.21 (d, *J* = 15, CH₂ *H_{eq}*), 5.28 (s, free and coordinated H₂C=CH₂), 0.88 (s, 3H, Pd*Me*). ¹³C{¹H} NMR (CD₂Cl₂, -60 °C): δ 142.1 (pz C5/C5'), 140.8 (pz C5/C5'), 133.5 (pz C3/C3'), 132.5 (pz C3/C3'), 115.2 (br s, exchanging H₂C=CH₂), 108.0 (pz C4/C4'), 107.9 (pz C4/C4'), 40.3 (CH₂), 8.9 (Pd*Me*).

Generation of $[{H_2C(3,5-Me_2-pz)_2}PdMe(H_2C=CH_2)]$ - $[B(C_6F_5)_4]$ (8f). A valved NMR tube containing a CD₂Cl₂ (0.7 mL) solution of 3f (7.2 mg, 20.0 μ mol) and [Li(Et₂O)_{2.8}][B(C₆F₅)₄] (17.8 mg, 20.0 $\mu mol)$ was cooled to $-196~^\circ C$ and exposed to ethylene (ca. 3 equiv). The tube was sealed and warmed to -78 °C. The solution was kept at -78 °C and transferred to a precooled (-60 °C) NMR probe, and a ¹H NMR spectrum was recorded at -60°C. The ¹H NMR spectrum established that **8f** had formed (100%) versus Et₂O). Under these conditions (-60 °C), exchange of coordinated and free ethylene (δ 5.37) is slow on the NMR chemical shift time scale. ¹H NMR (CD₂Cl₂, -60 °C): δ 6.60 (d, J = 15, 1H, CH₂ H_{ax}), 6.05 (s, 1H, pz H4/H4'), 6.02 (d, J = 15, 1H, CH₂ H_{eq}), 5.88 (s, 1H, pz H4/H4'), 5.15 (br s, 2H, H₂C=CH₂), 4.89 (br s, 2H, H₂C=CH₂), 2.37 (s, 3H, pz Me), 2.30 (s, 3H, pz Me), 2.28 (s, 3H, pz Me), 2.17 (s, 3H, pz Me), 0.80 (s, 3H, PdMe). ¹³C{¹H} NMR (CD₂Cl₂, -60 °C): δ 151.8 (3/3'-pz), 150.9 (3/3'-pz), 141.6 (5/5'-pz), 140.9 (5/5'-pz), 108.2 (4/4'-pz), 107.9 (4/4'-pz), 89.4 (H₂C=CH₂), 57.2 (CH₂), 13.9, 13.1, 10.9, 10.6, 5.9 (PdMe).

Generation of [{H₂C(3,5-Me₂-pz)₂}PdMe(H₂C=CH₂)][SbF₆] (8f'). A solution of 6f' (0.020 mmol) in CD₂Cl₂ in a valved NMR tube was generated as described above and cooled to -196 °C, and ethylene (ca. 8 equiv) was added by vacuum transfer. The tube was sealed and warmed to -78 °C. The tube was maintained at -78 °C and transferred to a precooled (-60 °C) NMR probe and NMR spectra were recorded. A ¹H NMR spectrum was recorded at -60 °C and showed that 8f' had formed. Under these conditions (-60 °C), exchange of coordinated and free ethylene (δ 5.37) is slow on the NMR chemical shift time scale. ¹H NMR (CD₂Cl₂, -60 °C): δ 6.66 (d, J = 15, 1H, CH₂ H_{ax}), 6.14 (d, J = 15, 1H, CH₂ H_{eq}), 6.03 (s, 1H, pz H4/H4'), 5.88 (s, 1H, pz H4/H4'), 5.15 (br s, 2H, H₂C=CH₂), 4.90 (br s, 2H, H₂C=CH₂), 2.39 (s, 3H, pz Me), 2.34 (s, 3H, pz Me), 2.29 (s, 3H, pz Me), 2.18 (s, 3H, pz Me), 0.79 (s, 3H, PdMe). ¹³C{¹H} NMR (CD₂Cl₂, -60 °C): δ 151.5 (3/3'-pz), 150.6 (3/3'-pz), 141.8 (5/5'-pz), 141.3 (5/5'-pz), 108.0 (4/4'-pz), 107.7 (4/4'-pz), 89.3 (H₂C=CH₂), 57.3 (CH₂), 13.9, 13.2, 10.9, 10.6, 5.8 (PdMe).

