Additions and Corrections

2006, Volume 25

Charles P. Casey,* Neil A. Strotman, Sharon E. Beetner, Jeffrey B. Johnson, David C. Priebe, Thomas E. Vos, Babak Khodavandi, and Ilia A. Guzei: The PPh₃-Substituted Hydroxycyclopentadienyl Ruthenium Hydride [2,5-Ph₂-3,4-Tol₂(η^5 -C₄COH)]Ru(CO)(PPh₃)H is a More Efficient Catalyst for Hydrogenation of Aldehydes.

Pages 1230–1235. Errors were made in reporting the Pulse Gradient Spin–Echo NMR measurements of [2,5-Ph₂-3,4-Tol₂(η^{5} -C₄COH)]Ru(O₂CPh)(PPh₃)(CO) (**9**) and of monoruthenium (**13**) and diruthenium model compounds (**1**). Use of millisecond instead of second units for delay times resulted in arithmetical errors of about 10³ in the diffusion coefficients reported in the Supporting Information. The newly calculated diffusion coefficient for **9** ($D = 3.02 \times 10^{-8} \text{ m}^2 \text{ s}^{-1}$) is similar to that of the methoxy-protected monomer [2,5-Ph₂-3,4,-Tol₂(η^{5} -C₄COCH₃)]Ru(CO)₂H (**13**; $D = 3.68 \times 10^{-8} \text{ m}^2 \text{ s}^{-1}$) and substantially greater than that of the diruthenium compound **1** ($D = 2.03 \times 10^{-8} \text{ m}^2 \text{ s}^{-1}$). The qualitative conclusion that the molecular weight of **9** is similar to that of **13** is unchanged and supports the conclusion that **9** is a monometallic species.

OM701240G

10.1021/om701240g Published on Web 12/27/2007