Generation of $[(p-Tolyldiimine)PdMe(H_2C=CH_2)][B(C_6F_5)_4]$ (8g).Thiscompoundwasgeneratedquantitativelyfrom2g,[HNMe_2Ph]-[B(C_6F_5)_4], and ethylene (ca. 6 equiv) and handled using the procedure for 8a. Under these conditions (-60 °C), exchange of coordinated and free ethylene is fast on the NMR chemical shift

⁽⁴²⁾ van Asselt, R.; Gielens, E. E. C. G.; Rulke, R. E.; Vrieze, K.; Elsevier, C. J. J. Am. Chem. Soc. 1994, 116, 977.

time scale. ¹H NMR (CD₂Cl₂, -60 °C): δ 7.30 (d, J = 8, 4H, Ar), 6.79 (d, J = 8, 2H, Ar), 6.70 (d, J = 8, 2H, Ar), 5.20 (s, free and coordinated H₂C=CH₂), 2.35 (s, 6H, 4-*Me*-C₆H₄), 2.28 (s, 3H, N=C*Me*), 2.15 (s, 3H, N=C*Me*), 0.16 (s, Pd*Me*). ¹³C{¹H} NMR (CD₂Cl₂, -60 °C): δ 180.4 (N=CMe), 174.5 (N=CMe), 141.6, 140.6, 137.8, 137.7, 130.4, 129.9, 120.2, 118.8, 117.1 (br s, exchanging H₂C=CH₂), 21.2, 20.7, 20.6, 20.2, 13.7 (Pd*Me*).

Generation of [{H₂C(mim)₂}PdEt(H₂C=CH₂)][B(C₆F₅)₄] (9a). A valved NMR tube containing a CD₂Cl₂ solution of **8a** and 5 equiv of ethylene was kept at -10 °C for 90 min. A ¹H NMR spectrum was recorded at -10 °C and showed the following species were present in solution (% relative to free NMe₂Ph): unreacted **8a** (27%), propylene (61%), *cis*- and *trans*-2-butenes (24%), and {H₂C(mim)₂}PdEt(H₂C=CH₂)⁺ (**9a**, 73%). Under these conditions (-10 °C), exchange of coordinated and free ethylene is fast on the NMR time scale. ¹H NMR of {H₂C(mim)₂}PdEt(H₂C=CH₂)⁺ (CD₂Cl₂, -10 °C): δ 5.20 (br s, free and coordinated H₂C=CH₂)⁺ of **8a** and **9a**), 1.50 (q, *J* = 8, 2H, PdCH₂Me), 0.85 (t, *J* = 8, 3H, PdCH₂*Me*). The mim, bridge-CH₂, and NMe methyl resonances of **9a** could not be distinguished from those of **8a**.

Generation of [{1,1'-Di(triphenylmethyl)-4,4'-biimidazole}- $PdEt(H_2C=CH_2)][B(C_6F_5)_4]$ (9c). A valved NMR tube containing a CD_2Cl_2 solution of **8c** and 14 equiv of ethylene was kept at -10 $^{\circ}$ C for 7 h. A ¹H NMR spectrum was recorded at -10 $^{\circ}$ C and showed that 7c had completely disappeared, and the following species were present (% relative to free NMe₂Ph): propylene (100%), cis- and trans-2-butenes (100%), 1-butene (23%), and $\{1,1'-di(triphenylmethyl)-4,4'-biimidazole\}PdEt(H_2C=CH_2)^+$ (9c, 100%). Under these conditions (-10 °C), exchange of coordinated and free ethylene is fast on the NMR chemical shift time scale. ¹H NMR of $\{1,1'-di(triphenylmethyl)-4,4'-biimidazole\}PdEt(H_2C=$ CH_2)⁺ (CD₂Cl₂, -10 °C): δ 7.65 (s, 1H, imidazole H2/H2'), 7.38 (br s, 18H, trityl H3 and H4), 7.31 (s, 1H, imidazole H2/H2'), 7.12 (br s, 12H, trityl H2/H2'), 7.03 (br s, 2H, imidazole H5/H5'), 5.34 (br s, free and coordinated $H_2C=CH_2$),1.50 (br q, J = 8, 2H, $PdCH_2Me$), 0.85 (br t, J = 8, 3H, $PdCH_2Me$).

Generation of $[{H_2C(5-Me-py)_2}PdEt(H_2C=CH_2)][B(C_6F_5)_4]$ (9d). A valved NMR tube containing a CD₂Cl₂ solution of 8d and 9 equiv of ethylene was kept at -10 °C for 125 min. A ¹H NMR spectrum was recorded at -60 °C and showed that 8d had completely disappeared, and the following products were present (% relative to free NMe₂Ph): propylene (42%), cis- and trans-2butenes (100%), 1-butene (32%), and $\{H_2C(5-Me$ py_{2} PdEt(H₂C=CH₂)⁺ (9d, 80%). Under these conditions (-60 °C), exchange of coordinated and free ethylene is fast on the NMR time scale. ¹H NMR of $\{H_2C(5-Me-py)_2\}PdEt(H_2C=CH_2)^+$ (CD₂Cl₂, -60 °C): δ 8.35 (s, 1H, py H6/H6'), 7.92 (s, 1H, py H6/ H6'), 7.73 (d, J = 8, 1H, py H4/H4'), 7.61 (d, J = 8.0, 1H, py H4/H4'), 7.45 (d, J = 8, 1H, py H3/H3'), 7.38 (d, J = 8, 1H, py H3/H3'), 4.65 (d, J = 14, 1H, CH₂ H_{ax}), 4.25 (d, J = 14, 1H, CH₂ H_{eq}), 5.32 (br s, free and coordinated H₂C=CH₂), 2.35 (s, 3H, py 5-Me), 2.26 (s, 3H, py 5-Me), 1.72 (pentet, J = 8, 1H, PdC H_2 Me), 1.44 (pentet, J = 8, 1H, PdC H_2 Me), 0.65 (t, J = 8, 3H, PdC H_2 Me).

Generation of [**H**₂C(**p**₂)₂**PdEt**(**H**₂C=**CH**₂)][**B**(**C**₆**F**₅)₄] (9e). A valved NMR tube containing a CD₂Cl₂ solution of **8e** and 4 equiv of ethylene was kept at $-22 \degree$ C for 2 h. A ¹H NMR spectrum was recorded at $-65 \degree$ C and showed the following species were present (% relative to free NMe₂Ph): **8e** (15%), propylene (85%), *cis*- and *trans*-2-butenes (36%), and {H₂C(pz)₂}PdEt(H₂C=CH₂)⁺ (**9e**, 85%). Under these conditions ($-65 \degree$ C), exchange of coordinated and free ethylene is fast on the NMR chemical shift time scale. ¹H NMR of {H₂C(pz)₂}PdEt(H₂C=CH₂)⁺ (CD₂Cl₂, $-65 \degree$ C): δ 5.20 (br s, free and coordinated H₂C=CH₂ of **8e** and **9e**), 1.95 (m, 1H, PdCH₂Me), 1.57 (m, 1H, PdCH₂Me), 0.85 (t, *J* = 7, 3H, PdCH₂Me). The pz, and bridge CH₂ resonances of **9e** could not be distinguished from those of **8e**. The ¹H NMR assignments for the PdEt group of **9e** were confirmed by a COSY experiment due to overlap of one of the methylene resonances with the *cis*- and *trans*-2-butene methyl resonance.

 $[{H_2C(3,5-Me_2-pz)_2}PdEt(H_2C=CH_2)]-$ Generation of $[B(C_6F_5)_4]$ (9f). A valved NMR tube containing a CD₂Cl₂ solution of 8f and 13 equiv of ethylene was kept at -10 °C for 26 min. A ¹H NMR spectrum was recorded at -60 °C and showed that the following species were present (% relative to free NMe₂Ph): 8f (14%), propylene (66%), cis- and trans-2-butenes (66%), and ${H_2C(3,5-Me_2-pz)_2}PdEt(H_2C=CH_2)^+$ (9f, 85%). Under these conditions (-60 °C), exchange of coordinated and free ethylene is slow on the NMR chemical shift time scale. ¹H NMR of {H₂C(3,5-Me₂-pz)₂}PdEt(H₂C=CH₂)⁺ (CD₂Cl₂, -60 °C): δ 6.54 (d, J = 15, 1H, CH₂ H_{ax}), 6.99 (d, J = 15, 1H, CH₂ H_{eq}), 4.97 (br d, J = 15, 2H, H₂C=CH₂), 4.87 (br d, J = 10, 2H, H₂C=CH₂), 0.63 (t, J =7, 3H, PdCH₂Me). The pz H4 and pz Me resonances of 9f could not be distinguished from those of 8f. The PdCH₂CH₃ resonances of 9f were not observed at -60 °C due to broadening and overlap with other resonances.

Generation of $[(p\text{-Tolyldiimine})\text{PdEt}(\text{H}_2\text{C}=\text{CH}_2)][B(C_6\text{F}_5)_4]$ (9g). A valved NMR tube containing a CD₂Cl₂ solution of 8g and 4.5 equiv of ethylene was kept at -10 °C for 13 min. A ¹H NMR spectrum was recorded at -60 °C and showed the following species were present (% relative to free NMe₂Ph): propylene (43%), *cis*and *trans*-2-butenes (44%), 1-butene (32%), and (*p*tolyldiimine)PdEt(H₂C=CH₂)⁺ (9g, 86%). Under these conditions (-60 °C), exchange of coordinated and free ethylene is fast on the NMR chemical shift time scale. ¹H NMR of (*p*tolyldiimine)PdEt(H₂C=CH₂)⁺ (CD₂Cl₂, -60 °C): δ 7.30 (br m, 4H, Ar), 6.86 (br d, J = 7, 2H, Ar), 6.69 (br d, J = 7, 2H, Ar), 5.23 (br s, free and coordinated H₂C=CH₂ and 9g), 2.36 (br s, 3H, 4-*Me*-C₆H₄), 2.35 (br s, 3H, 4-*Me*-C₆H₄), 2.28 (br s, 3H, N=C*Me*), 2.14 (br s, 3H, N=C*Me*), 1.05 (q, 2H, J = 7, PdCH₂Me), 0.28 (t, J = 7, 3H, PdCH₂*Me*).

Kinetics of Insertion of $(N^N)PdMe(H_2C=CH_2)^+$ Species. The first-order rate constants ($k_{insert,Me}$) for the insertion of ethylene into the Pd-Me bond of $(N^{\wedge}N)PdMe(H_2C{=}CH_2)^+$ species ${\bf 8a-g}$ and 8f' were determined by ¹H NMR. The procedure for 8a is described here. Analogous procedures were used for 8b-g and 8f'. Details and kinetic plots are provided in the Supporting Information. Procedure for 8a: A CD₂Cl₂ solution of 8a containing 4 equiv of excess free ethylene was generated in a valved NMR tube. The tube was placed in a -10 °C constant temperature bath for 20 min, placed in a -78 °C bath for 3 min, and transferred to a precooled (-60 °C) NMR probe where a ¹H NMR spectrum was recorded at $-60\ ^\circ \text{C}.$ This procedure was repeated at 20 min intervals. Values of $I_{0,PdMe}$, I_{PdMe} , and I_{NMe2Ph} , where $I_{0,PdMe}$ = the integral of the Pd–Me resonance of 8a ($\delta = 0.61$) at the start of the experiment, I_{PdMe} = the integral of the Pd-Me resonance of **8a** at the end of each 20 min interval, and $I_{\rm NMe2Ph}$ = the integral of the NMe₂Ph resonance ($\delta = 2.92$), were determined by integration. A plot of $\ln(A_{PdMe}/A_{0,PdMe})$ versus time (at -10 °C), where $A_{PdMe} = I_{PdMe}/$ $I_{\rm NMe2Ph}$ and $A_{0,\rm PdMe} = I_{0,\rm PdMe}/I_{\rm NMe2Ph}$, was linear. The slope of this plot equals $-k_{\text{insert,Me}}$. For **8a**, $k_{\text{insert,Me}} = (1.2 \pm 0.1) \times 10^{-4} \text{ s}^{-1}$ at -10 °C (ca. 3 half-lives).

Kinetics of Insertion of $(N^N)PdEt(H_2C=CH_2)^+$ Species 9a,c–g. The first-order rate constants $(k_{\text{insert,Et}})$ for the insertion of ethylene into the Pd–Et bond of $(N^N)PdEt(H_2C=CH_2)^+$ species 9a,c–g were determined by ¹H NMR. The procedure for 9a is described here. Analogous procedures were used for 9c–g, and details and kinetic plots are provided in the Supporting Information. *Procedure for* 9a: A CD₂Cl₂ solution (0.7 mL) of 8a was generated in a valved NMR tube as described above. The tube was transferred to a precooled (-40 °C) NMR probe. A ¹H NMR spectrum was recorded at -40 °C and showed that 8a had formed (100% versus NMe₂Ph). Under these conditions (-40 °C), exchange of coordinated and free ethylene is fast on the NMR time scale. The NMR probe was warmed to -10 °C, thermally equilibrated, and maintained at this temperature, and ¹H NMR spectra were recorded periodically. Values of I_{butenes} and I_{NMe2Ph} , where I_{butenes} = the integral of the methyl resonances of *trans*-2-, *cis*-2- (δ = 1.59) and 1-butene (δ = 0.98) and I_{NMe2Ph} = the integral of the NMe₂Ph resonance (δ = 2.94), were determined by careful integration of each spectrum and used to determine the moles butenes produced/moles of catalyst. A plot of turnovers (moles butenes produced/moles of catalyst) versus time was linear (r^2 = 0.991). The slope of this plot equals $k_{\text{insert,Et}}$. For **9a**, $k_{\text{insert,Et}} = (1.0 \pm 0.1) \times 10^{-4}$ s⁻¹ at -10 °C.

Acknowledgment. This work was supported by the U.S. Department of Energy (DE-FG-02-00ER15036).

Supporting Information Available: Variable-temperature NMR spectra of **2d** and **3f**, details of kinetics studies, additional synthetic procedures, and representative NMR spectra of **2d**, **2g**, **3f**, **5d**, **7d**, **8d**, and **9d**. This material is available free of charge via the Internet at http://pubs.acs.org.

OM700767R